
Chapter 19

Shared Coins

19.1 Random Oracles and Bit Strings
Definition 19.1 (Random Oracle). A random oracle is a trusted (non-byzantine)
random source that can generate random values.

Algorithm 19.2 Algorithm 17.19 with a Magic Random Oracle
1: Replace Line 12 in Algorithm 17.19 by
2: return ci, where ci is the ith random bit from the oracle

Remarks:

• Algorithm 19.2, as well as the upcoming Algorithm 19.5 modify Al-
gorithm 17.19 by replacing Line 12. Instead of every node throwing a
local coin (and hoping that they all result in the same bit), the nodes
coordinate their random decision based on the proposed mechanisms.

Theorem 19.3. Algorithm 19.2 solves asynchronous byzantine agreement in
an expected constant number of rounds.

Proof. If there is a large majority for one of the input values in the system, all
nodes will decide within two rounds since Algorithm 17.19 satisfies all-same-
validity; the coin is not even used.

If there is no significant majority for any of the input values at the begin-
ning of Algorithm 17.19, all correct nodes will run Line 2 from Algorithm 19.2.
Therefore, they will set their new value to the bit given by the random oracle
and terminate in the following round.

If neither of the above cases holds, some of the nodes receive an input value
more than n/2+f times, while other nodes rely on the oracle. With probability
1/2, the value of the oracle will coincide with the deterministic majority value
of the other nodes. Therefore, with probability 1/2, the nodes will terminate
in the following round. The expected number of rounds for termination in this
case is 3.

51

52 CHAPTER 19. SHARED COINS

Remarks:

• Unfortunately, random oracles are a bit like pink fluffy unicorns: they
do not really exist in the real world. Can we fix that?

Definition 19.4 (Random Bitstring). A random bit string is a string of
random binary values, known to all participating nodes when starting a protocol.

Algorithm 19.5 Algorithm 17.19 with Random Bit String
1: Replace Line 12 in Algorithm 17.19 by
2: return bi, where bi is the ith bit of the common random bit string

Remarks:

• But is such a precomputed bit string really random enough? We
should be worried because of Theorem 16.27.

Theorem 19.6. If the scheduling is worst-case, Algorithm 19.5 does not ter-
minate.

Proof. Let’s assume that n is even. We start Algorithm 19.5 with the following
input: n/2 + f + 1 nodes have input value 1, and n/2� f � 1 nodes have input
value 0. Assume w.l.o.g. that the first bit of the random bit string is 0.

If the second random bit in the bit string is also 0, then a worst-case scheduler
will let n/2 + f + 1 nodes see all n/2 + f + 1 values 1. These will therefore
deterministically choose the value 1 as their new value. Because of scheduling
(or byzantine nodes), the remaining n/2� f � 1 nodes receive strictly less than
n/2 + f + 1 values 1 and therefore have to rely on the value of the shared coin,
which is 0. The nodes will not come to a decision in this round. Moreover, we
have created the very same distribution of values for the next round (which has
also random bit 0).

If the second random bit in the bit string is 1, then a worst-case scheduler can
let n/2�f �1 nodes see all n/2+f +1 values 1, and therefore deterministically
choose the value 1 as their new value. Because of scheduling (or byzantine
nodes), the remaining n/2 + f + 1 nodes receive strictly less than n/2 + f + 1

values 1 and therefore have to rely on the value of the shared coin, which is 0.
The nodes will not decide in this round. And we have created the symmetric
situation for input value 1 that is coming in the next round.

So if the current and the next random bit are known, worst-case scheduling
will keep the system in one of two symmetric states and the nodes will never
decide.

Remarks:

• Theorem 19.6 shows that a worst-case scheduler cannot be allowed to
know the random bits of the future.

• Note that in the proof of Theorem 19.6 we did not even use any byzan-
tine nodes. Just bad scheduling was enough to prevent termination.

19.2. SIMPLE SHARED COIN 53

19.2 Simple Shared Coin
Definition 19.7 (Shared Coin). A shared coin is a binary random variable
shared among all nodes. It is 0 for all nodes with constant probability and 1 for
all nodes with constant probability. The shared coin is allowed to fail (be 0 for
some nodes and 1 for other nodes) with constant probability.

Algorithm 19.8 Shared Coin (code for node u)
1: Choose local coin cu = 0 with probability 1/n, else cu = 1

2: Broadcast myCoin(cu)

3: Wait for n� f coins and store them in the local coin set Cu

4: Broadcast mySet(Cu)

5: Wait for n� f coin sets
6: if at least one coin is 0 among all coins in the coin sets then
7: return 0

8: else
9: return 1

10: end if

Remarks:

• Since at most f nodes crash, all nodes will always receive n� f coins
and coin sets in Lines 3 and 5, respectively. Therefore, all nodes make
progress and termination is guaranteed.

• We show the correctness of the algorithm for f < n/3. To simplify
the proof we assume that n = 3f + 1, i.e., we assume the worst case.

Lemma 19.9. Let u be a node, and let W be the set of coins that u received in
at least f + 1 different coin sets. It holds that |W | � f + 1.

Proof. Let C be the multiset of coins received by u. Observe that u receives
exactly |C| = (n�f)2 many coins, as u waits for n�f coin sets each containing
n� f coins.

Assume that the lemma does not hold. Coins in W occur in at most n� f
coin sets. Hence, at most (n� f)|W | entries in C come from coins in W . Coins
in W occur in at most f coin sets, and there are n � |W | of them. Hence, at
most f(n � |W |) entries in C come from coins in W . Hence, the total number
of coins that u received is bounded by

|C|  (n� f)|W |+ f(n� |W |)  (n� f)f + f(n� f) = 2f(n� f).

Our assumption was that n > 3f , i.e., n�f > 2f . Therefore |C|  2f(n�f) <
(n� f)2 = |C|, which is a contradiction.

Lemma 19.10. All coins in W are seen by all correct nodes.

Proof. Let w 2 W be such a coin. By definition of W we know that w is in at
least f + 1 sets received by u. Since every other node also waits for n� f sets
before terminating, each node will receive at least one of these sets, and hence
w must be seen by every node that terminates.

54 CHAPTER 19. SHARED COINS

Theorem 19.11. If f < n/3 nodes crash, Algorithm 19.8 implements a shared
coin.

Proof. Let us first bound the probability that the algorithm returns 1 for all
nodes. With probability (1 � 1/n)n ⇡ 1/e ⇡ 0.37 all nodes choose their local
coin equal to 1 (Line 1), and in that case 1 will be decided. This is only a lower
bound on the probability that all nodes return 1, as there are also other scenarios
based on message scheduling and crashes which lead to a global decision for 1.
But a probability of 0.37 is good enough, so we do not need to consider these
scenarios.

With probability 1 � (1 � 1/n)|W | there is at least one 0 in W . Using
Lemma 19.9 we know that |W | � f + 1 ⇡ n/3, hence the probability is about
1 � (1 � 1/n)n/3 ⇡ 1 � (1/e)1/3 ⇡ 0.28. We know that this 0 is seen by all
nodes (Lemma 19.10), and hence everybody will decide 0. Thus Algorithm 19.8
implements a shared coin.

Remarks:

• We only proved the worst case. By choosing f fairly small, it is clear
that f + 1 6⇡ n/3. However, Lemma 19.9 can be proved for |W | �
n � 2f . To prove this claim you need to substitute the expressions
in the contradictory statement: At most n � 2f � 1 coins can be in
all n � f coin sets, and n � (n� 2f � 1) = 2f + 1 coins can be in at
most f coin sets. The remainder of the proof is analogous, the only
difference is that the math is not as neat. Using the modified lemma
we know that |W | � n/3, and therefore Theorem 19.11 also holds for
any f < n/3.

Theorem 19.12. Plugging Algorithm 19.8 into Algorithm 16.28 we get a ran-
domized consensus algorithm that terminates in a constant expected number of
rounds tolerating up to f < n/3 crash failures.

Remarks:

• Worst-case scheduling is an issue that we have only briefly considered
so far, in particular, to show that the random bit string does not help
to speed up Algorithm 17.19.

• What if scheduling is worst-case in Algorithm 19.8?

Lemma 19.13. Algorithm 19.8 has exponential expected running time under
worst-case scheduling.

Proof. In Algorithm 19.8, worst-case scheduling may hide up to f rare zero coin
flips. In order to receive a zero as the outcome of the shared coin, the nodes
need to generate at least f + 1 zeros. The probability for this to happen is
O((1/n)f+1

), which is exponentially small for f 2 ⌦(n/ log(n)). If the worst-
case scheduler makes sure that some nodes will always deterministically go for
0, then the algorithm needs ⌦(nf+1

) rounds until it terminates.

19.3. SHARED COIN ON A BLACKBOARD 55

Remarks:

• In Chapter 17 we have developed a fast solution for synchronous
byzantine agreement (Algorithm 17.13), yet our asynchronous byzan-
tine agreement solution (Algorithm 17.19) is still awfully slow. Some
simple methods to speed up the algorithms did not work, mostly due
to unrealistic assumptions. Can we at least solve asynchronous (as-
suming worst-case scheduling) consensus if we have crash failures?
Possibly based on some advanced communication methods?

19.3 Shared Coin on a Blackboard
Definition 19.14 (Blackboard Model). The blackboard is a trusted authority
that supports two operations. A node can write its message to the blackboard
and a node can read all the values that have been written to the blackboard so
far.

Algorithm 19.15 Crash-Resilient Shared Coin with Blackboard (for node u)
1: while true do
2: Choose new local coin cu = +1 with probability 1/2, else cu = �1

3: Write cu to the blackboard
4: Set C = Read all coin flips on the blackboard
5: if |C| � n2 then
6: return sign(sum(C))
7: end if
8: end while

Remarks:

• We assume that the nodes cannot reconstruct the order in which the
messages are written to the blackboard since the system is asynchro-
nous.

• In Algorithm 19.15 the outcome of a coin flips is �1 or +1 instead of
0 or 1 because it simplifies the analysis, i.e., “�1 ⇡ 0”.

• The sign function is used for the decision values. The sign function
returns +1 if the sum of all coin flips in C is greater than zero, and
�1 otherwise.

• The algorithm is unusual compared to other asynchronous algorithms
we have dealt with so far. So far we often waited for n � f mes-
sages from other nodes. In Algorithm 19.15, a single node can single-
handedly generate all n2 coin flips, without waiting.

• If a node does not need to wait for other nodes, we call the algorithm
wait-free.

• Many similar definitions beyond wait-free exist: lock-free, deadlock-
free, starvation-free, and generally non-blocking algorithms.

56 CHAPTER 19. SHARED COINS

Theorem 19.16 (Central Limit Theorem). Let {X1, X2, . . . , XN} be a sequence
of independent random variables with Pr[Xi = �1] = Pr[Xi = 1] = 1/2 for all
i = 1, . . . , N . Then for every positive real number z,

lim
N!1

Pr

"
NX

i=1

Xi � z
p
N

#
= 1� �(z) >

1p
2⇡

z

z2 + 1
e�z2/2,

where �(z) is the cumulative distribution function of the standard normal dis-
tribution evaluated at z.

Theorem 19.17. Algorithm 19.15 implements a polynomial shared coin.

Proof. Each node in the algorithm terminates once at least n2 coin flips are
written to the blackboard. Before terminating, nodes may write one additional
coin flips. Therefore, every node decides after reading at least n2 and at most
n2

+ n � 1 coin flips. The power of the adversary lies in the fact that it can
prevent n � 1 nodes from writing their last coin flips to the blackboard by
delaying their writes. Here, we will consider an even stronger adversary that
can hide up to n coin flips written on the blackboard.

We need to show that both outcomes for the shared coin (+1 or �1 in Line 6)
will occur with constant probability, as in Definition 19.7. Let X be the sum of
all coin flips that are visible to every node. Since some of the nodes might read
n more values from the blackboard than others, the nodes cannot be prevented
from deciding if |X| > n. By applying Theorem 19.16 with N = n2 and z = 1,
we get:

Pr(X  �n) = Pr(X � n) = 1� �(1) > 0.15.

Lemma 19.18. Algorithm 19.15 uses n2 coin flips, which is optimal in this
model.

Proof. The proof for showing quadratic lower bound makes use of configurations
that are indistinguishable to all nodes, similar to Theorem 16.27. It requires
involved stochastic methods and we therefore will only sketch the idea of where
the term n2 comes from.

The basic idea follows from Theorem 19.16. The standard deviation of the
sum of n2 coin flips is n. The central limit theorem tells us that with constant
probability the sum of the coin flips will be only a constant factor away from
the standard deviation. As we showed in Theorem 19.17, this is large enough
to disarm a worst-case scheduler. However, with much less than n2 coin flips,
a worst-case scheduler is still too powerful. If it sees a positive sum forming on
the blackboard, it delays messages trying to write +1 in order to turn the sum
temporarily negative, so the nodes finishing first see a negative sum, and the
delayed nodes see a positive sum.

Remarks:

• Algorithm 19.15 cannot tolerate even one byzantine failure: assume
the byzantine node generates all the n2 coin flips in every round due
to worst-case scheduling. Then this byzantine node can make sure
that its coin flips always sum up to a value larger than n, thus making
the outcome �1 impossible.

19.4. FROM THE BLACKBOARD TO MESSAGE PASSING 57

• In Algorithm 19.15, we assume that the blackboard is a trusted cen-
tral authority. Like the random oracle of Definition 19.1, assuming a
blackboard does not seem practical. However, fortunately, we can use
advanced broadcast methods in order to implement something like a
blackboard with just messages.

19.4 From the Blackboard to Message Passing

Algorithm 19.19 Crash-Resilient Shared Coin (code for node u)
1: r = 1
2: while true do
3: Choose local coin cu = +1 with probability 1/2, else cu = �1

4: FIFO-broadcast coin(cu, r) to all nodes
5: Save all received coins coin(cv, r) in a set Cu

6: Wait until accepted own coin(cu, r)
7: Request Cv from n� f nodes v, and add newly seen coins to Cu

8: if |Cu| � n2 then
9: return sign(sum(Cu))

10: end if
11: r := r + 1
12: end while

Theorem 19.20. Algorithm 19.19 implements a shared coin for f < n/2 crash
failures.

Proof. The upper bound for the number of crash failures results from the upper
bound in Theorem 18.8. The idea of this algorithm is to simulate the read and
write operations from Algorithm 19.15.

Line 4 simulates a write operation: by accepting its own coin flips, a node
verifies that n � f correct nodes have received its most recent generated coin
flips coin(cu, r). At least n � 2f � 1 of these nodes will never crash and the
value therefore can be considered as stored on the blackboard. While a value
is not accepted and therefore not stored, node u will not generate new coin
flips. Therefore, at any point of the algorithm, there are at most n additional
generated coin flips next to the accepted coins.

Line 7 of the algorithm corresponds to a read operation. A node reads a
value by requesting Cv from at least n� f nodes v. Assume that for a coin flips
coin(cu, r), f nodes that participated in the FIFO broadcast of this message
have crashed. When requesting n � f sets of coin flips, there will be at least
(n � 2f) + (n � f) � (n � f) = n � 2f � 1 sets among the requested ones
containing coin(cu, r). Therefore, a node will always read all values that were
accepted so far.

This shows that the read and write operations are equivalent to the same
operations in Algorithm 19.15. Assume now that some correct node has ter-
minated after reading n2 coin flips. Since each node reads the stored coin flips
before generating a new one in the next round, there will be at most n ad-
ditional coins accepted by any other node before termination. This setting is

58 CHAPTER 19. SHARED COINS

equivalent to Theorem 19.17 and the rest of the analysis is therefore analogous
to the analysis in that theorem.

Remarks:

• So finally we can deal with worst-case crash failures and worst-case
scheduling.

• But what about byzantine agreement? We need even more powerful
methods!

19.5 Shared Coin Using Cryptography
Definition 19.21 (Threshold Secret Sharing). Let t, n 2 N with 1  t  n.
An algorithm that distributes a secret among n participants such that t partici-
pants need to collaborate to recover the secret is called a (t, n)-threshold secret

sharing scheme.

Definition 19.22 (Signature). Every node can sign its messages in a way that
no other node can forge them, thus nodes can reliably determine which node a
signed message originated from. We denote a message x signed by node u with
msg(x)u.

Algorithm 19.23 (t, n)-Threshold Secret Sharing
1: Input: A secret s 2 {0, . . . , q} for some prime number q > n.

Secret distribution by dealer d

2: Generate t� 1 uniformly random values a1, . . . , at�1 2 Fq

3: Obtain a polynomial p of degree t� 1 with p(x) = s+ a1x+ · · ·+ at�1xt�1

4: Distribute share msg(p(1))d to node v1, . . . , msg(p(n))d to node vn

Secret recovery

5: Collect t shares msg(p(u))d from at least t nodes
6: Use Lagrange’s interpolation formula to obtain p(0) = s

Remarks:

• Algorithm 19.23 relies on a trusted dealer that broadcasts the secret
shares to the nodes.

• We use Fq (the finite field of integers modulo q) and not the field of
random numbers R because R is not discrete, and more importantly
because there is no such thing as a “uniformly random real number.”
We require q > n so that Fq contains the distinct elements 0, . . . , n
for which we consider evaluations of the polynomial p.

• Note that the communication between the dealer and the nodes must
be private, i.e., a byzantine node cannot see the shares sent to the
correct nodes.

19.5. SHARED COIN USING CRYPTOGRAPHY 59

• Using an (f + 1, n)-threshold secret sharing scheme, we can encrypt
messages in such a way that byzantine nodes alone cannot decrypt
them. The properties of polynomials ensure that the byzantine nodes
cannot learn anything about f(0) with just f shares.

Algorithm 19.24 Preprocessing Step for Algorithm 19.25 (code for dealer d)
1: for i = 1, . . . ,� do
2: Choose coin flip ci, where ci = 0 with probability 1/2, else ci = 1

3: Using Algorithm 19.23, generate n shares (p(1)), . . . , p(n)) for ci
4: end for
5: Send shares msg(p(1))d, . . . , msg(p(n))d to node u

Algorithm 19.25 Shared Coin using Secret Sharing
1: Replace Line 12 in Algorithm 17.19 by
2: Request shares for ci from at least f + 1 nodes
3: Using Algorithm 19.23, let ci be the value reconstructed from the shares
4: return ci

Theorem 19.26. Algorithm 19.25 together with Algorithm 19.24 solves asyn-
chronous byzantine agreement for f < n/10 in expected 3 rounds.

Proof. In Line 2 of Algorithm 19.25, the nodes collect shares from f + 1 nodes.
Since a byzantine node cannot forge the signature of the dealer, it is restricted to
either send its own share or decide to not send it at all. Therefore, each correct
node will eventually be able to reconstruct secret ci of round i correctly in Line
3 of the algorithm. The running time analysis for Algorithm 17.19 modified as
described in Algorithm 19.25 follows then from the analysis of Theorem 19.3.

Remarks:

• The dealer generates � coins for some parameter �. This � should
be high enough so that with overwhelming probability no node ever
requests shares for the non-existent coin c�+1. Algorithm 17.19 can
be shown to require only � shared coins except with probability 2

��,
so � does not have to be very large for practical security.

• Nodes have to be careful when responding to requests for shares. If a
node freely sends out shares for any request, the byzantine nodes can
reconstruct all secret bits. In this case, the situation is the same as
when using a pre-shared bit string, which does not work as we saw in
Section 19.1.

• In Algorithm 19.24 we assume that the trusted dealer generates the
random bit string before each execution of Algorithm 17.19 is run.
Ideally, the dealer would only generate setup once, or better yet we
would need no dealer at all. One can reduce or eliminate the need
for the dealer’s help with more advanced cryptography and/or more
advanced algorithms. See for example [CKS00] and [FM88].

• Algorithm 17.19 can also be implemented in the synchronous setting.

60 CHAPTER 19. SHARED COINS

19.6 Synchronous Byzantine Agreement Using Shared
Coins

Remarks:

• A randomized version of a synchronous byzantine agreement algorithm
can improve on the lower bound of f + 1 rounds for the deterministic
algorithms.

Definition 19.27 (Cryptographic Hash Function). A hash function hash : U !
S is called cryptographically strong, if for a given z 2 S it is computationally
hard to find an element x 2 U with hash(x) = z.

Remarks:

• Popular hash functions used in cryptography include the Secure Hash
Algorithm (SHA) and the Message-Digest (MD) algorithm.

Algorithm 19.28 Simple Synchronous Byzantine Shared Coin (for node u)
1: Each node has a public key that is known to all nodes.
2: Let r be the current round of Algorithm 17.19
3: Broadcast msg(r)u, i.e., round number r signed by node u
4: Compute hv = hash(msg(r)v) for all received messages msg(r)v
5: Let hmin = minv hv

6: return least significant bit of hmin

Remarks:

• In Algorithm 19.28, Line 3 each node can verify the correctness of the
signed message using the public key.

• Just as in Algorithm 17.7, the decision value is the minimum of all
received values. While the minimum value is received by all nodes
after 2 rounds there, we can only guarantee to receive the minimum
with constant probability in this algorithm because a byzantine node
may have the minimum value.

Theorem 19.29. Algorithm 19.28 plugged into Algorithm 17.19 solves syn-
chronous byzantine agreement in approximately 3 rounds in expectation for up
to f < n/10 byzantine failures.

Proof. With probability lower than 1/10 the minimum hash value is generated
by a byzantine node. In such a case, we can assume that not all correct nodes will
receive the byzantine value and thus, different nodes might compute different
values for the shared coin.

With probability greater than 9/10, the shared coin will be from a correct
node, and with probability 1/2 the value of the shared coin will correspond
to the value which was deterministically chosen by some of the correct nodes.
Therefore, with probability 9/20 the nodes will reach consensus in the next
iteration of Algorithm 17.19. Thus, the expected number of rounds is around 3
(the expected number of rounds until nodes agree is 20/9 plus one more round
to terminate).

19.6. SYNCHRONOUS BYZANTINE AGREEMENT USING SHARED COINS61

Remarks:

• Theorem 19.29 states that byzantine agreement can be achieved in
the synchronous model in a small number of rounds using advanced
tools such as shared coins and cryptographically strong hash functions.
Can we achieve a small number of rounds as well for a larger share of
Byzantine nodes? The answer is yes!

Algorithm 19.30 Fast Synchronous Byzantine Agreement
1: xu 2 {0, 1}.
2: while true do
3: broadcast propose(xu)
4: xu := most frequently received value
5: if � n� f propose messages contain the same value xu then
6: decide on xu

7: broadcast propose(xu, decided)
8: terminate
9: else

10: broadcast propose(xu)
11: xu := most frequently received value
12: if < n�f propose messages contain the same value x and coin_toss()

= 0 then
13: xu := 0

14: end if
15: end if
16: end while

Remarks:

• coin_toss is implemented using Algorithm 19.28.

• Algorithm 19.30 looks similar to Algorithm 17.19 but it uses two
broadcasts (i.e., two rounds) per while-loop iteration. If at least n�f
nodes propose the same value after the first broadcast in every loop,
the node accepts the value and terminates.

• The flag decided in Line 6 is used to indicate that the node will not
broadcast its value again in future rounds. All nodes receiving such
a message implicitly assume that they receive the same message from
this node in every round moving forward.

• Let the random variable C denote the outcome of the shared random
coin toss with domain {0, 1,?}, where C = 0 and C = 1 mean that
all correct nodes obtain 0 and 1, respectively, and C = ? indicates
that the random coin toss failed.

• In the following, we assume that f < n/4.

Lemma 19.31 (Shared Coin Toss). If f < n/4, it holds that p(C = 0) = p(C =

1) > 27/64.

62 CHAPTER 19. SHARED COINS

Proof. According to Algorithm 19.28, every node computes the least significant
bit of the minimum hash of all messages received of a specific format. If a
correct node happens to produce the smallest hash, the shared coin toss will
succeed, which happens with probability 1� f/n. If a byzantine node produces
the smallest hash value, it is still possible that a correct node produces the
second smallest hash value and the least significant bit is the same as the least
significant bit of the smallest hash value. The probability of this event is f

n
n�f
n�1

1
2 .

Thus, we get that

p(C = 0) _ p(C = 1) > 1� f/n+
f

n

n� f

n� 1

1

2

> 1� f/n+
f

n

n/f

n

1

2

> 1� 1

4
+

3

32
=

27

32
.

Since p(C = 0) = p(C = 1), the claim follows.

Lemma 19.32 (All-Same Validity). If all correct nodes start with the same
input value, the correct nodes will decide on this value.

Proof. If all correct nodes broadcast the same value x, all of them will receive
it at least n� f times and decide on x, according to Lines 3-6.

Lemma 19.33 (Agreement). Let round r be the first round when a correct node
v decides on xv. Each correct node w will decide on xw = xv in round r or
r + 2.

Proof. Assume that w decides on xw 6= xv in round r. Both v and w must have
received n � 2f propose messages for their values from distinct correct nodes.
However, this is a contradiction because n� 2f + n� 2f > n. Thus, no correct
node decides on a different value in round r. Assume that w does not decide in
round r. Since every correct node received xv at least n � 2f > n/2 times, xv

is the most frequently received value. Thus, every correct node broadcasts this
value in round r + 1. As this value is broadcast by every correct node, every
correct node receives it at least n � f times, which implies that they will not
toss a coin and change the value to 0. All correct nodes broadcast xv in round
r + 2 and thus receive at least n� f times, causing them to decide on xv.

Lemma 19.34 (Termination). Every correct node decides on a value in at most
5
3
4 rounds in expectation.

Proof. We bound the number of times coin_toss is invoked.
Case 1 : No correct node receives the same value at least n � f times in

Line 11. In this case, all correct nodes perform a shared coin toss. If the coin
toss returns 0, all correct nodes will decide on 0 in the next round.

Case 2 : Some correct node v receives the same value at least n� f times in
Line 11. In this case, every correct node u receives this value at least n� 2f >
n/2 times and sets xu := xv in Line 11. If the coin toss returns 1, all correct
nodes will decide on xu = xv in the next round.

Thus, in either case, the probability of termination in the next round is at
least 27/64 according to Lemma 19.31, i.e., there are fewer than 64/27 coin

19.6. SYNCHRONOUS BYZANTINE AGREEMENT USING SHARED COINS63

tosses in expectation. Since each loop consists of 2 rounds, and there is one
more round after the successful coin toss before deciding, the expected number
of rounds is lower than 1 + 2 · 64/27 < 5

3
4 .

Remarks:

• The bound can be improved to 5 rounds in expectation using a single-
round shared coin routine that guarantees that p(C = 0) = p(C =

1) = 1/2, which can be built, e.g., using threshold signatures.

• What about non-binary input? The algorithm still works; however, if
all nodes are correct and have different values, they will agree on 0,
which is not great. This can be fixed by introducing a round at the
beginning where a leader proposes a value that correct nodes accept,
i.e., they set their local variable to the leader’s value, if they receive
one. If the leader is correct, all correct nodes decide in 2 rounds
deterministically! If the leader is byzantine, the correct nodes decide
in 6

3
4 (or 6) rounds in expectation.

• In practice, such algorithms are not run just once. On the contrary,
they are executed continuously to agree on the latest set of state
changes. As we just saw, whenever the leader is correct, which hap-
pens in at least three out of four runs in expectation (using, e.g., a
simple round-robin strategy), only two rounds are needed, and the
expected number of rounds is 6

3
4 (or 6 using a perfect shared coin)

if the leader is byzantine. Thus, over many executions, the expected
number of rounds is only 2 · 34 +6

3
4 ·

1
4 ⇡ 3 (or exactly 3 using a perfect

shared coin)!

Chapter Notes
The concept of a shared coin was introduced by Bracha [Bra87]. The shared coin
algorithm in this chapter was proposed by [AW04]and it assumes randomized
scheduling. A shared coin that can withstand worst-case scheduling has been
developed by Alistarh et al. [AAKS14a]; this shared coin was inspired by earlier
shared coin solutions in the shared memory model [Cha96].

Asynchronous byzantine agreement is usually considered in one out of two
communication models – shared memory or message passing. The first poly-
nomial algorithm for the shared memory model that uses a shared coin was
proposed by Aspnes and Herlihy [AH90] and required exchanging O(n4

) mes-
sages in total. Algorithm 19.15 is also an implementation of the shared coin
in the shared memory model and it requires exchanging O(n3

) messages. This
variant is due to Saks, Shavit and Woll [SSW91]. Bracha and Rachman [BR92]
later reduced the number of messages exchanged to O(n2

log n). The tight lower
bound of ⌦(n2

) on the number of coin flips was proposed by Attiya and Cen-
sor [AC08] and improved the first non-trivial lower bound of ⌦(n2/ log2 n) by
Aspnes [Asp98].

In the message-passing model, the shared coin is usually implemented using
reliable broadcast, which we covered in Chapter 18. A possible way to reduce
message complexity is by simulating the read and write commands [ABND95] as

64 CHAPTER 19. SHARED COINS

in Algorithm 19.19. The message complexity of this method is O(n3
). Alistarh

et al. [AAKS14b] improved the number of exchanged messages to O(n2
log

2 n)
using a binary tree that restricts the number of communicating nodes according
to the depth of the tree.

It remains an open question whether asynchronous byzantine agreement can
be solved in the message passing model without cryptographic assumptions.
If cryptographic assumptions are used, however, byzantine agreement can be
solved in a constant number of rounds in expectation. Algorithm 19.24 presents
the first implementation due to Rabin [Rab83] using threshold secret sharing.
This algorithm relies on the fact that the dealer provides the random bit string.
Chor et al. [CGMA85] proposed the first algorithm where the nodes use ver-
ifiable secret sharing in order to generate random bits. Later work focuses on
improving resilience [CR93] and practicability [CKS00]. Algorithm 19.28 by
Micali [Mic18] shows that cryptographic assumptions can also help to improve
the running time in the synchronous model.

Algorithm 19.30 can handle f < n/4 byzantine failures in the synchronous
communication model. This algorithm currently achieves the lowest number of
rounds in expectation [Loc20].

This chapter was written in collaboration with Darya Melnyk and Thomas
Locher.

Bibliography
[AAKS14a] Dan Alistarh, James Aspnes, Valerie King, and Jared Saia.

Communication-efficient randomized consensus. In 28th Interna-
tional Symposium of Distributed Computing (DISC), Austin, TX,
USA, October 12-15, 2014, pages 61–75, 2014.

[AAKS14b] Dan Alistarh, James Aspnes, Valerie King, and Jared Saia.
Communication-efficient randomized consensus. In Fabian Kuhn,
editor, Distributed Computing, pages 61–75, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing mem-
ory robustly in message-passing systems. J. ACM, 42(1):124–142,
January 1995.

[AC08] Hagit Attiya and Keren Censor. Tight bounds for asynchronous
randomized consensus. J. ACM, 55(5):20:1–20:26, November 2008.

[AH90] James Aspnes and Maurice Herlihy. Fast randomized consensus
using shared memory. Journal of Algorithms, 11(3):441 – 461, 1990.

[Asp98] James Aspnes. Lower bounds for distributed coin-flipping and ran-
domized consensus. J. ACM, 45(3):415–450, May 1998.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Fun-
damentals, Simulations and Advanced Topics (2nd edition). John
Wiley Interscience, March 2004.

[BR92] Gabriel Bracha and Ophir Rachman. Randomized consensus in ex-
pected o(n2logn) operations. In Proceedings of the 5th International

BIBLIOGRAPHY 65

Workshop on Distributed Algorithms, WDAG ’91, pages 143–150,
Berlin, Heidelberg, 1992. Springer-Verlag.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. In-
formation and Computation, 75(2):130–143, 1987.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults.
In 26th Annual Symposium on Foundations of Computer Science
(sfcs 1985), pages 383–395, Oct 1985.

[Cha96] Tushar Deepak Chandra. Polylog randomized wait-free consensus.
In Proceedings of the Fifteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, Philadelphia, Pennsylvania, USA,
pages 166–175, 1996.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random ora-
cles in constantinople: Practical asynchronous byzantine agreement
using cryptography. Journal of Cryptology, 18:219–246, 2000.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agree-
ment with optimal resilience. In Proceedings of the Twenty-fifth An-
nual ACM Symposium on Theory of Computing, STOC ’93, pages
42–51, New York, NY, USA, 1993. ACM.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine
agreement. STOC ’88, pages 148–161, New York, NY, USA, 1988.
Association for Computing Machinery.

[Loc20] Thomas Locher. Fast byzantine agreement for permissioned dis-
tributed ledgers. In Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures, pages 371–382, 2020.

[Mic18] Silvio Micali. Byzantine agreement , made trivial. 2018.

[Rab83] M. O. Rabin. Randomized byzantine generals. In 24th Annual
Symposium on Foundations of Computer Science (sfcs 1983), pages
403–409, Nov 1983.

[SSW91] Michael Saks, Nir Shavit, and Heather Woll. Optimal time ran-
domized consensus – making resilient algorithms fast in practice.
In Proceedings of the Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’91, pages 351–362, Philadelphia, PA,
USA, 1991. Society for Industrial and Applied Mathematics.

