
Chapter 14

Introduction to Distributed
Systems

Why Distributed Systems?

Today’s computing and information systems are inherently distributed. Many
companies are operating on a global scale, with thousands or even millions of
machines on all the continents. Data is stored in various data centers, computing
tasks are performed on multiple machines. At the other end of the spectrum,
also your mobile phone is a distributed system. Not only does it probably share
some of your data with the cloud, the phone itself contains multiple processing
and storage units. Your phone is a complicated distributed architecture.

Moreover, computers have come a long way. In the early 1970s, microchips
featured a clock rate of roughly 1 MHz. Ten years later, in the early 1980s,
you could get a computer with a clock rate of roughly 10 MHz. In the early
1990s, clock speed was around 100 MHz. In the early 2000s, the first 1 GHz
processor was shipped to customers. In 2002 one could already buy a processor
with a clock rate between 3 and 4 GHz. If you buy a new computer today,
chances are that the clock rate is still between 3 and 4 GHz, since clock rates
basically stopped increasing. Clock speed can apparently not go beyond a few
GHz without running into physical issues such as overheating. Since 2003,
most advances in computing architectures are due to the multi-core revolution:
Computers are becoming more parallel, concurrent, and distributed.

Finally, data is more reliably stored on multiple geographically distributed
machines. This way, the data can withstand regional disasters such as floods,
fire, meteorites, or electromagnetic pulses, for instance triggered by solar super-
storms. In addition, geographically distributed data is also safer from human
attacks. Recently we learned that computer hardware is pretty insecure. Scary
attacks exist, with frightening names such as spectre, meltdown, rowhammer,
memory deduplication. There are even attacks on hardware that is considered
secure! If we store our data on multiple machines, it may be safe assuming
hackers cannot attack all machines concurrently. Moreover, data and software
replication also help availability as data remains accessible even if some machines
need to be taken offline for maintenance.

In summary, today almost all computer systems are distributed, for different

1



2 CHAPTER 14. INTRODUCTION TO DISTRIBUTED SYSTEMS

reasons:

• Geography: Large organizations and companies are inherently geograph-
ically distributed, and a computer system needs to deal with this issue
anyway.

• Parallelism: To speed up computation, we employ multicore processors or
computing clusters.

• Reliability: Data is replicated on different machines to prevent data loss.

• Availability: Data is replicated on different machines to allow for access
at any time, without bottlenecks, minimizing latency.

Even though distributed systems have many benefits, such as increased stor-
age or computational power, they also introduce challenging coordination prob-
lems. Some say that going from one computer to two is a bit like having a
second child. When you have one child and all cookies are gone from the cookie
jar, you know who did it!

Coordination problems are so prevalent, they come with various flavors and
names. Probably there is a term for every letter of the alphabet: agreement,
blockchain, consensus, consistency, distributed ledger, event sourcing, fault-
tolerance, etc.

Coordination problems will happen quite often in a distributed system. Even
though every single node (node is a general term for anything that computes,
e.g., a computer, a multiprocessor core, a network switch, etc.) of a distributed
system will only fail once every few years, with millions of nodes, you can expect
a failure every minute. On the bright side, one may hope that a distributed
system may have enough redundancy to tolerate node failures and continue to
work correctly.

Distributed Systems Overview
We introduce some basic techniques for building distributed systems, with a
focus on fault-tolerance. We will study different protocols and algorithms that
allow for fault-tolerant operation, and we will discuss practical systems that
implement these techniques.

We will see different models (and even more combinations of models) that
can be studied. We will not discuss them in detail now, but simply define them
when we use them. Towards the end of the course a general picture should
emerge, hopefully!

The focus is on protocols and systems that matter in practice. In other
words, in this course, we do not discuss concepts because they are fun, but
because they are practically relevant.

Nevertheless, have fun!

Chapter Notes
Many good textbooks have been written on the subject, e.g. [AW04, CGR11,
CDKB11, Lyn96, Mul93, Ray13, TS01]. James Aspnes has written an excellent



BIBLIOGRAPHY 3

freely available script on distributed systems [Asp14]. Similarly to our course,
these texts focus on large-scale distributed systems, and hence there is some
overlap with our course. There are also some excellent textbooks focusing on
small-scale multicore systems, e.g. [HS08].

Some chapters of this course have been developed in collaboration with (for-
mer) PhD students, see chapter notes for details. Many colleagues and stu-
dents have helped to improve exercises and script. Thanks go to Georg Bach-
meier, Pascal Bissig, Philipp Brandes, Christian Decker, Manuel Eichelberger,
Klaus-Tycho Förster, Arthur Gervais, Pankaj Khanchandani, Barbara Keller,
Rik Melis, Darya Melnyk, Tejaswi Nadahalli, Peter Robinson, Jakub Sliwinski,
Selma Steinhoff, Julian Steger, David Stolz, and Saravanan Vijayakumaran.
Jinchuan Chen, Qiang Lin, Yunzhi Xue, and Qing Zhu translated this text
into Simplified Chinese, and along the way found improvements to the English
version as well. Thanks!

Bibliography
[Asp14] James Aspnes. Notes on Theory of Distributed Systems, 2014.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics (2nd edition). John Wi-
ley Interscience, March 2004.

[CDKB11] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair.
Distributed Systems: Concepts and Design. Addison-Wesley Pub-
lishing Company, USA, 5th edition, 2011.

[CGR11] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduc-
tion to Reliable and Secure Distributed Programming. Springer Pub-
lishing Company, Incorporated, 2nd edition, 2011.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Mul93] Sape Mullender, editor. Distributed Systems (2nd Ed.). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993.

[Ray13] Michel Raynal. Distributed Algorithms for Message-Passing Sys-
tems. Springer Publishing Company, Incorporated, 2013.

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition, 2001.


