
Chapter 16

Consensus

16.1 Two Friends
Alice wants to arrange dinner with Bob, and since both of them are very re-
luctant to use the “call” functionality of their phones, she sends a text message
suggesting to meet for dinner at 6pm. However, texting is unreliable, and Alice
cannot be sure that the message arrives at Bob’s phone, hence she will only go
to the meeting point if she receives a confirmation message from Bob. But Bob
cannot be sure that his confirmation message is received; if the confirmation is
lost, Alice cannot determine if Bob did not even receive her suggestion, or if
Bob’s confirmation was lost. Therefore, Bob demands a confirmation message
from Alice, to be sure that she will be there. But as this message can also be
lost. . .

You can see that such a message exchange continues forever, if both Alice
and Bob want to be sure that the other person will come to the meeting point!
Remarks:

• Such a protocol cannot terminate: Assume that there are protocols
which lead to agreement, and P is one of the protocols which require
the least number of messages. As the last confirmation might be lost
and the protocol still needs to guarantee agreement, we can simply
decide to always omit the last message. This gives us a new protocol
P 0 that requires fewer messages than P , contradicting the assumption
that P required the minimal number of messages.

• Can Alice and Bob use Paxos?

16.2 Consensus
In Chapter 15 we studied a problem that we vaguely called agreement. We will
now introduce a formally specified variant of this problem, called consensus.

Definition 16.1 (consensus). There are n nodes, of which at most f might
crash, i.e., at least n� f nodes are correct. Node i starts with an input value
vi. The nodes must decide for one of those values, satisfying the following
properties:

14

16.3. SYNCHRONOUS CONSENSUS 15

• Agreement All correct nodes decide for the same value.

• Termination All correct nodes terminate in finite time.

• Validity The decision value must be the input value of a node.

Remarks:

• We assume that every node can send messages to every other node,
and that we have reliable links, i.e., a message that is sent will be
received.

• There is no broadcast medium. If a node wants to send a message
to multiple nodes, it needs to send multiple individual messages. If a
node crashes while broadcasting, not all nodes may receive the broad-
cast message. Later we will call this best-effort broadcast.

• Does Paxos satisfy all three criteria? If you study Paxos carefully, you
will notice that Paxos does not guarantee termination. For example,
the system can be stuck forever if two clients continuously request
tickets, and neither of them ever manages to acquire a majority.

• Can we solve consensus in a more benign setting where messages arrive
reliably after a bounded time? We will first study consensus in such
a setting.

16.3 Synchronous Consensus
Let us assume that communication proceeds in synchronous rounds.

Model 16.2 (synchronous). In the synchronous model, nodes operate in
synchronous rounds. In each round, each node may send a message to the
other nodes, receive the messages sent by the other nodes, and do some local
computation.

Remarks:

• The synchronous model is equivalent to a model with variable message
delays but all messages are guaranteed to arrive within bounded time
(the "round duration").

• A simple strategy is to agree on the smallest value.

Algorithm 16.3 Synchronous Consensus with f < n crash failures
1: vi 2 R / input
2: min := vi
3: for i = 1, . . . , f + 1 do
4: Broadcast min
5: Collect broadcast messages in set M
6: min := min(M)

7: end for
8: Decide on min

16 CHAPTER 16. CONSENSUS

Theorem 16.4. Algorithm 16.3 is a correct consensus algorithm.

Proof. Note that the algorithm trivially satisfies the termination and validity
conditions: The algorithm runs for exactly f + 1 rounds and the decision value
must be an input value of a node because min is chosen from a set of broadcast
input values.

It remains to show that agreement holds as well. Since the algorithm runs
for f+1 rounds and there are at most f failures, there must be a round without
failures. In this round, all (remaining) nodes receive the local min value from
all nodes and set min to the minimum of all values of these nodes. If there are
more rounds, all nodes will always broadcast this minimum value and no node
will ever set min to a different value anymore.

Remarks:

• The algorithm is simple and works for any number f < n of failures!

Definition 16.5 (synchronous runtime). For algorithms in the synchronous
model, the runtime is the number of rounds from the start of the execution to
its completion in the worst case (every legal input, every execution scenario).

Remarks:

• Algorithm 16.3 has a synchronous runtime of f + 1.

• Can we do better? In the next section, we show that the answer is no.

16.4 Synchronous Lower Bound
In this section, we show that any deterministic consensus algorithm needs at
least f +1 rounds for any f n�2, even under the following validity condition
using binary input.

Definition 16.6 (Validity). If all non-faulty nodes start with the same value
x, the output must be x.

Remarks:

• The proof uses executions that are indistinguishable for some nodes.
Specifically, executions are transformed step by step, ensuring that in
each transition from an execution E to an execution E0, there is always
at least one node that receives the same messages in both executions
and therefore must have the same output value.

• Since this is true for every transition, the nodes must output the same
value in all executions. We call executions that must have the same
output at all nodes equivalent.

• Without loss of generality, we assume that every node sends a message
to every other node in every round. For any algorithm that sends
fewer messages, we can simply introduce empty “dummy messages”.
The same argument can be applied to algorithms where some nodes
terminate before the end of round f : Such nodes execute “dummy
rounds” that do nothing in the remaining rounds.

16.4. SYNCHRONOUS LOWER BOUND 17

• We say that a node fails in round r if it fails before the messages of
round r are delivered. Note that it may still send some messages in
round r. We say that a node fails completely in round r if it fails before
sending any round-r messages. Further note that there is a round f+1

where the nodes decide but do not send any more messages.

• We consider executions where at most one node fails in rounds 1, . . . , f+
1. Since only f nodes are allowed to fail, we have to be careful to en-
sure that we only consider executions where at most f nodes fail.

Definition 16.7. Let Er denote the set of executions without any failures in
rounds r, . . . , f + 1 and at most one failure in any round 1, . . . , r � 1.

Remarks:

• Given any execution E 2 Ef , we can always get an equivalent execu-
tion E0 2 Ef+1 by letting any node fail in round f after sending all
messages. These executions are equivalent because the nodes receive
the same set of messages in both executions and then terminate after
round f .

• We use this observation to ensure that there are at most f failures:
Rather than letting a node fail (completely) in round f + 1, we let it
fail in round f after sending all messages.

Lemma 16.8. Given E 2 Er+1 where v fails in round r after sending s < n
messages. There is an equivalent execution E0 2 Er+1 where v sends s + 1

messages in round r.

Lemma 16.9. Given E 2 Er+1 where v fails in round r after sending s > 0

messages. There is an equivalent execution E0 2 Er+1 where v sends s � 1

messages in round r.

Lemma 16.10. Given E 2 Er+2 where v fails completely in round r+ 1, there
is an equivalent execution E0 2 Er+1 where v fails completely in round r.

Lemma 16.11. Given E 2 Er+1 where v fails completely in round r f , there
is an equivalent execution E0 2 Er+2 where only v fails completely in round
r + 1.

Remarks:

• We prove all lemmas together (!) using an inductive proof. First, we
establish the base case for all lemmas for round f .

Lemma 16.12. Base case: All lemmas hold for round r = f .

Proof. We prove the base case for all lemmas separately.

• Lemma 16.8: In execution E0 2 Ef+1, v sends a message to a node w that
did not receive a message from v in execution E0. If w has crashed, the
executions are clearly equivalent. If w has not crashed, since there are at
most f failures in execution E0 by definition and n � f + 2, there must
be at least one other node u that is alive. Since there is no additional
round of messages, there is no change for u and therefore the execution is
equivalent.

18 CHAPTER 16. CONSENSUS

• Lemma 16.9: In execution E0 2 Ef+1, v no longer sends a message to some
node w. Again, either node w has already crashed or the same argument
shows that there must be at least one other node u that is not affected
(because n � f + 2) so the execution is equivalent.

• Lemma 16.10: Instead of failing completely in round f +1, let node v fail
after sending all messages in round f , which is equivalent as there is no
change for any node other than v. We can now apply Lemma 16.9, which
holds for round r = f , repeatedly until all messages from node v in round
r are removed. Once all messages are removed, node v fails completely in
round r = f .

• Lemma 16.11: Since Lemma 16.8 holds for round r = f , we can apply
the lemma repeatedly until v sends all messages before crashing. This
execution is equivalent to node v crashing in round f + 1 instead.

Remarks:

• Note that a node failed in round f+1 for the base case of Lemma 16.10
and Lemma 16.11. As mentioned before, we have to be careful not
to trigger this base case by using the observation that a node may
equivalently fail in round f after sending all messages.

• The assumption that n � f+2 is needed, otherwise there may be only
1 node (or no nodes) left after f crashes, in which case it cannot be
argued that the remaining node must keep its value.

Lemma 16.13. Induction step: If the lemmas hold for round r or higher, then
they also hold for round r � 1.

Proof. We prove the induction step for all lemmas separately.

• Lemma 16.8: Consider node v that fails in round r�1 in execution E0 2 Er.
Let w be a node that does not receive a message from v in round r�1. If w
failed in earlier rounds, we can just add the message and get an equivalent
execution. Let us assume that w is alive. This execution is equivalent
to an execution where w fails in round f after sending all messages. We
can apply Lemma 16.9 repeatedly to get an equivalent execution where
w does not send any messages, i.e., w fails completely, in round f . Since
Lemma 16.10 holds for rounds r and higher, we can apply it repeatedly
until w fails completely in round r. We can now add the message from
v to w, which is equivalent as w does not send any messages in round
r or later rounds. Since Lemma 16.11 holds for rounds r or higher, we
can apply it repeatedly until w fails completely in round f . We can then
apply Lemma 16.8 repeatedly until w sends messages to all nodes before
crashing. This execution is equivalent to w not failing at all. Thus, we
created an equivalent execution E0 2 Er where v sends one more message
in round r � 1.

• Lemma 16.9: Consider node v that fails in round r�1 in execution E0 2 Er.
Let w be a node that receives a message from v in round r� 1. As before,

16.4. SYNCHRONOUS LOWER BOUND 19

we can just remove the message if w failed in earlier rounds. Let us
assume that w is alive. This execution is equivalent to an execution where
w fails in round f after sending all messages. As before, we can apply
16.9 repeatedly to get an equivalent execution where w does not send any
messages, i.e., w fails completely, in round f . Since Lemma 16.10 holds for
rounds r and higher, we can apply it repeatedly until w fails completely in
round r. We can now remove the message from v to w, which is equivalent
as w does not send any messages in round r or higher. Since Lemma 16.11
holds for rounds r or higher, we can apply it repeatedly until w fails
completely in round f . Once more, we can apply Lemma 16.8 repeatedly
until w sends messages to all nodes before crashing. This execution is
equivalent to w not failing at all. Thus, we created an equivalent execution
E0 2 Er where v sends one message less in round r � 1.

• Lemma 16.10: Consider node v that fails completely in round r in some
execution E 2 Er+1. In an equivalent execution, v fails in round r � 1

after sending all its messages. Since Lemma 16.9 holds for round r � 1

as shown above, we can apply it repeatedly to remove all messages sent
by v and still get an equivalent execution. Once all messages have been
removed, we get that v fails completely in round r � 1.

• Lemma 16.11: Consider node v that fails completely in round r � 1 in
some execution E 2 Er. Since Lemma 16.8 holds for round r � 1, we can
apply it repeatedly until we get an equivalent execution where v fails after
sending all messages in round r � 1. This execution is equivalent to an
execution where v fails completely in round r.

Remarks:

• Lemma 16.10 and Lemma 16.11 may give the impression that there
is only one failure that is pushed back and forth but this is not the
case. Both lemmas use the other two lemmas, which themselves use
Lemma 16.10 and Lemma 16.11 recursively. When looking at the
intermediate executions more closely, “chains” of failures are used,
with at most one failure in any round 1, . . . , f , i.e., there are at most
f failures.

Theorem 16.14. Any deterministic consensus algorithm in the synchronous
communication model requires at least f +1 rounds if there are n � f +2 nodes.

Proof. We start with an execution where every node has input 0. According
to Definition 16.6, all nodes must output 0. The execution is equivalent to
the execution that is identical except for some node v failing in round f after
sending all messages. We can first apply Lemma 16.9 repeatedly until we get
an execution where v does not send any messages anymore and then apply
Lemma 16.10 repeatedly until we get an equivalent execution where v fails
completely in round 0. We can then change its input to 1, which is again an
equivalent execution because v fails right at the start of the execution. Then, we
apply Lemma 16.11 repeatedly until v fails completely in round f . We can then
apply Lemma 16.8 repeatedly to get an execution where v fails after sending

20 CHAPTER 16. CONSENSUS

all its messages. This execution is equivalent to an execution that is identical
except for the fact that v does not fail at all.

We can then repeat this process with the other n� 1 nodes, resulting in an
equivalent execution where no node fails and all inputs are 1. However, since the
executions are all equivalent, the output of the nodes is still 0. Thus, the validity
condition is violated as it requires that the nodes output 1 in this scenario.

16.5 Impossibility of Consensus
Let’s consider again the model where message delays are unbounded. Note that
Paxos works in this model but does not terminate. One may hope to fix Paxos
somehow, to guarantee termination. However, this is impossible. In fact, the
consensus problem of Definition 16.1 cannot be solved by any algorithm in the
asynchronous model.

Model 16.15 (asynchronous). In the asynchronous model, algorithms are
event based (“upon receiving message . . . , do . . . ”). Nodes do not have access to
a synchronized wall clock. A message sent from one node to another will arrive
in a finite but unbounded time.

Remarks:

• The asynchronous time model is a widely used formalization of the
variable message delay model (Model 15.6).

Definition 16.16 (asynchronous runtime). For algorithms in the asynchronous
model, the runtime is the number of time units from the start of the execution
to its completion in the worst case (every legal input, every execution scenario),
assuming that each message has a delay of at most one time unit.

Remarks:

• The maximum delay cannot be used in the algorithm design, i.e., the
algorithm must work independent of the actual delay.

• Asynchronous algorithms can be thought of as systems where local
computation is significantly faster than message delays and thus can
be done in no time. Nodes are only active once an event occurs (i.e., a
message arrives), and then they perform their actions “immediately”.

• We will show now that crash failures in the asynchronous model can
be quite harsh. In particular there is no deterministic fault-tolerant
consensus algorithm in the asynchronous model, not even for binary
input.

Definition 16.17 (configuration). We say that a system is fully defined (at any
point during the execution) by its configuration C. The configuration includes
the state of every node and all messages that are in transit (sent but not yet
received).

Definition 16.18 (univalent). We call a configuration C univalent, if the
decision value is determined independently of what happens afterwards.

16.5. IMPOSSIBILITY OF CONSENSUS 21

Remarks:

• We call a configuration that is univalent for value v v-valent.

• Note that a configuration can be univalent, even though no single
node is aware of this. For example, the configuration in which all
nodes start with value 0 is 0-valent (due to the validity requirement).

• As we restricted the input values to be binary, the decision value
of any consensus algorithm will also be binary (due to the validity
requirement).

Definition 16.19 (bivalent). A configuration C is called bivalent if the nodes
might decide for 0 or 1.

Remarks:

• The decision value depends on the order in which messages are received
or on crash events. I.e., the decision is not yet made.

• We call the initial configuration of an algorithm C0. When nodes are
in C0, all of them executed their initialization code and possibly, based
on their input values, sent some messages. These initial messages are
also included in C0. In other words, in C0 the nodes are now waiting
for the first message to arrive.

Lemma 16.20. There is at least one selection of input values V such that the
corresponding initial configuration C0 is bivalent, if f � 1.

Proof. As explained in the previous remark, C0 only depends on the input values
of the nodes. Let V = [v0, v1, . . . , vn�1] denote the array of input values, where
vi is the input value of node i.

We construct n+1 arrays V0, V1, . . . , Vn, where the index i in Vi denotes the
position in the array up to which all input values are 1. So, V0 = [0, 0, 0, . . . , 0],
V1 = [1, 0, 0, . . . , 0], and so on, up to Vn = [1, 1, 1, . . . , 1].

Note that the configuration corresponding to V0 must be 0-valent so that the
validity requirement is satisfied. Analogously, the configuration corresponding
to Vn must be 1-valent. Assume that all initial configurations with starting
values Vi are univalent. Therefore, there must be at least one index b, such
that the configuration corresponding to Vb�1 is 0-valent, and configuration cor-
responding to Vb is 1-valent. Observe that only the input value of the bth node
differs from Vb�1 to Vb.

Since we assumed that the algorithm can tolerate at least one failure, i.e.,
f � 1, we look at the following execution: All nodes except b start with their
initial value according to Vb�1, which is identical to their value in Vb. Node b is
“extremely slow”; i.e., all messages sent by b are scheduled in such a way, that
all other nodes must assume that b crashed, in order to satisfy the termination
requirement. Since the nodes cannot determine the value of b, and we assumed
that all initial configurations are univalent, they will decide for a value v inde-
pendent of the initial value of b. Since Vb�1 is 0-valent, v must be 0. However
we know that Vb is 1-valent, thus v must be 1. Since v cannot be both 0 and 1,
we have a contradiction.

22 CHAPTER 16. CONSENSUS

Definition 16.21 (transition). A transition from configuration C to a fol-
lowing configuration C⌧ is characterized by an event ⌧ = (u,m), i.e., node u
receiving message m.

Remarks:

• Transitions are the formally defined version of the “events” in the
asynchronous model we described before.

• A transition ⌧ = (u,m) is only applicable to C, if m was still in transit
in C.

• C⌧ differs from C as follows: m is no longer in transit, u has possibly
a different state (as u can update its state based on m), and there are
(potentially) new messages in transit, sent by u.

Definition 16.22 (configuration tree). The configuration tree is a directed
tree of configurations. Its root is the configuration C0 which is fully charac-
terized by the input values V . The edges of the tree are the transitions; every
configuration has all applicable transitions as outgoing edges.

Remarks:

• For any algorithm, there is exactly one configuration tree for every
selection of input values.

• Leaves are configurations where the execution of the algorithm termi-
nated. Note that we use termination in the sense that the system as
a whole terminated, i.e., there will not be any transition anymore.

• Every path from the root to a leaf is one possible asynchronous exe-
cution of the algorithm.

• Leaves must be univalent, or the algorithm terminates without agree-
ment.

• If a node u crashes when the system is in C, all transitions (u, ⇤) are
removed from C in the configuration tree.

Lemma 16.23. Assume two transitions ⌧1 = (u1,m1) and ⌧2 = (u2,m2) for
u1 6= u2 are both applicable to C. Let C⌧1⌧2 be the configuration that follows C
by first applying transition ⌧1 and then ⌧2, and let C⌧2⌧1 be defined analogously.
It holds that C⌧1⌧2 = C⌧2⌧1 .

Proof. Observe that ⌧2 is applicable to C⌧1 , since m2 is still in transit and ⌧1
cannot change the state of u2. With the same argument ⌧1 is applicable to C⌧2 ,
and therefore both C⌧1⌧2 and C⌧2⌧1 are well-defined. Since the two transitions
are completely independent of each other, meaning that they consume the same
messages, lead to the same state transitions and to the same messages being
sent, it follows that C⌧1⌧2 = C⌧2⌧1 .

Definition 16.24 (critical configuration). We say that a configuration C is
critical, if C is bivalent, but all configurations that are direct children of C in
the configuration tree are univalent.

16.5. IMPOSSIBILITY OF CONSENSUS 23

Remarks:

• Informally, C is critical, if it is the last moment in the execution where
the decision is not yet clear. As soon as the next message is processed
by any node, the decision will be determined.

Lemma 16.25. If a system is in a bivalent configuration, it must reach a critical
configuration within finite time, or it does not always solve consensus.

Proof. Recall that there is at least one bivalent initial configuration (Lemma
16.20). Assuming that this configuration is not critical, there must be at least
one following configuration that is bivalent; hence, the system may enter this
configuration. But if this configuration is not critical either, the system may
afterwards progress into another bivalent configuration. As long as there is no
critical configuration, an unfortunate scheduling (selection of transitions) can
always lead the system into another bivalent configuration. The only way how
an algorithm can enforce to arrive in a univalent configuration is by reaching a
critical configuration.

Therefore we can conclude that a system that does not reach a critical config-
uration has at least one possible execution where it will terminate in a bivalent
configuration (hence it terminates without agreement), or it will not terminate
at all.

Lemma 16.26. If a configuration tree contains a critical configuration, crashing
a single node can create a bivalent leaf; i.e., a crash prevents the algorithm from
reaching agreement.

Proof. Let C denote critical configuration in a configuration tree, and let T be
the set of transitions applicable to C. Let ⌧0 = (u0,m0) 2 T and ⌧1 = (u1,m1) 2
T be two transitions, and let C⌧0 be 0-valent and C⌧1 be 1-valent. Note that T
must contain these transitions, as C is a critical configuration.

Assume that u0 6= u1. Using Lemma 16.23 we know that C has a following
configuration C⌧0⌧1 = C⌧1⌧0 . Since this configuration follows C⌧0 it must be 0-
valent. However, this configuration also follows C⌧1 and must hence be 1-valent.
This is a contradiction and therefore u0 = u1 must hold.

Therefore we can pick one particular node u for which there is a transition
⌧ = (u,m) 2 T that leads to a 0-valent configuration. As shown before, all
transitions in T that lead to a 1-valent configuration must also take place on
u. Since C is critical, there must be at least one such transition. Applying the
same argument again, it follows that all transitions in T that lead to a 0-valent
configuration must take place on u as well, and since C is critical, there is no
transition in T that leads to a bivalent configuration. Therefore all transitions
applicable to C take place on the same node u!

If this node u crashes while the system is in C, all transitions are removed,
and therefore the system is stuck in C, i.e., it terminates in C. But as C is
critical, and therefore bivalent, the algorithm fails to reach an agreement.

Theorem 16.27. There is no deterministic algorithm that always achieves con-
sensus in the asynchronous model, with f > 0.

24 CHAPTER 16. CONSENSUS

Proof. We assume that the input values are binary, as this is the easiest non-
trivial possibility. From Lemma 16.20 we know that there must be at least one
bivalent initial configuration C. Using Lemma 16.25 we know that if an algo-
rithm solves consensus, all executions starting from the bivalent configuration
C must reach a critical configuration. But if the algorithm reaches a critical
configuration, a single crash can prevent agreement (Lemma 16.26).

Remarks:

• If f = 0, then each node can simply send its value to all others, wait
for all values, and choose the minimum.

• But if a single node may crash, there is no deterministic solution to
consensus in the asynchronous model.

• How can the situation be improved? For example by giving each node
access to randomness, i.e., we allow each node to toss a coin.

16.6. RANDOMIZED CONSENSUS 25

16.6 Randomized Consensus

Algorithm 16.28 Randomized Consensus (assuming f < n/2)
1: vi 2 {0, 1} / input bit
2: round = 1
3: while true do
4: Broadcast myValue(vi, round)

Propose

5: Wait until a majority of myValue messages of current round arrived
6: if all messages contain the same value v then
7: Broadcast propose(v, round)
8: else
9: Broadcast propose(?, round)

10: end if

Vote

11: Wait until a majority of propose messages of current round arrived
12: if all messages propose the same value v then
13: Broadcast myValue(v, round + 1)
14: Broadcast propose(v, round + 1)
15: Decide for v and terminate
16: else if there is at least one proposal for v then
17: vi = v
18: else
19: Choose vi randomly, with Pr[vi = 0] = Pr[vi = 1] = 1/2
20: end if
21: round = round + 1
22: end while

Remarks:

• The idea of Algorithm 16.28 is very simple: Either all nodes start with
the same input bit, which makes consensus easy. Otherwise, nodes toss
a coin until a large number of nodes by chance get the same outcome.

Lemma 16.29. As long as no node decides and terminates, Algorithm 16.28
does not get stuck, independent of which nodes crash.

Proof. The only two steps in the algorithm where a node waits are in Lines 5
and 11. Since a node only waits for a majority of the nodes to send a message,
and since f < n/2, the node will always receive enough messages to continue,
as long as no correct node terminates.

Lemma 16.30. Algorithm 16.28 satisfies the validity requirement.

Proof. Observe that the validity requirement of consensus, when restricted to
binary input values, corresponds to: If all nodes start with v, then v must be
chosen; otherwise, either 0 or 1 is acceptable, and the validity requirement is
automatically satisfied.

26 CHAPTER 16. CONSENSUS

Assume that all nodes start with v. In this case, all nodes propose v in the
first round. As all nodes only hear proposals for v, all nodes decide for v (Line
15) and terminate in the same round.

Lemma 16.31. Algorithm 16.28 satisfies the agreement requirement.

Proof. Observe that proposals for both 0 and 1 cannot occur in the same round,
as nodes only send a proposal for v, if they hear a majority for v in Line 5.

Let u be the first node that decides for a value v in round r. Hence, it received
a majority of proposals for v in r (Line 7). Note that once a node receives a
majority of proposals for a value, it will adopt this value and terminate in the
same round. Since there cannot be a proposal for any other value in r, it follows
that no node decides for a different value in r.

In Lemma 16.29 we only showed that nodes do not get stuck as long as no
node decides, thus we need to be careful that no node gets stuck if u terminates.

Any node u0 6= u can experience one of two scenarios: Either it also receives
a majority for v in round r and terminates, or it does not receive a majority.
In the first case, the agreement requirement is directly satisfied, and also the
node cannot get stuck. Let us study the latter case. Since u heard a majority
of proposals for v, it follows that every node hears at least one proposal for v.
Hence, all nodes set their value vi to v in round r. The nodes that terminate
in round r also send one additional myValue and one propose message (Lines
13, 14). Therefore, all nodes will broadcast v at the beginning of round r + 1,
all nodes will propose v in the same round and, finally, all nodes will decide for
the same value v.

Lemma 16.32. Algorithm 16.28 satisfies the termination requirement, i.e., all
nodes terminate in expected time O(2

n
).

Proof. We know from the proof of Lemma 16.31 that once a node hears a ma-
jority of proposals for a value, all nodes will terminate at most one round later.
Hence, we only need to show that a node receives a majority of proposals for
the same value within expected time O(2

n
).

Assume that no node receives a majority of proposals for the same value.
In such a round, some nodes may update their value to v based on a proposal
(Line 17). As shown before, all nodes that update the value based on a proposal,
adopt the same value v. The rest of the nodes chooses 0 or 1 randomly. The
probability that all nodes choose the same value v in one round is hence at
least 1/2n. Therefore, the expected number of rounds is bounded by O(2

n
). As

every round consists of two message exchanges, the asymptotic runtime of the
algorithm is equal to the number of rounds.

Theorem 16.33. Algorithm 16.28 achieves binary consensus with expected run-
time O(2

n
) if up to f < n/2 nodes crash.

Remarks:

• How good is a fault tolerance of f < n/2?

Theorem 16.34. There is no consensus algorithm for the asynchronous model
that tolerates f � n/2 many failures.

16.6. RANDOMIZED CONSENSUS 27

Proof. Assume that there is an algorithm that can handle f = n/2 many fail-
ures. We partition the set of all nodes into two sets N,N 0 both containing n/2
many nodes. Let us look at three different selection of input values: In V0 all
nodes start with 0. In V1 all nodes start with 1. In Vhalf all nodes in N start
with 0, and all nodes in N 0 start with 1.

Assume that nodes start with Vhalf. Since the algorithm must solve consensus
independent of the scheduling of the messages, we study the scenario where
all messages sent from nodes in N to nodes in N 0 (or vice versa) are heavily
delayed. Note that the nodes in N cannot determine if they started with V0 or
Vhalf. Analogously, the nodes in N 0 cannot determine if they started in V1 or
Vhalf. Hence, if the algorithm terminates before any message from the other set
is received, N must decide for 0 and N 0 must decide for 1 (to satisfy the validity
requirement, as they could have started with V0 respectively V1). Therefore,
the algorithm would fail to reach agreement.

The only possibility to overcome this problem is to wait for at least one
message sent from a node of the other set. However, as f = n/2 many nodes
can crash, the entire other set could have crashed before they sent any message.
In that case, the algorithm would wait forever and therefore not satisfy the
termination requirement.

Remarks:

• Algorithm 16.28 solves consensus with optimal fault-tolerance but it
is awfully slow. The problem is rooted in the individual coin tossing:
If all nodes toss the same coin, they could terminate in a constant
number of rounds.

• Can this problem be fixed by simply always choosing 1 at Line 19?!

• This cannot work: Such a change makes the algorithm deterministic,
and therefore it cannot achieve consensus (Theorem 16.27). Simulat-
ing what happens by always choosing 1, one can see that it might
happen that there is a majority for 0, but a minority with value 1

prevents the nodes from reaching agreement.

• Nevertheless, the algorithm can be improved by tossing a so-called
shared coin, which we will discuss in Chapter 19. In short, a shared
coin is a random variable that is 0 for all nodes with constant proba-
bility, and 1 with constant probability. Of course, such a coin is not a
magic device, but it is simply an algorithm. To improve the expected
runtime of Algorithm 16.28, we replace Line 19 with a function call
to the shared coin algorithm.

Chapter Notes
The problem of two friends arranging a meeting was presented and studied under
many different names; nowadays, it is usually referred to as the Two Generals
Problem [LSP82]. The impossibility proof was established in 1975 by Akkoyunlu
et al. [AEH75].

28 CHAPTER 16. CONSENSUS

Dolev, Reischuk, and Strong proved that any deterministic consensus algo-
rithms requires at least f + 1 rounds in the synchronous model [DRS82].

The proof that there is no deterministic algorithm that always solves con-
sensus in the asynchronous model even if there is at most one crash failure is
based on the proof of Fischer, Lynch and Paterson [FLP85], known as FLP,
which they established in 1985. This result was awarded the 2001 PODC Influ-
ential Paper Award (now called Dijkstra Prize). The idea for the randomized
consensus algorithm was originally presented by Ben-Or [Ben83].

Apart from randomization, there are other techniques to still get consensus.
One possibility is to drop asynchrony and rely on time more, e.g. by assuming
partial synchrony [DLS88] or timed asynchrony [CF98]. Another possibility is
to add failure detectors [CT96].

This chapter was written in collaboration with David Stolz and Thomas
Locher.

Bibliography
[AEH75] EA Akkoyunlu, K Ekanadham, and RV Huber. Some constraints and

tradeoffs in the design of network communications. In ACM SIGOPS
Operating Systems Review, volume 9, pages 67–74. ACM, 1975.

[Ben83] Michael Ben-Or. Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols. In Proceedings of the
second annual ACM symposium on Principles of distributed computing,
pages 27–30. ACM, 1983.

[CF98] Flaviu Cristian and Christof Fetzer. The timed asynchronous distrib-
uted system model. In Digest of Papers: FTCS-28, The Twenty-Eigth
Annual International Symposium on Fault-Tolerant Computing, Mu-
nich, Germany, June 23-25, 1998, pages 140–149, 1998.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus
in the presence of partial synchrony. J. ACM, 35(2):288–323, 1988.

[DRS82] Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. ’eventual’
is earlier than ’immediate’. In 23rd Annual Symposium on Foundations
of Computer Science (FOCS), pages 196–203, 1982.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM, 32(2):374–
382, 1985.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzan-
tine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401,
1982.

