
Chapter 26

Internet Computer

The Internet Computer (IC) realizes a world computer which extends the inter-
net with smart contracts, providing a tamper-proof execution environment with
minimal trust assumptions.1 In this chapter, we study some of the key protocol
mechanisms enabling this functionality.

26.1 Canisters and Subnets

Definition 26.1 (Canister). A canister is a smart contract on the IC, bundling
contract logic (code) and contract state (storage). A canister exposes methods
that other canisters (and users) can call which may change the state of the
canister.

Remarks:

• The IC runs state replication (Definition 15.8) for each canister.

• All canisters are hosted on dedicated individually untrusted nodes,
each running the Internet Computer Protocol (ICP).

Definition 26.2 (Subnet). A subnet is a set of nodes providing state replica-
tion for the canisters deployed on it.

Remarks:

• Each node in a subnet hosts all the canisters deployed on that subnet.
There are subnets with 80,000+ canisters and subnets with just a few
canisters.

• Subnets can be smaller or larger: most subnets have 13 nodes that
are spread across the Americas, Europe, and Asia. For applications
in need of a higher degree of decentralization, there are subnets with
up to 40 nodes.

• Nodes of a subnet maintain a blockchain.
1See https://internetcomputer.org/.

144

https://internetcomputer.org/

26.2. NETWORKING 145

• Nodes from one subnet communicate with nodes on other subnets to
deliver messages from canisters hosted on them.

• In any given subnet with n = 3f + 1 nodes, at most f nodes may
behave in a byzantine manner, cf. Theorem 17.14.

• There is one special subnet, which hosts the Network Nervous System
(NNS), i.e., the governance and management canisters responsible for
voting, storing node and subnet information, node provider remuner-
ation, protocol upgrades and subnet membership changes etc.

• All nodes of the IC query the (NNS) canisters to learn which subnet
they belong to, how to reach other nodes and what protocol version
to run.

26.2 Networking

Definition 26.3 (IC networking layer). The networking layer of the IC de-
livers messages within a subnet, reliably and efficiently.

Definition 26.4 (Communication complexity). The communication complexity
of an algorithm is the number of bits that all correct nodes together send in the
worst case.

Remarks:

• Algorithm 18.11 has a communication complexity of O(n2L) for n
nodes and a message of size L.

• Every node needs to receive the message, implying that at least Ω(nL)
bits must be sent. Moreover, it can be shown that the communication
complexity must be quadratic in n, regardless of the messages size,
i.e., the lower bound is Ω(nL+ n2).

• It is further required that the nodes only deliver at most one message
per broadcast.

Definition 26.5 (Integrity). A broadcast algorithm satisfies the integrity
property if at most one message is delivered.

Remarks:

• This requirement was not provided in Definition 18.10 and Algo-
rithm 18.11.

• The following improvement fixes the integrity requirement.

Theorem 26.7. Algorithm Abracha implements reliable broadcast (with the in-
tegrity property) for n > 3f .

146 CHAPTER 26. INTERNET COMPUTER

Algorithm 26.6 Algorithm Abracha: Bracha’s reliable broadcast
1: Source node s: Broadcast m
2: upon receiving m from s and not sent_echo:
3: Broadcast (echo,m)
4: Set sent_echo to true
5: end upon
6: upon receiving 2f + 1 (echo,m) or f + 1 (ready,m) messages:
7: Broadcast (ready,m)
8: end upon
9: upon receiving 2f + 1 (ready,m) messages:

10: deliver(m)
11: end upon

Proof. We first show that it is a reliable broadcast algorithm according to Defi-
nition 18.10. Assume that a correct node v deliversm, which means v must have
received 2f + 1 (ready,m) messages. Since there are at most f faulty nodes,
at least f + 1 correct nodes must have broadcast (ready,m). Thus, all correct
nodes eventually receive (ready,m) at least f + 1 times and they all broadcast
(ready,m). Consequently, they broadcast (ready,m), causing all correct nodes
to eventually receive this message at least 2f + 1 times and deliver it.

The integrity property follows from the observation that there can be only
2f + 1 echo messages for one message m because two messages m and m′ with
2f + 1 echo messages each implies that there is at least one correct node that
sent echo messages for m and m′, a contradiction to the specification of the
algorithm. If there are 2f + 1 (echo,m), then there cannot be f + 1 (ready,m′)
messages for a different m′ either because one of these messages must have
come from a correct node. The first correct node to send (ready,m′) must have
received 2f + 1 (echo,m′) messages. As argued before, this is not possible.

Theorem 26.8. Algorithm Abracha has a communication complexity of O(n2L)
in the asynchronous communication model.

Proof. Every correct node other than the source node s broadcasts the message
m of size L exactly once in an echo and a ready message. The node vs further
broadcasts m in the first step. The total communication complexity is therefore
nL+ 2n2L ∈ O(n2L).

Remarks:

• The algorithm also has the nice property that it terminates in constant
time if every message arrives within constant time and the sender is
correct.

• Since often L � n in real systems such as the IC, the worst-case
bandwidth consumption can be reduced considerably when using a
more efficient algorithm.

• One approach is to broadcast a small data piece that identifies a mes-
sage m uniquely with high probability first.

26.2. NETWORKING 147

Definition 26.9 (Advert). An advert is a small, constant-size message used
to advertise a larger message.

Remarks:

• We use H(m) as the advert of a message m, where H is a crypto-
graphically strong hash function (see Definition 18.25) that returns a
hash of size H.

• After receiving an advert, a node can explicitly request the corre-
sponding message.

• When receiving m for an advert ad, a node can then verify that m is
correct, i.e., that H(m) = ad.

• The following algorithm, Aad, is based on adverts in an attempt to
keep the communication complexity low.

Algorithm 26.10 Algorithm Aad.
1: Execute Abracha for message advert := H(m)
2: upon receiving m where H(m) = advert for the first time:
3: Broadcast H(m)
4: deliver(m)
5: terminate after (f + 1)∆ time
6: end upon
7: upon receiving H(m) = advert from w for the first time:
8: Store information about advertiser w
9: end upon

10: upon receiving request(advert) from w:
11: if message m where Hm) = advert is available and not sent to w then
12: Send m to w
13: end if
14: end upon
15: if received advert and not sent request(advert) in last ∆ time then
16: Chose some advertiser w that was not chosen before
17: Send request(advert) to w
18: end if

Remarks:

• Algorithm Aad first executes Abracha to ensure that the nodes agrees
on the advert for the message to be broadcast.

• Since Aad has the notion of a timeout period ∆, it is expressed in the
synchronous communication model.

Theorem 26.11. For ∆ := 2, Algorithm Aad implements reliable broadcast
(with the integrity property) in the synchronous communication model.

Proof. Assume that a correct node v delivers a message m and broadcasts ad =
H(m) at time t. Every other correct node w receives this advert by time t + 1

148 CHAPTER 26. INTERNET COMPUTER

and requests m from a node that advertised m. After requesting m from faulty
nodes for at most f∆ time, w requests m from either v or another correct node,
which only advertises m if it has received m before. In either case, w receives
m by time t+ 1 + (f + 1)∆, proving the claim.

Algorithm Aad satisfies the integrity property because Abracha ensures that
all correct nodes agree on the same advert H(m) and, assuming that H is a
collision-resistant hash function, the correct nodes may only deliver m.

Theorem 26.12. Algorithm Aad has a communication complexity of O(n2H+
(f + 1)nL) in the synchronous communication model.

Proof. Executing Bracha’s algorithm to reliably broadcast the advert costs
O(n2H) bits. Since every correct node broadcasts an advert only once, the
communication complexity for adverts is O(n2H). This term encompasses the
communication complexity for requests.

Every correct node only receives the message m from one other correct node,
requiringO(nL) bits. However, every malicious node may request the messagem
from each correct node, i.e., the communication complexity for message transfers
is O((f + 1)nL).

Remarks:

• If f ∈ O(1) and nH ∈ O(L), we get an asymptotically optimal commu-
nication complexity of Θ(nL); however, the algorithm runs for O(n∆)
time, which is significantly worse than Abracha,

• We only get the improved communication complexity in the syn-
chronous model and only if there are few faulty nodes.

• In the asynchronous communication model, the algorithm does not
guarantee the properties of reliable broadcast. For example, the first
property is violated when a correct node delivers m and then termi-
nates after (f + 1)∆ time but before the other nodes can send their
requests for message m. In this model, the algorithm is only correct
if it never terminates. However, even in this case, the communication
complexity is O(n2L).

• A coding-based alternative does not have these shortcomings.

Definition 26.13 (Erasure code). A (n, k)-erasure code is a code that trans-
forms a message of k symbols (of some given alphabet) into a message with
n > k symbols such that the original message can be recovered from a subset of
the n symbols.

Remarks:

• We consider optimal erasure codes, which have the property that any
subset of k symbols is sufficient to reconstruct the original message.

• When using an optimal erasure code, it is possible to split a message of
size L ≥ k into n fragments of approximate size L/k each (consisting
of one or more symbols). A fragment may be slightly larger, e.g.,
padding the original message to a size that is evenly divisible by k.

26.2. NETWORKING 149

• The basic idea is to set k := f+1 and encode n fragments of size L/(f+
1), n being the number of nodes in the subnet. The sender can send
each node a different fragment, which the receiving nodes broadcast.
Each node can then reconstruct the message m when receiving f + 1
different and valid fragments.

• Note that at least f + 1 fragments must be required, otherwise the f
malicious nodes could fabricate any message themselves.

• Each fragment must be a valid encoding. How can we ensure that
malicious nodes do not send random data instead of valid fragments?

Definition 26.14 (Merkle tree). A Merkle tree is a tree in which every leaf
is labeled with the hash of a data block, and every inner node is labeled with the
hash of the labels of its children.

Remarks:

• The n fragments are placed at the leaves. For example, if there are
4 fragments f1, . . . , f4, we would get the Merkle tree depicted in Fig-
ure 26.15, where h1 := H(H(f1)|H(f2)), h2 := H(H(f3)|H(f4)), and
h0 := H(h1|h2). The operator | denotes the concatenation of the two
given hash values.

• A proof consists of all the hashes on the path from the root to the
fragment plus the hash of the fragment with the same parent node.
It follows that the number of hashes is logarithmic in the number of
fragments.

h0

h1 h2

f2f1 f3 f4

Figure 26.15: A Merkle tree for 4 fragments f1, . . . , f4 is shown. It holds that
hi := H(H(f2i−1)|H(f2i)) for i = 1, 2 and h0 := H(h1|h2).

Remarks:

• The algorithm Acode also uses Abracha to first agree on the message
identifier. Unlike algorithm Aad, algorithm Acode uses the Merkle root
hash h0 as the message identifier, which is broadcast reliably.

• The validity of received fragment is verified against the reliably broad-
cast root hash h0.

150 CHAPTER 26. INTERNET COMPUTER

Algorithm 26.16 Algorithm Acode at node vi. Initially, root_hash = ⊥,
F = {}, and m = ⊥.
1: (f1, . . . , fn) := get_fragments(m)
2: h0 := get_merkle_root_hash((f1, . . . , fn))
3: Execute Abracha for message root_hash :=h0

4: for j ∈ {1, . . . , n} do
5: Pj := get_merkle_proof((f1, . . . , fn), j)
6: Send (fj , Pj , j) to vj
7: end for
8:
9: upon receiving (f , P , j) and root_hash 6= ⊥:

10: if valid(f , P , root_hash, j) then
11: F := F ∪ {f}
12: if i = j and not broadcast f before then
13: Broadcast (f , P , i)
14: end if
15: end if
16: end upon
17:
18: if |F | = f + 1 and m = ⊥ then
19: m := recover_message(F)
20: (f1, . . . , fn) := get_fragments(m)
21: h0 := get_merkle_root_hash((f1, . . . , fn))
22: if h0 = root_hash then
23: if not broadcast fi before then
24: Pi := get_merkle_path((f1, . . . , fn), i)
25: Broadcast (fi, Pi, i)
26: end if
27: else
28: root_hash := ⊥
29: end if
30: end if
31:
32: if |F | = n− f and m 6= ⊥ and root_hash 6= ⊥ and not delivered then
33: deliver(m)
34: end if

26.2. NETWORKING 151

• If the recovered message is not consistent with the broadcast root
hash, it is save not to deliver anything because all correct nodes that
recover the message must reach the same conclusion.

Theorem 26.17. Algorithm Acode implements reliable broadcast (with the in-
tegrity property) in the asynchronous communication model.

Proof. Let v be a correct node that delivers m. Since n− f > n− 2f = f + 1,
m 6= ⊥, and root_hash 6= ⊥, v must have successfully reconstructed the message
and all fragments beforehand and broadcast its fragment. Since |F | = n − f ,
v must have received fragments from at least n − 2f correct nodes. These
n − 2f correct nodes have broadcast their fragments, which implies that all
correct nodes eventually receive at least n − 2f = f + 1 fragments. According
to the algorithm, all correct nodes then reconstruct the message m successfully
(because v reconstructed it successfully) and broadcast their fragments as well
if they have not already done so earlier. Hence it follows that all correct nodes
eventually broadcast their fragments and, since there are at least n− f correct
nodes, |F | = n − f , root_hash 6= ⊥, and m 6= ⊥ holds eventually, causing all
correct nodes to deliver the message m.

The integrity property holds because only one message is delivered.

Theorem 26.18. Algorithm Acode has a communication complexity of
O(n2 log(n)H + nL) in the asynchronous communication model.

Proof. The initial reliable broadcast has a communication complexity of
O(n2H). For a message of size L, the fragment size is L/(f + 1) ≈ 3L/n.
A Merkle proof consists of approximately log(n) hashes of size H each. The n
messages from the sender thus require n · (3L/n+ log(n)H) ∈ O(L+n log(n)H)
bits to be sent. Subsequently, every node broadcasts its fragment, together with
the Merkle proof, at most once, which requires at most n2 · (3L/n+ log(n)H) ∈
O(nL+ n2 log(n)H) bits.

Remarks:

• The communication complexity is asymptotically optimal for L ∈
Ω(n log(n)H).

• If the sender is correct and messages arrive within constant time, the
algorithm also terminates in a constant time.

• While algorithm Acode is superior to Aad in theory, the IC currently
implements a variant of Aad because the communication complexity
of algorithm Aad is effectively nL in practice, ignoring the small ad-
verts. The bandwidth consumption only increases in adverse network
conditions or when nodes are faulty, which fortunately happens rarely.
Moreover, as we will learn later, messages expire after a certain time,
bounding the time during which messages must be retained so that
they can be delivered to requesting nodes. By contrast, algorithm
Acode sends roughly 3nL bits when everything works as desired (all
n nodes broadcast their fragments of size 3L/n). As a result, the
bandwidth consumption would be considerably higher in the steady
state.

152 CHAPTER 26. INTERNET COMPUTER

• There are coding-based reliable algorithms that are more efficient.
Changing requirements may yet necessitate the transition to such a
coding-based approach.

26.3 Consensus

Definition 26.19 (IC consensus layer). The consensus layer on the IC val-
idates messages and determines an order for processing at every node in the
subnet.

Remarks:

• For all nodes to transition to the same state, they must process exactly
the same set of messages in the same order.

• The IC consensus algorithm guarantees the standard agreement and
termination properties of Definition 16.1 under the assumption that
at most f < n/3 nodes are byzantine.

• The agreement property (if two correct nodes decide, they decide on
the same set of messages) holds in the asynchronous communication
model, whereas the termination property (every correct node eventu-
ally decides) holds if there are periods where all messages arrive within
a bounded time, i.e., termination requires a partially synchronous
communication model.

• The algorithm does not need to know this upper bound on message
delays as it can increase its estimate if the current estimate turns out
to be too small (because it takes longer for messages to arrive). For
the sake of simplicity, we assume that the upper bound on the message
delay is known and is 1.

• The algorithm makes use of sophisticated cryptographic tooling.

Definition 26.20 (BLS signature scheme). The BLS signature scheme is a
signature scheme, which consists of a key generation, signature generation, and
signature verification algorithm with the following properties:

• For a given key and message, there is only one valid signature.

• BLS signatures can be aggregated, which means that multiple signatures
on the same message can be combined into a compact multi-signature of
the same size as a single signature.

Remarks:

• Each node of the IC has a private key for the BLS signature scheme.

• Multi-signatures comprising n − f signatures are used. A public key
can be used to verify multi-signatures issues by any subset of the nodes
of size at least n− f .

26.3. CONSENSUS 153

• Additionally, the algorithm uses a BLS threshold signature scheme (see
Definition 18.19) with the property that any f + 1 out of n signature
shares can be combined deterministically into the same signature.

• The algorithm needs a source of unpredictable randomness.

Definition 26.21 (Random beacon). The random beacon is a sequence of
random (256-bit) numbers with the property that every consensus round yields
the next number, which is unpredictable given the previous numbers.

Remarks:

• The numbers are constructed using the BLS threshold signature
scheme: Given a number b known to all nodes, the next number b′
is obtained by having each node broadcast its signature share of b
and then constructing the unique and deterministic signature for b by
combining f + 1 received signature shares.

• Note that the f malicious nodes cannot precompute this sequence
because f + 1 signature shares are required to determine the next
number (and f signature shares do not provide any information about
the signature).

Remarks:

• It is implicitly assumed that all messages are signed and that any
message that does not bear a valid signature is silently dropped. This
rule also applies to signature shares, which are verified in the same
manner as regular signatures and discarded if they are invalid.

Definition 26.23 (Block). A block on the IC is a batch of canister messages,
each message targeting a specific canister on the same subnet.

Remarks:

• There is an empty, hard-coded genesis block. Each other block has a
unique predecessor block.

Definition 26.24 (Block height). Each block is associated with a non-negative
number, called its block height. The genesis block has block height 0 and the
block height of every other block is the block height of its predecessor block plus
1.

Remarks:

• Every node maintains a directed tree of blocks rooted at the genesis
block.

Definition 26.25 (Epoch). An epoch on the IC is a time period during which
the nodes of a subnet execute the consensus algorithm to agree on at least one
block for a specific block height.

154 CHAPTER 26. INTERNET COMPUTER

Algorithm 26.22 IC Consensus: Actions at node vi for epoch h
1: ri := rank(i, beacon(h))
2: if at least 2ri + ε time passed and tree_height() < h then
3: B := build_block(h)
4: Reliable-broadcast block(B, i, h)
5: end if
6:
7: upon receiving block(B, j, h) for the first time:
8: rj := rank(j,beacon(h))
9: if ≥ 2rj + ε time passed and tree_height() < h and is_valid(B)

then
10: nBi := notarization_share(B)
11: nchi := nchi + 1 // Count the number of different notarization shares
12: idB := H(B) // A block hash is used as the identifier
13: Broadcast notarization_share(idB , nBi , h)
14: end if
15: end upon
16:
17: upon receiving notarization_share(idB , nBj , h) for the first time:
18: NB

i := notarization_shares(idB)
19: NB

i := NB
i ∪ {nBj }

20: if |Ni| ≥ n− f and B received but not in tree then
21: add_to_tree(B) // The height is now at least h
22: if nchi = 1 then
23: fBi := finalization_share(B)
24: Broadcast finalization_share(idB , fBi , h)
25: end if
26: bh+1

i := beacon_share(beacon(h))
27: Broadcast random_beacon_share(bh+1

i , h+ 1)
28: end if
29: end upon
30:
31: upon receiving finalization_share(idB , fBj , h) for the first time:
32: fBi := finalization_shares(idB)
33: fBi := fBi ∪ {fBj }
34: if |fBi | ≥ n− f and B in tree then
35: finalize(h,B) // End all epochs ≤ h
36: end if
37: end upon
38:
39: upon receiving random_beacon_share(bh+1

j , h+ 1) for the first time:
40: RBh+1 := RBh ∪ {bh+1

j }
41: if |RBh+1| = f + 1 then
42: build_beacon(RBh+1, h+ 1) // Start epoch h+ 1
43: end if
44: end upon

26.3. CONSENSUS 155

Remarks:

• In other words, the consensus algorithm is executed exactly once per
epoch. Each epoch lasts multiple communication rounds. As we will
see, it is possible that there are multiple blocks in the same epoch h.

• For each epoch, a block maker is chosen using the random beacon: The
random beacon bh of epoch h is used as the seed of a pseudo-random
function to determine a random permutation of the n nodes for this
epoch. The permutation defines a unique rank r ∈ {0, . . . , n − 1} for
every node.

• A node with rank r ∈ {0, . . . , n−1} is allowed to make a proposal after
2r + ε time from the start of the epoch, where ε > 0 is an arbitrarily
small constant.

• When node vi receives a block B for epoch h from some node vj
and at least the required amount of time has passed based on vj ’s
rank and there is no block at height h already, vi generates a so-
called notarization share nBi for block B using its BLS signing key and
broadcasts it. A notarization share by node vi means that vi validated
the block, i.e., the block is a valid continuation of a predecessor block
from epoch h− 1, and is an endorsement of this block for epoch h.

• Once the set NB
i contains n−f notarization shares, the shares can be

combined into a (compact) multi-signature, proving the notarization
of the block, which is to be understood as “the whole subnet considers
block B valid for epoch h”.

• If this is the only block for which vi ever broadcast a notarization
share, vi broadcasts a so-called finalization share, which is simply
another BLS signature on block B. A finalization share from a correct
node vi says that vi guarantees that it never endorsed any block for
epoch h other than B.

• If at least n−f finalization shares are received, the epoch h is marked
as finalized. The function finalize not only finalizes epoch h with B
being the unique block of this epoch but it also recursively finalizes
all epochs h′ < h, defining the unique predecessor of B′ of B as the
finalized block of epoch h − 1 and so on. At this stage, the node no
longer responds to messages of any epoch h′ ≤ h.

• The next epoch is started when f + 1 signature shares for the next
random beacon are locally available.2

2Note that the random beacon is actually constructed at the beginning of the epoch on
the IC. The random beacon is constructed at the end of the epoch here for ease of exposition.

156 CHAPTER 26. INTERNET COMPUTER

F

30

35 373634

333231

31

34

Figure 26.26: A possible block tree with forks in epochs 31 and 34. Since a
block was finalized in epoch 36, all its predecessors are implicitly finalized as
well.

Remarks:

• Figure 26.26 shows an example block tree. There may be multiple
(notarized) blocks generated in the same epoch; however, there can
only be one finalized block for a certain epoch h. Since there is only
one block for this epoch and each block has only one predecessor, the
blocks for all epochs lower than h can be finalized as well. Any forks
at block heights lower than h can be discarded.

Lemma 26.27. For every epoch h, if correct nodes v and v′ finalize blocks B
and B′, then B = B′.

Proof. Assume for the sake contradiction that B 6= B′ and that f∗ ≤ f nodes
did not behave according to the protocol. Since v finalized B, it must have
received n − f finalization shares and therefore a set S of at least n − f − f∗
finalization shares from correct nodes. The same argument applies for block B′,
i.e., v′ must have received a set S′ of at least n− f − f∗ finalization shares from
correct nodes.

The union of S and S′ can be at most the set of all nodes that behaved
correctly, i.e., |S ∪ S′| ≤ n − f∗. Moreover, a correct node only sends the
finalization share for at most one block, which implies that S and S′ must be
disjoint. We get that

n− f∗ ≥ |S ∪ S′| = |S|+ |S′| ≥ 2(n− f − f∗),

which implies that 3f ≥ 2f + f∗ ≥ n, a contradiction.

Lemma 26.28. For every epoch h, at least one block is notarized.

Proof. Let w be the lowest ranked correct node of epoch h. Let rw be its rank.
After 2rw + ε time, w will broadcast its constructed block unless it has already
notarized a block beforehand. In either case, reliable broadcast ensures that all
correct nodes will eventually receive some block that is endorsed by all correct
nodes, which implies that v must eventually receive at least n− f notarization
shares for this block, which it can then notarize.

Lemma 26.29. For every epoch h, every correct node will eventually transition
to epoch h+ 1.

26.4. MESSAGE ROUTING AND EXECUTION ENVIRONMENT 157

Proof. When node vi notarizes a block, it broadcasts its random beacon share
(bh+1
i , h+1). According to Lemma 26.28, every correct node eventually notarizes

a block for epoch h, which implies that every correct node eventually receives at
least f + 1 random beacon shares, at which point it builds the random beacon
for epoch h+ 1, triggering the start of epoch h+ 1.

Lemma 26.30. If there is a period of synchronicity of duration at least 3 from
the start of an epoch and the rank-0 block maker in this epoch is correct, the
epoch will be finalized.

Proof. Consider epoch h starting at some time t. We assume that all messages
arrive within 1 time unit in the time interval [t, t+ 3]. The correct rank-0 block
maker broadcasts a block B at time t, which every correct node receives by
time t+1. At this point in time, each correct node broadcasts its corresponding
notarization share and these shares arrive at all correct nodes by time t+2. Since
each correct node receives at least n−f notarization shares and no correct may
have notarized any other block at time t + 2 (no other block can be notarized
before time t+ 2 + ε), every correct node broadcasts a finalization share. Thus,
each correct node receives at least n − f finalization shares by time t + 3 and
finalizes the epoch.

26.4 Message Routing and Execution Environ-
ment

Definition 26.31 (IC message routing layer). The message routing layer
of the IC ensures the messages from consensus reach their destination canister
and are enqueued for processing, persists state changes and communicates with
other subnets and provides authenticated information to the users.

Definition 26.32 (IC execution environment layer). The execution environ-
ment layer of the IC schedules and processes canister messages.

Definition 26.33 (Request, response). Methods exposed by canisters can be
called by other canisters (and users) by sending a request message. After ex-
ecuting the method with the request message, the method then provides a re-
sponse message to the caller, which the caller can process. When processing
a message (either a request or a response), a canister can change its state and
issue further calls to itself or other canisters.

Remarks:

• Only a single message is processed at a time per canister. Thus mes-
sage execution is sequential and never parallel per canister.

• Different canisters can process messages in parallel.

• Whenever a canister issues such a downstream request, the execu-
tion of the upstream call is effectively suspended until the response
arrives, but the canister is allowed to process other messages (both
other requests and responses).

158 CHAPTER 26. INTERNET COMPUTER

• Multiple messages from different calls can be interleaved and have no
reliable execution ordering

• In case of traps or panics the state changes are reverted.

• Message delivery between canisters is asynchronous. Successfully de-
livered requests are received in the order in which they were sent.

• It is important for many applications to have a message expiry mecha-
nism. This facilitates user-side decisions on whether another message
may be submitted, without risking to have both of them executed.
E.g., if a message for a transfer of 100$ to another user has expired,
the user can resubmit a transfer and will not be debited twice.

Definition 26.34 (Canister queues and streams). For each canister C there is a
separate input queue for each other canister C ′ from which C receives messages
and there is one queue for user-generated messages to C. For each canister C ′′
for which C creates messages there is an output queue. Messages for other
subnets are ordered into streams, one for each subnet canisters communicate
with.

Remarks:

• C ′ and C ′′ may reside on the same or on different subnets.

• The message routing layer inserts messages from blocks in one of mul-
tiple input queues.

• For each block height, the execution layer will consume some of the
messages in the input queues and update the replicated state of the
relevant canisters and create messages in the output queues.

• Subsequently, the message routing layer takes the messages in the
output queues, organizes them into subnet-to-subnet streams and ex-
changes them with nodes in other subnets.

• Communication across subnets is referred to as xnet (cross-net) com-
munication.

• The whole message routing process taking place for each finalized
block is visualized in Figure 26.35.

Definition 26.36 (Ingress message status). An ingress message from a user
can be in status UNKNOWN (starting state), RECEIVED (nodes agree to have received
it), PROCESSING (message execution has started), REPLIED (response has been
computed successfully) and REJECTED (system or canister decided not to continue
working on this message). Messages from users, as well as their status and
response are stored in the ingress history of a node.

26.4. MESSAGE ROUTING AND EXECUTION ENVIRONMENT 159

c2

Consensus

c1

u u u

c1

u

c2 c2 c2 c2

c2 c2

c1 c1 c1 c1

XnetUser

Xnet from
subnet n

c3 c4 c3

c5 c5

Stream to
subnet 1

Stream to
subnet 2

c1 c3 u

u

c1

c2

c3

c4 c4

c5 c5

c4 c4

directly induct messages to
canisters on same subnet

Figure 26.35: Routing messages through the IC protocol stack. Messages for
canisters, issued by users or canisters on other subnets, are validated and ordered
by consensus. Subsequently, messages are put into the input queues of their
destination canisters. Messages created by canisters are put into output queues
from where they are either transferred to their respective input queues on the
same canister (bypassing consensus) or sent as part of streams to their target
subnet.

Remarks:

• Users can query the ingress history of the IC to learn about the status
of their message.

• A message transitions from one status to the next until it is REPLIED
or transitions to REJECTED from any earlier status directly.

Definition 26.37 (Replicated system state, certificate). The replicated sys-
tem state of each subnet at a given height can be represented as a Merkle tree
with the state of the canisters, the input and output queues and streams, the
ingress history and the current IC time as leaves. A state certificate for h is
a (n− f)-out-of-n threshold-signature of the Merkle tree root hash. The highest
height for which a node has a valid state certificate, called certified height.

Remarks:

• It is essential that all of this state be updated in a completely deter-
ministic fashion so that all nodes maintain exactly the same state.

• After the message execution phase for a given height h, the message
routing layer will initiate the process to certify the state for h by
sending out threshold signature shares.

• Hashing the whole replicated system state is an expensive operation, it
could take longer than the time allocated for the execution per height,
therefore a subset of the state is taken in practice.

• From a user’s point of view, the IC time is the timestamp associated
with the latest certified height.

160 CHAPTER 26. INTERNET COMPUTER

• The node does not wait for all certification shares to arrive but contin-
ues with xnet communication after triggering the certification process.
Therefore, the certified height can be below the height for which a
node currently executes messages. This also implies that the certified
height can be different for every node in a subnet and does not change
deterministically like the replicated state.

• The certified state is used in several ways in the IC:

– Output authentication. Users and other subnets rely on signa-
tures constructed from certificates on ingress history and xnet
messages, respectively. Xnet messages and responses are Merkle
tree leaves. The signature of a Merkle tree leaf consists of the
hashes to verify the path to the root and the root signature.

– Preventing and detecting non-determinism. Consensus guaran-
tees that each replica processes inputs in the same order. Since
each replica processes these inputs deterministically, each replica
should obtain the same state. However, the IC is designed with
an extra layer of robustness to prevent and detect any (acciden-
tal) non-deterministic computation, should it arise. To this end,
the certified height is added to consensus blocks and a node con-
siders a block valid only if the node’s certified height exceeds the
certified height in the block.

– Execution and consensus speed. The certified state is also used
to coordinate the execution and consensus layers: If consensus is
running ahead of execution (whose progress is determined by the
last height with certified state), consensus will be "throttled".
I.e., if the difference between the notarized height and the certi-
fied height exceeds a threshold, then the time how long consensus
waits before creating and notarizing blocks is increased.

To achieve the functionalities described above, the block payload and the
validity conditions used in consensus are extended.

Definition 26.38 (Block payload). A block payload comprises

• time: timestamp of block creation

• ingress_payload: set of messages from users to canisters on this subnet

• xnet_payload: set of messages from canisters on other subnets to canis-
ters on this subnet

• certified_height: state certificate for this height exists

Definition 26.39 (Extended Block Validity). A node considers a block valid if

• the block’s time is higher than the previous block’s time and at most the
node’s current local system time,

• the expiry time of all ingress messages exceeds the time in the block,

• the expiry time of all ingress messages is at most max_expiry_interval
greater than the time in the block,

26.4. MESSAGE ROUTING AND EXECUTION ENVIRONMENT 161

• none of the ingress and xnet messages occur in predecessor blocks,

• a block’s certified height is at least the previous block’s certified height and
at most the node’s certified height,

• all messages are signed correctly and no message from xnet streams is
skipped.

Remarks:

• To create a valid block B in build_block(), the consensus layer of a
node can

– Set B.time to its current local system time.

– Select a set of ingress messages that have not occurred
in any of the predecessor blocks for which the expiry
time is in (B.time,B.time + max_expiry_interval) for
B.ingress_payload.

– For certified_height and xnet_payload, the consensus layer
calls message routing’s MR.create_payload function to obtain
the latest height for which the nodes has a replicated system
state certification and a set of valid messages from other sub-
nets. To this end, consensus provides all xnet messages in blocks
since the last finalized block as input, to ensure that only new
xnet messages are in the created payload.

• To decide if a block from another node is_valid(), the consensus
layer can check the first five validity conditions without the support
of the message routing layer using its current local system time, the ex-
piry time of the ingress messages in the block, and the locally available
predecessor blocks. To verify the message routing parts of the block,
consensus can use MR.is_payload_valid, which checks if the certi-
fied height is not above the height for which the node has a valid full
certified state signature, all xnet messages in B have correctly signed
Merkle tree witnesses, and no messages from xnet streams are skipped.
To this end, the set of previous xnet messages provided by Consensus
must contain all xnet messages in blocks since B.certified_height in
tree.

• If the local system time of the nodes diverges too much, then no blocks
will be notarized.

• Blocks below B.certified_height and expired ingress messages are no
longer needed for block validity and can be discarded.

162 CHAPTER 26. INTERNET COMPUTER

Algorithm 26.40 Message Routing: Triggered actions by the consensus layer
upon process_payload(time, ingress, xnet) called:
state.height := state.height+ 1
state.time := time
insert_into_input_queues(ingress ∪ xnet, state)
for m ∈ B.ingress do
state.ingress_history[m] := RECEIVED

end for
while execution time left do
m := pop_from_input_queues(state)
if m ∈ state.ingress_history then
if state.time < m.expiry then
state.ingress_history[m] := PROCESSING

else
state.ingress_history[m] := REJECTED

end if
end if
execute(m, state)

end while
prune_ingress_history(state)
certify_state(state) //sets certified_height eventually
xnet_communication()

end upon

upon create_payload(previous_xnet) called:
// pick xnet messages disjoint from previous_xnet
xnet_payload := select_xnet_messages(previous_xnet)
return (xnet_payload, certified_height)

end upon

upon is_payload_valid(B, previous_xnet) called:
// check message routing parts of block
return B.certified_height ≤ certified_height and
xnet_valid(B.certified_height,B.xnet_payload, previous_xnet)

end upon

Remarks:

• All message routing steps in process_payload() and
is_payload_valid() must be fully deterministic.

• Messages for different canisters can be executed in parallel.

• The execution of a message may fail. For ingress messages, the ingress
history is updated to status REJECTED in this case. If the message
execution creates new messages to the same or other canisters and
needs to wait on their response, the status remains PROCESSING. If a
response to the message has been generated, the ingress history status
is set to REPLIED, allowing the user to collect the response.

26.4. MESSAGE ROUTING AND EXECUTION ENVIRONMENT 163

• prune_ingress_history removes every message m from the ingress
history if its expiry is at least GRACE_PERIOD in the past, i.e.,
cur_time−m.expiry > GRACE_PERIOD. The grace period gives
users enough time to fetch the status and response of their messages
and enables bounding the period a message occupies memory in the
system.

• The creation and collection of threshold signature shares on the per-
height certified state is triggered by certify_state. When the full
signature of a state height > certified_height has been collected,
certified_height is updated. Note that the next finalized block may
be submitted to message routing before a full signature on the current
state has been collected.

• When exchanging messages with other subnets, individual message
signatures are constructed and verified with the Merkle tree paths
and the certification signature of the Merkle tree root hash. When
xnet_communication() is called, a node sends and receives a selection
of messages to and from nodes on other subnets, respectively. Since
all the signatures are based on a threshold of n− f , a malicious node
cannot convince a correct node to accept an invalid message. This
fact is also used when checking subnet signatures for messages from
other subnets using the function xnet_signatures_valid.

• is_payload_valid(B, previous_xnet) requires the xnet messages
since B.certified_height to be available to check if no xnet messages
have been skipped in the stream.

• The consensus layer is decoupled from the message routing and ex-
ecution layers in the sense that only messages from finalized blocks
of the chain reach message routing and execution. Temporary block
tree branches are pruned before their payloads are passed to message
routing and execution. This is in contrast to other blockchains that
execute blocks speculatively, before ordering and validating them.

Theorem 26.41 (Unique execution before expiry). Every ingress message will
either enter the state PROCESSING in Algorithm 26.40 exactly once before its
expiry time with respect to the IC time or it will never be processed. Subnet-
signed IC responses guarantee that IC time is strictly monotonic and that the
reported ingress history status transitions have occurred at f + 1 nodes or more.

Proof. Correct nodes adhere to the block validity conditions and only create and
notarize blocks with a higher timestamp than previous blocks. Any finalized
block has been notarized by n− f nodes, hence it holds for any subnet with at
most f byzantine nodes that the IC time is strictly monotonic. By the same
argument, only ingress messages with expiry time in the future are in finalized
blocks and an ingress message can appear at most once in blocks. To this end,
the consensus layer checks the ingress_payload in all the notarized predecessor
blocks with time above the newest block time minus max_expiry_interval.
Thus, a correct node will not create or notarize a block that contains duplicate
ingress messages.

164 CHAPTER 26. INTERNET COMPUTER

After its expiry, the message cannot make it into the processing state because
time is checked again before execution is started on correct nodes.

2f + 1 signatures are necessary to certify the replicated system state, so up
to f byzantine nodes cannot make users or other nodes turn back the IC time
or believe an ingress message is in a different state than f + 1 correct nodes
considered valid at some point.

Remarks:

• This theorem is important for applications with asset transfers. For
example, a user wants to be sure that if they issue a message for a
transfer of some tokens to another user, it will not accidentally be
executed twice (e.g., with a replay attack or if the user submits it to
the IC again). If a message has not shown up in the ingress history
by the time it expires, the user knows it will never be executed and
can create a new message to try again. In other systems this could
lead to deadlocks or multiple unintended transfers.

• Since the expiry time of all ingress messages is at most a constant time
interval of max_expiry_interval in the future, the time a message
occupies space in the ingress history is bounded.

• There is no guarantee how much the IC time deviates from the wall-
clock time of the rest of the world, since finalization is only guaranteed
in bursts of synchrony.

• In practice this does not pose a problem, as the user-experienced end-
to-end latency for so-called update calls, i.e., calls that go through
consensus and potentially change the state of some canister(s), is 1-4s
and the current IC time can be obtained together with a threshold
signature of the subnet in less than 200ms.

• Having the IC time in blocks and a notion of message expiry makes it
possible to deduplicate ingress messages without having to keep the
whole blockchain forever.

Chapter Notes

The IC’s distributed nature and its replication are mostly abstracted away from
the canister developers and users. Users can use their browsers to interact
with canisters thanks to a translation mechanism on so-called boundary nodes.3
The IC strives to provide latency and throughput similar to a traditional web
application, to the extent possible for a globally distributed platform with strong
security guarantees. Experiments and measurements are described on the IC
wiki.4

The IC consensus protocol is described in more detail in [CDH+22] to-
gether with proofs for the communication complexity under several models with

3https://internetcomputer.org/how-it-works/boundary-nodes/
4https://wiki.internetcomputer.org/wiki/Internet_Computer_performance

https://internetcomputer.org/how-it-works/boundary-nodes/
https://wiki.internetcomputer.org/wiki/Internet_Computer_performance

BIBLIOGRAPHY 165

adapted protocol variants. With the current implementation and parametriza-
tion, around 1 block is produced per second in most subnets. The IC dashboard5

shows the block rate of each subnet as well as a myriad of other metrics.
To enable a protocol to be safe under asynchrony, all primitives must support

this model, in particular also the (re)generation of threshold signature keys.
[Gro21] describes how nodes can agree on BLS keys without requiring synchrony.
This is an expensive process and is therefore executed only every 500 rounds for
most subnets.

The canister execution and runtime environment of the IC is presented in
[ABBK+23]. This paper describes the deterministic scheduling algorithm to pick
the next message to be executed as well as the resource consumption accounting
and memory subsystem, including experiments illustrating the performance of
the system.

Developing a correct protocol and implementation for a complex system such
as the IC is a difficult endeavor. Bugs sneak in easily both in the protocol design
phase as well as in the implementation and during maintenance. [BDK+23]
illustrates how model checking at runtime can be implemented to catch a variety
of bugs.

This chapter was written in collaboration with Yvonne Anne Pignolet and
Thomas Locher.

Bibliography
[ABBK+23] Maksym Arutyunyan, Andriy Berestovskyy, Adam Bratschi-Kaye,

Ulan Degenbaev, Manu Drijvers, Islam El-Ashi, Stefan Kaestle,
Roman Kashitsyn, Maciej Kot, Yvonne-Anne Pignolet, et al. De-
centralized and stateful serverless computing on the internet com-
puter blockchain. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, 2023.

[BDK+23] David Basin, Daniel Stefan Dietiker, Srđan Krstić, Yvonne-Anne
Pignolet, Martin Raszyk, Joshua Schneider, and Arshavir Ter-
Gabrielyan. Monitoring the internet computer. In International
Symposium on Formal Methods, pages 383–402. Springer, 2023.

[CDH+22] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pig-
nolet, Victor Shoup, and Dominic Williams. Internet computer
consensus. In Proceedings of the 2022 ACM Symposium on Prin-
ciples of Distributed Computing, pages 81–91, 2022.

[Gro21] Jens Groth. Non-interactive distributed key generation and key
resharing. Cryptology ePrint Archive, 2021.

5See https://dashboard.internetcomputer.org/.

https://dashboard.internetcomputer.org/

	Internet Computer
	Canisters and Subnets
	Networking
	Consensus
	Message Routing and Execution Environment

