
Chapter 26

Eventual Consistency &
Bitcoin

How would you implement an ATM? Does the following implementation work
satisfactorily?

Algorithm 26.1 Naïve ATM
1: ATM makes withdrawal request to bank
2: ATM waits for response from bank
3: if balance of customer sufficient then

4: ATM dispenses cash
5: else

6: ATM displays error
7: end if

Remarks:

• A connection problem between the bank and the ATM may block
Algorithm 26.1 in Line 2.

• A network partition is a failure where a network splits into at least
two parts that cannot communicate with each other. Intuitively any
non-trivial distributed system cannot proceed during a partition and
maintain consistency. In the following we introduce the tradeoff be-
tween consistency, availability, and partition tolerance.

• There are numerous causes for partitions to occur, e.g., physical dis-
connections, software errors, or incompatible protocol versions. From
the point of view of a node in the system, a partition is similar to a
period of sustained message loss.

26.1 Consistency, Availability, and Partitions
Definition 26.2 (Consistency). All nodes in the system agree on the current
state of the system.

131

132 CHAPTER 26. EVENTUAL CONSISTENCY & BITCOIN

Definition 26.3 (Availability). The system is operational and instantly pro-
cessing incoming requests.

Definition 26.4 (Partition Tolerance). Partition tolerance is the ability of a
distributed system to continue operating correctly even in the presence of a net-
work partition.

Theorem 26.5 (CAP Theorem). It is impossible for a distributed system to
simultaneously provide Consistency, Availability, and Partition Tolerance. A
distributed system can satisfy any two of these but not all three.

Proof. Assume two nodes, sharing some state. The nodes are in different par-
titions, i.e., they cannot communicate. Assume a request wants to update the
state and contacts a node. The node may either: 1) update its local state,
resulting in inconsistent states, or 2) not update its local state, i.e., the system
is no longer available for updates.

Algorithm 26.6 Partition tolerant and available ATM
1: if bank reachable then

2: Synchronize local view of balances between ATM and bank
3: if balance of customer insufficient then

4: ATM displays error and aborts user interaction
5: end if

6: end if

7: ATM dispenses cash
8: ATM logs withdrawal for synchronization

Remarks:

• Algorithm 26.6 is partition tolerant and available since it continues to
process requests even when the bank is not reachable.

• The ATM’s local view of the balances may diverge from the balances
as seen by the bank, therefore consistency is no longer guaranteed.

• The algorithm will synchronize any changes it made to the local bal-
ances back to the bank once connectivity is re-established. This is
known as eventual consistency.

Definition 26.7 (Eventual Consistency). If no new updates to the shared state
are issued, then eventually the system is in a quiescent state, i.e., no more
messages need to be exchanged between nodes, and the shared state is consistent.

Remarks:

• Eventual consistency is a form of weak consistency.

• Eventual consistency guarantees that the state is eventually agreed
upon, but the nodes may disagree temporarily.

• During a partition, different updates may semantically conflict with
each other. A conflict resolution mechanism is required to resolve the
conflicts and allow the nodes to eventually agree on a common state.

26.2. WEAK CONSISTENCY 133

26.2 Weak Consistency
Eventual consistency is only one form of weak consistency. A number of different
tradeoffs between partition tolerance and consistency exist in literature.

Definition 26.8 (Monotonic Read Consistency). If a node u has seen a partic-
ular value of an object, any subsequent accesses of u will never return any older
values.

Remarks:

• Users are annoyed if they receive a notification about a comment on an
online social network, but are unable to reply because the web interface
does not show the same notification yet. In this case the notification
acts as the first read operation, while looking up the comment on the
web interface is the second read operation.

Definition 26.9 (Monotonic Write Consistency). A write operation by a node
on a data item is completed before any successive write operation by the same
node (i.e., system guarantees to serialize writes by the same node).

Remarks:

• The ATM must replay all operations in order, otherwise it might hap-
pen that an earlier operation overwrites the result of a later operation,
resulting in an inconsistent final state.

Definition 26.10 (Read-Your-Write Consistency). After a node u has updated
a data item, any later reads from node u will never see an older value.

Definition 26.11 (Causal Relation). The following pairs of operations are said
to be causally related:

• Two writes by the same node to different variables.

• A read followed by a write of the same node.

• A read that returns the value of a write from any node.

• Two operations that are transitively related according to the above condi-
tions.

Remarks:

• The first rule ensures that writes by a single node are seen in the same
order. For example if a node writes a value in one variable and then
signals that it has written the value by writing in another variable.
Another node could then read the signaling variable but still read the
old value from the first variable, if the two writes were not causally
related.

Definition 26.12 (Causal Consistency). A system provides causal consistency
if operations that potentially are causally related are seen by every node of the
system in the same order. Concurrent writes are not causally related, and may
be seen in different orders by different nodes.

134 CHAPTER 26. EVENTUAL CONSISTENCY & BITCOIN

26.3 Bitcoin
Definition 26.13 (Bitcoin Network). The Bitcoin network is a randomly con-
nected overlay network of a few tens of thousands of individually controlled
nodes.

Remarks:

• The lack of structure is intentional: it ensures that an attacker can-
not strategically position itself in the network and manipulate the
information exchange. Information is exchanged via a simple gossip
protocol (nodes tell their neighbors about new messages).

• Old nodes re-entering the system try to connect to peers that they were
earlier connected to. If those peers are not available, they default to
the new node behavior.

• New nodes entering the system face the bootstrap problem, and can
find active peers any which way they want. If they cannot find an
active peer, their node will look for active peers from a set of au-
thoritative sources. These authoritative sources are hard-coded in the
Bitcoin source code.

Definition 26.14 (Cryptographic Keys). Users can generate any number of
private keys. From each private key, a corresponding public key can be derived
using arithmetic operations over a finite field. A public key may be used to
identify the recipient of funds in Bitcoin, and the corresponding private key can
spend these funds.

Remarks:

• Bitcoin supports the ECDSA and Schnorr digital signature algorithms
to verify ownership of bitcoins.

• It is hard to link public keys to the user that controls them, hence
Bitcoin is often referred to as pseudonymous.

Definition 26.15 (Bitcoin Currency). Bitcoin, the currency, is an integer value
that is transferred in Bitcoin transactions. This integer value is measured in
Satoshi; 100 million Satoshi is 1 bitcoin.

Definition 26.16 (Transaction). A transaction is a data structure that de-
scribes the transfer of bitcoins from spenders to recipients. It consists of inputs
and outputs. Outputs are tuples consisting of an amount of bitcoins and a spend-
ing condition. Inputs are references to outputs of previous transactions and code
that meets the spending condition of the referenced output.

Remarks:

• New transactions refer to old transactions, which refer to even older
transactions. Every transaction can be publicly traced back to coin-
base transactions of blocks (see Definition 26.23).

26.3. BITCOIN 135

• A recipient with a public/private key pair can be paid by a transaction
whose output’s spending condition locks the payment with the public
key. It can be unlocked and spent in the future if the recipient signs
a future transaction with the private key.

• Inputs reference the output that is being spent by a (h, i)-tuple, where
h is the hash of the transaction that created the output, and i specifies
the index of the output in that transaction.

• Spending conditions are scripts that offer a variety of options. Apart
from a single signature, they may include conditions that require mul-
tiple signatures, the result of a simple computation, or the solution
to a cryptographic puzzle. However, Bitcoin spending scripts are not
Turing complete.

• Transactions can be gossiped by any node in the network and are pro-
cessed by every node that receives them through the gossip protocol.

• Outputs exist in two states: unspent and spent. An output is origi-
nally unspent, and can be spent at most once.

• The set of unspent transaction outputs (UTXO) is part of the shared
state of Bitcoin. Every node in the Bitcoin network holds a com-
plete replica of that state. Local replicas may temporarily diverge but
consistency is eventually re-established.

Algorithm 26.17 Node Receives Transaction (Naïve)
1: Receive transaction t
2: for each input (h, i) in t do

3: if output (h, i) is not in local UTXO set or signature invalid then

4: Drop t and stop
5: end if

6: end for

7: if sum of values of inputs < sum of values of new outputs then

8: Drop t and stop
9: end if

10: for each input (h, i) in t do

11: Remove (h, i) from local UTXO set
12: end for

13: for each output o in t do

14: add o to local UTXO set
15: end for

16: Forward t to neighbors in the Bitcoin network

Remarks:

• Note that the effect of a transaction on the state is deterministic. In
other words if all nodes receive the same set of transactions in the
same order (Definition 15.8), then the state across nodes is consistent.

136 CHAPTER 26. EVENTUAL CONSISTENCY & BITCOIN

• The outputs of a transaction may assign less than the sum of inputs, in
which case the difference is called the transaction fee. The fee is used
to incentivize other participants in the system (see Definition 26.23).

• Notice that so far we only described a local acceptance policy. Nothing
prevents two nodes to locally accept different transactions that spend
the same output.

• Transactions are in one of two states: unconfirmed or confirmed. In-
coming transactions from the broadcast are unconfirmed and added
to a pool of transactions called the memory pool.

Definition 26.18 (Double-spend). A double-spend is a situation in which mul-
tiple transactions attempt to spend the same output. Only one transaction can
be valid since outputs can only be spent once. When nodes accept different trans-
actions in a double-spend, the shared state across nodes becomes inconsistent.

Remarks:

• Double-spends may occur naturally, e.g., if outputs are co-owned by
multiple users who all know the corresponding private key. However,
double-spends can be malicious as well – we call these double-spend
attacks: An attacker creates two transactions both using the same
input. One transaction would transfer the money to a victim, the
other transaction would transfer the money back to the attacker.

• Double-spends can result in an inconsistent state since the validity
of transactions depends on the order in which they arrive. If two
conflicting transactions are seen by a node, the node considers the
first to be valid, see Algorithm 26.17. The second transaction is invalid
since it tries to spend an output that is already spent. The order in
which transactions are seen, may not be the same for all nodes, hence
the inconsistent state.

• If double-spends are not resolved, the shared state diverges. There-
fore a conflict resolution mechanism is needed to decide which of the
conflicting transactions is to be confirmed (accepted by everybody),
to achieve eventual consistency.

Definition 26.19 (Proof-of-Work). Proof-of-Work (PoW) is a mechanism that
allows a party to prove to another party that a certain amount of computa-
tional resources has been utilized for a period of time. A function Fd(c, x) !
{true, false}, where difficulty d is a positive number, while challenge c and
nonce x are usually bit-strings, is called a Proof-of-Work function if it has fol-
lowing properties:

1. Fd(c, x) is fast to compute if d, c, and x are given.

2. For fixed parameters d and c, finding x such that Fd(c, x) = true is com-
putationally difficult but feasible. The difficulty d is used to adjust the time
to find such an x.

26.3. BITCOIN 137

Definition 26.20 (Bitcoin PoW function). The Bitcoin PoW function is given
by

Fd(c, x) ! SHA256(SHA256(c|x)) < 2
224

d
.

Remarks:

• This function concatenates the challenge c and nonce x, and hashes
them twice using SHA256. The output of SHA256 is a cryptographic
hash with a numeric value in {0, . . . , 2256 � 1} which is compared to
a target value 2224

d , which gets smaller with increasing difficulty.

• SHA256 is a cryptographic hash function with pseudorandom output.
No better algorithm is known to find a nonce x such that the function
Fd(c, x) returns true than simply iterating over possible inputs. This
is by design to make it difficult to find such an input, but simple to
verify the validity once it has been found.

Definition 26.21 (Block). A block is a data structure used to communicate
incremental changes to the local state of a node. A block consists of a list of
transactions, a timestamp, a reference to a previous block, and a nonce. A block
lists some transactions the block creator (“miner”) has accepted to its memory
pool since the previous block. A node finds and broadcasts a block when it finds
a valid nonce for its PoW function.

Algorithm 26.22 Node Creates (Mines) Block
1: block bt = {coinbase_tx}
2: while size(bt) 1 MB do

3: Choose transaction t in the memory pool that is consistent with bt and
local UTXO set

4: Add t to bt
5: end while

6: Nonce x = 0, difficulty d, previous block bt�1, timestamp = ts
7: challenge c = (merkle(bt), hash(bt�1), ts, d)
8: repeat

9: x = x+ 1

10: until Fd(c, x) = true
11: Gossip block bt
12: Update local UTXO set to reflect bt

Remarks:

• The function merkle(bt) creates a cryptographic representation of the
set of transactions in bt. It is compact and has a fixed length no matter
how large the set is.

• With their reference to a previous block, the blocks build a tree, rooted
in the so called genesis block. The genesis block’s hash is hard-coded
in the Bitcoin source code.

138 CHAPTER 26. EVENTUAL CONSISTENCY & BITCOIN

• The primary goal for using the PoW mechanism is to adjust the rate
at which blocks are found in the network, giving the network time
to synchronize on the latest block. Bitcoin sets the difficulty so that
globally a block is created every 10 minutes in expectation.

• Finding a block allows the finder to impose the transactions in its local
memory pool to all other nodes. Upon receiving a block, all nodes roll
back any local changes since the previous block and apply the new
block’s transactions.

• Transactions contained in a block are said to be confirmed by that
block.

Definition 26.23 (Coinbase Transaction). The first transaction in a block is
called the coinbase transaction. The block’s miner is rewarded for confirming
transactions by allowing it to mint new coins. The coinbase transaction has a
dummy input, and the sum of outputs is determined by a fixed subsidy plus the
sum of the fees of transactions confirmed in the block.

Remarks:

• A coinbase transaction is the sole exception to the rule that the sum
of inputs must be at least the sum of outputs. New bitcoins enter the
system through coinbase transactions.

• The number of bitcoins that are minted by the coinbase transaction
and assigned to the miner is determined by a subsidy schedule that
is part of the protocol. Initially the subsidy was 50 bitcoins for every
block, and it is being halved every 210,000 blocks, or 4 years in expec-
tation. Due to the halving of the value of the coinbase transaction,
the total amount of bitcoins in circulation never exceeds 21 million
bitcoins.

• It is expected that the cost of performing the PoW to find a block, in
terms of energy and infrastructure, is close to the value of the reward
the miner receives from the coinbase transaction in the block.

Definition 26.24 (Blockchain). The longest path from the genesis block (root
of the tree) to a (deepest) leaf is called the blockchain. The blockchain acts as a
consistent transaction history on which all nodes eventually agree.

Remarks:

• The path length from the genesis block to block b is the height hb.

• Only the longest path from the genesis block to a leaf is a valid trans-
action history, since branches may contradict each other because of
double-spends.

• Since only transactions in the longest path are agreed upon, miners
have an incentive to append their blocks to the longest chain, thus
agreeing on the current state.

26.3. BITCOIN 139

• The mining incentives quickly increased the difficulty of the PoW
mechanism: initially miners used CPUs to mine blocks, but CPUs
were quickly replaced by GPUs, FPGAs and even application specific
integrated circuits (ASICs) as bitcoins appreciated. This results in
an equilibrium today in which only the most cost efficient miners, in
terms of hardware supply and electricity, make a profit in expectation.

• If multiple blocks are mined more or less concurrently, the system is
said to have forked. Forks happen naturally because mining is a dis-
tributed random process and two new blocks may be found at roughly
the same time.

Algorithm 26.25 Node Receives Block
1: Receive block bt
2: For this node, the current head is block bmax at height hmax

3: For this node, bmax defines the local UTXO set
4: From bt, extract reference to bt�1, and find bt�1 in the node’s local copy of

the blockchain
5: hb = hbt�1 + 1

6: if hb > hmax and is_valid(bt) then

7: hmax = hb

8: bmax = b
9: Update UTXO set to reflect transactions in bt

10: end if

Remarks:

• Algorithm 26.25 describes how a node updates its local state upon
receiving a block. Like Algorithm 26.17, this describes the local policy
and may also result in node states diverging, i.e., by accepting different
blocks at the same height as current head.

• Unlike extending the current path, switching paths may result in con-
firmed transactions no longer being confirmed, because the blocks in
the new path do not include them. Switching paths is referred to as
a reorganization ("reorg").

Theorem 26.26. Forks are eventually resolved and all nodes eventually agree
on which is the longest blockchain. The system therefore guarantees eventual
consistency.

Proof. In order for the fork to continue to exist, pairs of blocks need to be
found in close succession, extending distinct branches, otherwise the nodes on
the shorter branch would switch to the longer one. The probability of branches
being extended almost simultaneously decreases exponentially with the length
of the fork, hence there will eventually be a time when only one branch is being
extended, becoming the longest branch.

Definition 26.27 (Consensus Rules). The is_valid function in algorithm 26.25
represents the consensus rules of Bitcoin. All nodes will converge on the same
shared state if and only if all nodes agree on this function.

140 CHAPTER 26. EVENTUAL CONSISTENCY & BITCOIN

Remarks:

• If nodes have different implementations of the is_valid function, some
nodes will reject blocks that other nodes will accept. This is called
a hard fork, which is different than a regular fork. A regular fork
happens because different nodes see different blocks that are mined at
around the same time. Hard forks happen because the rules of Bitcoin
itself have changed.

• Getting all nodes to change their implementation of is_valid together,
at the same time, so that new features can be added to the Bitcoin
system, is difficult, as there is no centralized authority to coordinate
such an upgrade.

• In Bitcoin, hard forks are distinguished from soft forks:

Definition 26.28 (Hard/Soft Fork). If the set of valid transactions is expanded,
we have a hard fork. If the set of valid transactions is reduced, we have a soft
fork.

Remarks:

• As all nodes cannot upgrade at the same time, miners can create
blocks that have more restrictive is_valid rules and older nodes will
still accept them as they accept broader rules. This way, rules can
still be changed without having to upgrade all nodes at the same
time. Miners, on the other hand, have to upgrade almost at the same
time.

26.4 Layer 2
Definition 26.29 (Smart Contract). A smart contract is an agreement between
two or more parties, encoded in such a way that the correct execution is guar-
anteed by the blockchain.

Remarks:

• Contracts allow business logic to be encoded in Bitcoin transactions
which mutually guarantee that an agreed upon action is performed.
The blockchain acts as conflict mediator, should a party fail to honor
an agreement.

• The use of scripts as spending conditions for outputs enables smart
contracts. Scripts, together with some additional features such as
timelocks, allow encoding complex conditions, specifying who may
spend the funds associated with an output and when.

Definition 26.30 (Timelock). Bitcoin provides a mechanism to make trans-
actions invalid until some time in the future: timelocks. A transaction may
specify a locktime: the earliest time, expressed in either a Unix timestamp or
a blockchain height, at which it may be included in a block and therefore be
confirmed.

26.4. LAYER 2 141

Remarks:

• Transactions with a timelock are not released into the network until
the timelock expires. It is the responsibility of the node receiving
the transaction to store it locally until the timelock expires and then
release it into the network.

• Transactions with future timelocks and blocks with such transactions
are invalid. Upon receiving invalid transactions or blocks, nodes dis-
card them immediately and do not forward them to their neighbors.

• Timelocks can be used to replace or supersede transactions: a time-
locked transaction t1 can be replaced by another transaction t0, spend-
ing some of the same outputs, if the replacing transaction t0 has an
earlier timelock and can be broadcast in the network before the re-
placed transaction t1 becomes valid.

Definition 26.31 (Singlesig and Multisig Outputs). When an output can be
claimed by providing a single signature it is called a singlesig output. In
contrast the script of multisig outputs specifies a set of m public keys and
requires k-of-m (with k m) valid signatures from distinct matching public
keys from that set in order to be valid.

Remarks:

• Many Bitcoin smart contracts begin with the creation of a 2-of-2 mul-
tisig output, requiring a signature from both parties. Once the trans-
action creating the multisig output is confirmed in the blockchain,
both parties are guaranteed that the funds of that output cannot be
spent unilaterally.

Algorithm 26.32 Parties A and B create a 2-of-2 multisig output o
1: B sends a list IB of inputs with cB coins to A
2: A selects its own inputs IA with cA coins
3: A creates transaction ts{[IA, IB], [o = cA + cB ! (A,B)]}
4: A creates timelocked transaction tr{[o], [cA ! A, cB ! B]} and signs it
5: A sends ts and tr to B
6: B signs both ts and tr and sends them to A
7: A signs ts and broadcasts it to the Bitcoin network

Remarks:

• ts is called a setup transaction and is used to lock in funds into a shared
account. If ts is signed and broadcast immediately, one of the par-
ties could not collaborate to spend the multisig output, and the funds
become unspendable. To avoid a situation where the funds cannot
be spent, the protocol also creates a timelocked refund transaction tr
which guarantees that, should the funds not be spent before the time-
lock expires, the funds are returned to the respective party. At no
point in time does one of the parties hold a fully signed setup transac-
tion without the other party holding a fully signed refund transaction,
guaranteeing that funds are eventually returned.

142 CHAPTER 26. EVENTUAL CONSISTENCY & BITCOIN

• Both transactions require the signature of both parties. The setup
transaction has two inputs from A and B respectively which require
individual signatures. The refund transaction requires both signatures
because of the a 2-of-2 multisig input.

Algorithm 26.33 Simple Micropayment Channel from s to r with capacity c
1: cs = c, cr = 0

2: s and r use Algorithm 26.32 to set up output o with value c from s
3: Create settlement transaction tf{[o], [cs ! s, cr ! r]}
4: while channel open and cr < c do

5: In exchange for good with value �
6: cr = cr + �
7: cs = cs � �
8: Update tf with outputs [cr ! r, cs ! s]
9: s signs and sends tf to r

10: end while

11: r signs last tf and broadcasts it

Remarks:

• Algorithm 26.33 implements a Simple Micropayment Channel, a smart
contract that is used for rapidly adjusting micropayments from a
spender to a recipient. Only two transactions are ever broadcast and
inserted into the blockchain: the setup transaction ts and the last set-
tlement transaction tf . There may have been any number of updates
to the settlement transaction, transferring ever more of the shared
output to the recipient.

• The number of bitcoins c used to fund the channel is also the maximum
total that may be transferred over the simple micropayment channel.

• At any time the recipient R is guaranteed to eventually receive the
bitcoins, since she holds a fully signed settlement transaction, while
the spender only has partially signed ones.

• The simple micropayment channel is intrinsically unidirectional. Since
the recipient may choose any of the settlement transactions in the
protocol, she will use the one with maximum payout for her. If we
were to transfer bitcoins back, we would be reducing the amount paid
out to the recipient, hence she would choose not to broadcast that
transaction.

26.5 Selfish Mining
Satoshi Nakamoto suggested that it is rational to be altruistic, e.g., by always
attaching newly found block to the longest chain. But is it true?

Definition 26.34 (Selfish Mining). A selfish miner hopes to earn the reward
of a larger share of blocks than its hardware would allow. The selfish miner
achieves this by temporarily keeping newly found blocks secret.

26.5. SELFISH MINING 143

Algorithm 26.35 Selfish Mining
1: Idea: Mine secretly, without immediately publishing newly found blocks
2: Let dp be the depth of the public blockchain
3: Let ds be the depth of the secretly mined blockchain
4: if a new block bp is published, i.e., dp has increased by 1 then

5: if dp > ds then

6: Start mining on that newly published block bp
7: else if dp = ds then

8: Publish secretly mined block bs
9: Mine on bs and publish newly found block immediately

10: else if dp = ds � 1 then

11: Publish all secretly mined blocks
12: end if

13: end if

Theorem 26.36 (Selfish Mining). It may be rational to mine selfishly, depend-
ing on two parameters ↵ and �, where ↵ is the ratio of the mining power of the
selfish miner, and � is the share of the altruistic mining power the selfish miner
can reach in the network if the selfish miner publishes a block right after seeing
a newly published block. Precisely, the selfish miner share is

↵(1� ↵)2(4↵+ �(1� 2↵))� ↵3

1� ↵(1 + (2� ↵)↵)
.

0 1 2 3 ...�

↵ ↵ ↵ ↵

� �
�

�

Figure 26.37: Each state of the Markov chain represents how many blocks the
selfish miner is ahead, i.e., ds � dp. In each state, the selfish miner finds a
block with probability ↵, and the honest miners find a block with probability
� = 1 � ↵. The interesting cases are the “irregular” � arrow from state 2 to
state 0, and the � arrow from state 1 to state 0 as it will include three subcases.

Proof. We model the current state of the system with a Markov chain, see
Figure 26.37.

We can solve the following Markov chain equations to figure out the proba-
bility of each state in the stationary distribution (using ↵+ � = 1):

p0 = �(p1 + p2)

p1 = ↵p0

↵pi = �pi+1, for all i > 1

and 1 =

X

i

pi.

144 CHAPTER 26. EVENTUAL CONSISTENCY & BITCOIN

Using ⇢ = ↵/�, we express all terms of above sum with p1:

1 =
p1
↵

+ p1
X

i�0

⇢i =
p1
↵

+
p1

1� ⇢
, hence p1 =

2↵2 � ↵

↵2 + ↵� 1
.

Each state has an outgoing arrow with probability �. If this arrow is taken,
one or two blocks (depending on the state) are attached that will eventually
end up in the main chain of the blockchain. In state 0 (if arrow � is taken),
the honest miners attach a block. In all states i with i > 2, the selfish miner
eventually attaches a block. In state 2, the selfish miner directly attaches 2
blocks because of Line 11 in Algorithm 26.35.

State 1 in Line 8 is interesting. The selfish miner secretly was 1 block ahead,
but now (after taking the � arrow) the honest miners are attaching a competing
block. We have a race who attaches the next block, and where. There are three
possibilities:

• Either the selfish miner manages to attach another block to its own block,
giving 2 blocks to the selfish miner. This happens with probability ↵.

• Or the honest miners attach a block (with probability �) to their previous
honest block (with probability 1 � �). This gives 2 blocks to the honest
miners, with total probability �(1� �).

• Or the honest miners attach a block to the selfish block, giving 1 block to
each side, with probability ��.

The blockchain process is just a biased random walk through these states.
Since blocks are attached whenever we have an outgoing � arrow, the total
number of blocks being attached per state is simply 1+p1+p2 (all states attach
a single block, except states 1 and 2 which attach 2 blocks each).

As argued above, of these blocks, 1� p0 + p2 + ↵p1 � �(1� �)p1 are blocks
by the selfish miner, i.e., the ratio of selfish blocks in the blockchain is

1� p0 + p2 + ↵p1 � �(1� �)p1
1 + p1 + p2

.

Remarks:

• If the miner is honest (altruistic), then a miner with computational
share ↵ should expect to find an ↵ fraction of the blocks. For some
values of ↵ and � the ratio of Theorem 26.36 is higher than ↵.

• In particular, if � = 0 (the selfish miner only wins a race in Line 8 if it
manages to mine 2 blocks in a row), the break even of selfish mining
happens at ↵ = 1/3.

• If � = 1/2 (the selfish miner learns about honest blocks very quickly
and manages to convince half of the honest miners to mine on the
selfish block instead of the slightly earlier published honest block),
already ↵ = 1/4 is enough to have a higher share in expectation.

• And if � = 1 (the selfish miner controls the network, and can hide any
honest block until the selfish block is published) any ↵ > 0 justifies
selfish mining.

26.5. SELFISH MINING 145

Chapter Notes
The CAP theorem was first introduced by Fox and Brewer [FB99], although it
is commonly attributed to a talk by Eric Brewer [Bre00]. It was later proven
by Gilbert and Lynch [GL02] for the asynchronous model. Gilbert and Lynch
also showed how to relax the consistency requirement in a partially synchronous
system to achieve availability and partition tolerance.

Bitcoin was introduced in 2008 by Satoshi Nakamoto [Nak08]. Nakamoto is
thought to be a pseudonym used by either a single person or a group of people;
it is still unknown who invented Bitcoin, giving rise to speculation and con-
spiracy theories. Among the plausible theories are noted cryptographers Nick
Szabo [Big13] and Hal Finney [Gre14]. The first Bitcoin client was published
shortly after the paper and the first block was mined on January 3, 2009. The
genesis block contained the headline of the release date’s The Times issue “The
Times 03/Jan/2009 Chancellor on brink of second bailout for banks”, which
serves as proof that the genesis block has been indeed mined on that date, and
that no one had mined before that date. The quote in the genesis block is also
thought to be an ideological hint: Bitcoin was created in a climate of finan-
cial crisis, induced by rampant manipulation by the banking sector, and Bitcoin
quickly grew in popularity in anarchic and libertarian circles. The original client
is nowadays maintained by a group of independent core developers and remains
the most used client in the Bitcoin network.

Central to Bitcoin is the resolution of conflicts due to double-spends, which
is solved by waiting for transactions to be included in the blockchain. This
however introduces large delays for the confirmation of payments which are
undesirable in some scenarios in which an immediate confirmation is required.
Karame et al. [KAC12] show that accepting unconfirmed transactions leads to
a non-negligible probability of being defrauded as a result of a double-spending
attack. This is facilitated by information eclipsing [DW13], i.e., that nodes
do not forward conflicting transactions, hence the victim does not see both
transactions of the double-spend. Bamert et al. [BDE+13] showed that the
odds of detecting a double-spending attack in real-time can be improved by
connecting to a large sample of nodes and tracing the propagation of transactions
in the network.

Bitcoin does not scale very well due to its reliance on confirmations in the
blockchain. A copy of the entire transaction history is stored on every node
in order to bootstrap joining nodes, which have to reconstruct the transaction
history from the genesis block. Simple micropayment channels were introduced
by Hearn and Spilman [HS12] and may be used to bundle multiple transfers
between two parties but they are limited to transferring the funds locked into
the channel once. Duplex Micropayment Channels [DW15] and the Lightning
Network [PD15] were the first suggestions for bidirectional micropayment chan-
nels in which the funds can be transferred back and forth an arbitrary number
of times, greatly increasing the flexibility of Bitcoin transfers and enabling a
number of features, such as micropayments and routing payments between any
two endpoints.

Selfish mining has already been discussed shortly after the introduction of
Bitcoin [RHo10]. A few years later, Eyal and Sirer formally analyzed selfish
mining [ES14]. If the selfish miner is two or more blocks ahead, this original
research suggested to always answer a newly published block by releasing the

146 CHAPTER 26. EVENTUAL CONSISTENCY & BITCOIN

oldest unpublished block, so have two blocks at the same level. The idea was
that honest miners will then split their mining power between these two blocks.
However, what matters is how long it takes the honest miners to find the next
block to extend the public blockchain. This time does not change whether the
honest miners split their efforts or not. Hence the case dp < ds�1 is not needed
in Algorithm 26.35.

Similarly, Courtois and Bahack [CB14] study subversive mining strategies.
Nayak et al. [NKMS15] combine selfish mining and eclipse attacks. Algorithm
26.35 is not optimal for all parameters, e.g., sometimes it may be beneficial to
risk even a two-block advantage. Sapirshtein et al. [SSZ15] describe and analyze
the optimal algorithm.

This chapter was written in collaboration with Christian Decker.

Bibliography
[BDE+13] Tobias Bamert, Christian Decker, Lennart Elsen, Samuel Welten,

and Roger Wattenhofer. Have a snack, pay with bitcoin. In IEEE
Internation Conference on Peer-to-Peer Computing (P2P), Trento,
Italy, 2013.

[Big13] John Biggs. Who is the real satoshi nakamoto? one researcher may
have found the answer. http://on.tcrn.ch/l/R0vA, 2013.

[Bre00] Eric A. Brewer. Towards robust distributed systems. In Symposium
on Principles of Distributed Computing (PODC). ACM, 2000.

[CB14] Nicolas T. Courtois and Lear Bahack. On subversive miner strategies
and block withholding attack in bitcoin digital currency. CoRR,
abs/1402.1718, 2014.

[DW13] Christian Decker and Roger Wattenhofer. Information propagation
in the bitcoin network. In IEEE International Conference on Peer-
to-Peer Computing (P2P), Trento, Italy, September 2013.

[DW15] Christian Decker and Roger Wattenhofer. A Fast and Scalable Pay-
ment Network with Bitcoin Duplex Micropayment Channels. In
Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS), 2015.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin
mining is vulnerable. In Financial Cryptography and Data Security,
pages 436–454. Springer, 2014.

[FB99] Armando Fox and Eric Brewer. Harvest, yield, and scalable tolerant
systems. In Hot Topics in Operating Systems. IEEE, 1999.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT
News, 2002.

[Gre14] Andy Greenberg. Nakamoto’s neighbor: My hunt for bitcoin’s cre-
ator led to a paralyzed crypto genius. http://onforb.es/1rvyecq,
2014.

BIBLIOGRAPHY 147

[HS12] Mike Hearn and Jeremy Spilman. Contract: Rapidly adjusting
micro-payments. https://en.bitcoin.it/wiki/Contract, 2012. Last
accessed on November 11, 2015.

[KAC12] G.O. Karame, E. Androulaki, and S. Capkun. Two Bitcoins at
the Price of One? Double-Spending Attacks on Fast Payments in
Bitcoin. In Conference on Computer and Communication Security
(CCS), 2012.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008.

[NKMS15] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stub-
born mining: Generalizing selfish mining and combining with an
eclipse attack. Technical report, IACR Cryptology ePrint Archive
2015, 2015.

[PD15] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network.
2015.

[RHo10] RHorning. Mining cartel attack, 2010.

[SSZ15] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal
selfish mining strategies in bitcoin. arXiv preprint arXiv:1507.06183,
2015.

