
Distributed
 Computing

Autumn Term 2022 Prof. R. Wattenhofer

Distributed Systems

Exam
Date: 02-02-2023

Do not open or turn before the exam starts!
Read the following instructions!

This examination lasts for 90 minutes and comprises 90 points.

You may answer in German, English, or combine German and English.

Unless explicitly stated, you do not have to justify your answers. Writing down
your thoughts (math, text, or annotated sketches), however, might help with the
understanding of your approach. This may then result in points being awarded even
if your answer is not correct. Please write legibly. Unreadable answers will not be
graded.

Please write your name and student number on every additional sheet. Please write
your name and student number in the following fields on this cover sheet.

Family Name First Name Student Number

Task Achieved Points Maximum Points

1 - Paxos 12

2 - Byzantine Agreement 22

3 - Consistency 16

4 - Blockchain 18

5 - Quorum Systems 22

Total 90

1 Paxos (12 points)

Remember the Paxos protocol you have seen in the lecture:

Algorithm 1 Paxos

Client (Proposer)

Initialization .

c ◁ command to execute
t = 0 ◁ ticket number to try

Phase 1 .

1: t = t+ 1
2: Ask all servers for ticket t

Phase 2 .

7: if a majority answers ok then
8: Pick (Tstore, C) with largest Tstore

9: if Tstore > 0 then
10: c = C
11: end if
12: Send propose(t, c) to same

majority
13: end if

Phase 3 .

19: if a majority answers success then
20: Send execute(c) to every server
21: end if

Server (Acceptor)

Tmax = 0 ◁ largest issued ticket

C = ⊥ ◁ stored command
Tstore = 0 ◁ ticket used to store C

3: if t > Tmax then
4: Tmax = t
5: Answer with ok(Tstore, C)
6: end if

14: if t = Tmax then
15: C = c
16: Tstore = t
17: Answer success
18: end if

We will look at a system consisting of five servers S1, S2, S3, S4, S5. The clients have five com-
mands C ∈ {a, b, c, d, e} they want executed. Answer the questions about the system states
provided below. Assume that no messages are currently in transit.

a) [3] Consider the following state. Which command could be proposed next?

S1 S2 S3 S4 S5

Tstore = 1 Tstore = 1 Tstore = 2 Tstore = 2 Tstore = 2
C = a C = a C = b C = b C = b

a.

b.

a or b.

any of a, b, c, d, e.

b) [3] Consider the following state. Which command could be proposed next?

S1 S2 S3 S4 S5

Tstore = 1 Tstore = 0 Tstore = 3 Tstore = 2 Tstore = 3
C = a C = ∅ C = b C = a C = b

a.

b.

a or b.

any of a, b, c, d, e.

c) [2] Can the state below be a valid state of Paxos?

S1 S2 S3 S4 S5

Tstore = 2 Tstore = 3 Tstore = 2 Tstore = 3 Tstore = 2
C = a C = d C = d C = d C = a

Yes.

No.

d) [2] Can the state below be a valid state of Paxos?

S1 S2 S3 S4 S5

Tstore = 2 Tstore = 3 Tstore = 2 Tstore = 3 Tstore = 2
C = ∅ C = d C = ∅ C = d C = ∅
Yes.

No.

e) [2] Can the state below be a valid state of Paxos?

S1 S2 S3 S4 S5

Tstore = 2 Tstore = 3 Tstore = 4 Tstore = 5 Tstore = 6
C = a C = b C = c C = d C = e

Yes.

No.

SO
LU
TI
ON

a) b.

b) a or b.

c) No. Two different commands that are stored cannot have the same Tstore, as to store a
command the clients would have to receive a ticket from the majority of the servers. There
cannot be two majorities for the same ticket.

d) No. If Tstore > 0, C cannot be ∅.

e) No. There can be at most 3 unique commands stored in a system with 5 servers because
to store a command you need to receive a ticket from the majority of the servers.

2 Byzantine Agreement (22 points)

Alice claims that Algorithm 2 achieves Byzantine Agreement in a synchronous network where,
out of the n nodes, f < n/3 are byzantine, and each node’s input is a bit (either 0 or 1).

Algorithm 2 Alice’s algorithm

1: x0 := input value
2: for i = 1 . . . f + 1 do
3: Send xi−1 to every node (including yourself)
4: R := multiset of values received
5: D := multiset obtained after discarding the lowest f and the highest f values from R
6: xi := (minD +maxD)/2
7: end for
8: If xf+1 < 0.5, set y := 0. Otherwise, set y := 1.
9: Output y and terminate.

In this task, we will investigate whether Alice is right. Let us first recall the definition below.

a) [2] Fill in the gaps. An algorithm where each node holds an input x ∈ {0, 1} and outputs
a value y upon termination achieves f -resilient Byzantine Agreement if, even when at most
f of the nodes are byzantine, the following properties hold:

• Correct-Input Validity :

If an honest node outputs y, then .

• Agreement :

If two honest nodes output y and y′, then .

• Termination: Every honest node outputs a value y.

We can now analyze the algorithm. Let us first see what happens in the scenario below.

b) [3] Assume all nodes have input 0 in Algorithm 2. Which of the following are true for
iteration i = 1?

True # False An honest node may obtain a multiset R containing both 0 and 1.

True # False An honest node may obtain a multiset D containing both 0 and 1.

True # False An honest node may obtain x1 > 0.

We first show that honest nodes obtain non-empty multisets D in iteration i = 1, hence their
values x1 are well defined. In fact, this is the case in each iteration, which ensures Termination.

c) [2] Fill in the gaps.

In iteration i = 1, ,
hence |R| ≥ n− f for every honest node.

This implies that, for every honest node |D| ≥ > 0, and therefore D ̸= ∅.

We can now focus on the more interesting properties.

d) [4] Let Xi−1 denote the multiset of values xi−1 sent by honest nodes in iteration i. Show
that, in iteration i, honest nodes obtain values xi such that minXi−1 ≤ xi ≤ maxXi−1.

e) [3] Show that Algorithm 2 achieves Correct-Input Validity.

It remains to check whether the Agreement property holds.

f) [8] Alice claims that Algorithm 2 achieves Agreement. Do you agree with Alice?

If you agree, prove that Agreement holds (you can assume Termination and Validity).

If you disagree, describe an execution (inputs, byzantine strategy, etc.) where Algorithm
2 does not achieve Agreement.

SO
LU
TI
ON

a) The dots can be completed as follows:

• Correct-Input Validity :

If an honest node outputs y, then y is the input of some honest node.

• Agreement :

If two honest nodes output y and y′, then y = y′.

b) • (True) Honest nodes only send 0, but corrupted nodes can send 1.

• (False) At most the f corrupted nodes may send values different than 0, hence these
values are discarded. D only contains zeroes.

• (False) Since D only contains zeroes.

c) In iteration i = 1, at least the n− f honest nodes send their values xi−1, hence |R| ≥
n− f for every honest node.

This implies that, for every honest node |D| ≥ n− 3f > 0, and therefore D ̸= ∅.

d) Each honest node receives at most f (corrupted) values, hence outside [minXi−1,maxXi−1].
Values outside this interval are discarded, hence D ⊆ [minXi−1,maxXi−1] and therefore
xi = (minD +maxD)/2 ∈ [minXi−1,maxXi−1].

e) The output condition ensures all honest nodes output a bit, and if all honest nodes have
input b, Task d) ensures that every honest node obtains xf+1 = b and hence outputs y = b.

f) Alice is wrong.

We split the honest nodes into three sets: S0 and S1 of f nodes each, and S0.5 of size
n− 3f . Nodes in S0 ∪S0.5 have input 0, while nodes in S1 have input 1. In each iteration,
all corrupted nodes send 0 to nodes in S0 and 1 to nodes in S0.5 ∪ S1.

We show that, in each iteration i, nodes in S0 obtain xi < 0.5, while nodes in S0.5 ∪ S1

obtain xi = 0.5.

When i = 1, nodes in S0 receive n− f zeroes and f (discarded) ones, hence xi = 0 < 0.5.
Nodes in S0.5 ∪ S1 receive n− 2f > f zeroes and 2f > f ones, hence xi = 0.5.

Assuming the statement holds for i − 1, in iteration i, nodes in S0 receive f zeroes, f
values < 0.5, and n− 2f > f values 0.5, and then obtain xi < (0.5 + 0.5)/2 = 0.5. Nodes
in S0.5 ∪ S1 receive f (discarded) values < 0.5, n− 2f values 0.5, and f (discarded) ones,
hence obtain xi = 0.5.

Therefore, nodes in S0 output y = 0, while nodes in S0.5 ∪ S1 output y = 1.

3 Consistency (16 points)

a) [8] The following shows the operations for each of three nodes in the order of execution.

Node 1: R(x)=2, W(x=1), R(x)=a

Node 2: W(x=2), R(x)=1, W(y=2)

Node 3: R(y)=b, W(x=3), R(x)=c

Here we used the notation W(x=val) for a write operation writing value val to variable
x, and R(x)=val for a read operation on variable x returning the value val.

Provide all possible combinations for a, b, and c, such that the execution above is sequen-
tially consistent. Assume that at the beginning the variables x and y are initialized to
zero.

b) [8] Consider a system with n nodes. The nodes communicate through messages. The
system is asynchronous. A node is either active or asleep. An active node can go to
sleep at any time, but once asleep the node only becomes active if it receives a message.
The system has terminated, when all nodes are asleep and there are no more messages in
transit. Each node i maintains two variables: ri := total number of messages received by
node i, and si := total number of messages sent by node i.

Bob claims that if he sequentially checks if each process is asleep and if the total number of
messages sent and received are equal, then the system must have terminated (Algorithm
3).

Algorithm 3 Bob’s termination algorithm

1: r = 0, s = 0, i = 1
2: while i ≤ n do
3: if node i awake then
4: r = 0, s = 0, i = 1
5: else
6: r = r + ri, s = s+ si , i = i+ 1
7: end if
8: if i == n+ 1 and r ̸= s then
9: r = 0, s = 0, i = 1

10: end if
11: end while
12: Output: System has terminated

Does Algorithm 3 correctly determine termination? Prove your answer.

SO
LU
TI
ON

a) There are 6 valid combinations for the values a, b, c:

• a = 3, b = 0, c = 3

• a = 1, b = 0, c = 1

• a = 1, b = 0, c = 2

• a = 1, b = 0, c = 3

• a = 1, b = 2, c = 3

• a = 3, b = 2, c = 3

b) The algorithm is not correct. Consider the displayed Figure 1.

p1

p2

p3

Figure 1: Example of incorrect behavior for Algorithm 3.

The black dots indicate the moments where Bob checks. Algorithm 3 will output ”System
has terminated” at the dashed line, even though p1 is still active.

4 Blockchain (18 points)

a) [4] Alice owns one unspent transaction output worth 0.2023 Bitcoins. She wants to send
these Bitcoins to Bob within 3 hours. While Alice is willing to pay a maximum amount
δ for fees, she wants to save on fees. Suggest a strategy by filling in the gaps below. The
strategy should consist of creating 10 transactions, from t0 to t9, at time T , where T is
the current blockchain height.

t0 = {input: {pkA, 0.2023}, output: {pkB, 0.2023− }, timelock: T + }

...

ti = {input: {pkA, 0.2023}, output: {pkB, 0.2023− }, timelock: T + }
...

t9 = {input: {pkA, 0.2023}, output: {pkB, 0.2023− }, timelock: T + }

b) [6] Alice wants to explore other ways of saving on fees. She recalls that miners will
always try to earn as much as possible by including the most worthwhile transactions in
their block. The size of a transaction (including inputs, outputs and header) is measured
in vbytes and each block is limited to 1 million vbytes. For each statement, mark whether
it is true or false.

True # False To save money, Alice can observe the transaction pool before picking
how much she wants to spend on fees.

True # False Instead of sending Bitcoins immediately to Bob, Alice can wait until she
also wants to make a payment to Charlie. By batching both transactions
together she can save on fees.

True # False The most profitable strategy for miners is to always include transactions
with the highest fee to size ratio, where the size is measured in vbytes.

c) [4] Alice also considers using Ethereum. Name two differences between Bitcoin and
Ethereum in how fees are defined. (One sentence for each.)

d) [4] Imagine a new rule stating that whenever a miner observes a new Bitcoin block at
the current maximum blockchain height, the miner tosses a fair coin to decide whether to
replace the current head of the blockchain with the new block. What statements are true?

True # False The profitability of a selfish miner can increase.

True # False The profitability of a selfish miner can decrease.

SO
LU
TI
ON

a)
t0 = {input: {pkA, 2023}, output: {pkB, 2023− 0}, timelock: T + 1}

...

ti = {input: {pkA, 2023}, output: {pkB, 2023− i ∗ δ

9
}, T + 1 + i}

...

t9 = {input: {pkA, 2023}, output: {pkB, 2023− δ}, T + 10}

The strategy consists of progressively paying more and more fees, until the transaction is
eventually included on chain (if the max fee delta is sufficient to do so). All transactions
can be created at time T without knowledge about current fee levels. Additionally, miners
cannot exploit them to obtain higher fees, since transactions with higher fees can only be
included later.

b) • (True): The amount of fees required to be accepted in a block can vary widely, hence
looking at new transactions is very helpful to gage the fee required to be included.

• (True): Performing two (or more) transactions in one reduces the amount of overhead,
thus the amount of vbytes used, and thus even with a lower fee, miners will be more
willing to include the transaction.

• (False): As block space is limited, it is possible for the miner to have just a few
vbytes of capacity left, in which case it would be profitable for them to include a
small transaction, even with very low fees. (In general this is simply a variation of
the Knapsack-Problem)

c) Possible answers include:

(i) Unit of measurement: Ethereum uses gas cost per computation instead of cost per
byte in Bitcoin.

(ii) Choosing fee: In Ethereum sender use the GasPrice field to pick the fee amount, in
Bitcoin the difference between inputs and outputs defines the fee.

(iii) Redistribution: Fees in Bitcoin fully go to the miner, where as in Ethereum fees are
to a large degree burned (introduced in EIP-1559).

(iv) Variable vs. fixed fees: In Ethereum fees can vary and are not always predictable at
the time of emitting a transactions, unlike Bitcoin where the exact fee amount can
be set a priori.

d) • (True) If the selfish miner has no control of the scheduler, i.e., its block is rarely or
never accepted by miners, the profitability will be increased after the introduction of
the new rule.

• (True) If a selfish miner has had full control of the scheduler, this strategy will dimin-
ish its profitability. (In fact it is currently implemented in the go-ethereum client, as
it improves the worst-case scenario of selfish mining.)

5 Quorum Systems (22 points)

Quorum systems can be a tool for achieving mutual exclusion. If a client holds a quorum (has
access), no other client can hold a quorum. Alice wants to implement access to a resource using
a quorum system involving n ≥ 10 servers. However, instead of mutual exclusion, she wants that
(i) at most two clients can have access (each client holds a quorum) simultaneously. Moreover,
if currently one client holds a quorum, then (ii) a later-arriving client should be able to lock
a different quorum, as otherwise the system degenerates to mutual exclusion. We call the two
properties (i) and (ii) together 2QS.

Alice first thinks to use the Majority quorum system: any client who successfully acquires t =
⌈n/2⌉ locks gains access; i.e. quorums consist of sets of t servers.

a) [2] Which statements regarding Alice’s Majority approach are correct?

True # False No three clients can have access simultaneously.

True # False The system achieves 2QS.

b) [4] For the following values of t, is it true that the Majority system above achieves 2QS?

True # False t = ⌈n/4⌉

True # False t = ⌈n/3⌉

True # False t = ⌈2n/3⌉

True # False t = ⌈n/3⌉ − 1

c) [10] In the lecture we have learned that there are quorum systems beyond Majority. A
quorum system just needs to fulfil certain properties. For each of the following properties,
pick whether the property Always (A) / Sometimes (S) / Never (N) holds for a set
family achieving 2QS.

A # S # N Any two distinct quorums intersect (have a common server).

A # S # N Any three distinct quorums intersect (at least one server is in all
three quorums).

A # S # N In any three distinct quorums, there are two that intersect.

A # S # N No quorum is a strict subset of another quorum.

A # S # N Every quorum intersects at least one other quorum.

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7

2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 2, 7

3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 3, 7

4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 4, 7

5, 1 5, 2 5, 3 5, 4 5, 5 5, 6 5, 7

6, 1 6, 2 6, 3 6, 4 6, 5 6, 6 6, 7

7, 1 7, 2 7, 3 7, 4 7, 5 7, 6 7, 7

Figure 2: Alice’s grid quorum system for n = 72. Two left quorums are depicted for cells (2, 3)
and (6, 4), in red and blue respectively. One right quorum is depicted for cell (6, 6) in green.

Alice now wants to scale her system with more servers, but notices that her Majority-based
system comes with unreasonable load and work. Inspired by the Grid quorum system, she has
an idea: assume that the servers are arranged in an

√
n ×

√
n grid, with cells indexed by pairs

(i, j) for 1 ≤ i, j ≤
√
n. Quorums are of two kinds: left quorums and right quorums. A left

quorum is determined by a cell (i, j) and consists of all servers on column j and all servers on
row i to the left of column j. A right quorum is similar, except for having all servers on row i
to the right of column j. The system consists of all possible left and right quorums. Figure 2
shows an example of the construction for n = 49.

d) [2] What are the load and work of the system invented by Alice as a function of n? Use
the asymptotic notation (ignoring constant factors, as in big O) when answering.

• Load:

• Work:

e) [4] Does this left-right-grid system achieve 2QS? Explain your answer in 1-3 sentences.

SO
LU
TI
ON

a) • True, because 3⌈n/2⌉ > n.

• False, because for odd n we have 2⌈n/2⌉ > n, so two clients can never gain access
simultaneously in this case, failing to satisfy (ii).

b) False, False, False, False.

To see why, consider n = 12 and compute t in each case. Similarly to the previous part,
in all cases we get that either too many or too few clients can get access simultaneously.

Note. For the second item, both answers were awarded full credits because the question
was meant to have n+1 instead of n in all places defining t, but a typographical error was
not spotted (this is the only item where this would change the answer).

c) Never, Sometimes, Always, Sometimes, Sometimes

For the first item, the property is incompatible with 2QS, as it implies mutual exclusion.

For the second item, one might be tempted to think that the answer is also Never, for
similar reasons. This is almost true, with one pathological exception: consider a system
consisting solely of two disjoint quorums, then the quantification “any three distinct quo-
rums” is vacuously true.

For the third item, this is true because we require no three clients to have access simulta-
neously.

For the fourth item, one can imagine two systems satisfying 2QS: one being majority with
t = ⌈(n + 1)/3⌉, where no strict inclusions hold, and one consisting of three quorums
A,B,C such that A ⊂ B and B ∩ C = ∅.

For the fifth item, one can imagine two systems satisfying 2QS: one being majority with
t = ⌈(n + 1)/3⌉, where every quorum intersects at least one other quorum, and one
consisting of three quorums A,B,C such that A ⊂ B and B ∩ C = ∅, where quorum C
intersects no other quorums.

d) Load is O(1/
√
n) and work is O(

√
n), similarly to the grid system seen in the lecture.

e) No, because if somebody locks the right quorum of (1, 1), then nobody else can gain access.

SO
LU
TI
ON

