
Distributed
 Computing

Autumn Term 2023 Prof. R. Wattenhofer

Distributed Systems

Exam
Date: 22-01-2024

Do not open or turn before the exam starts!
Read the following instructions!

This examination lasts for 90 minutes and comprises 90 points.

You may answer in German, English, or combine German and English.

Unless explicitly stated, you do not have to justify your answers. Writing down
your thoughts (math, text, or annotated sketches), however, might help with the
understanding of your approach. This may then result in points being awarded even
if your answer is not correct. Please write legibly. Unreadable answers will not be
graded.

Please write your name and student number on every additional sheet. Please write
your name and student number in the following fields on this cover sheet.

Family Name First Name Student Number

Task Achieved Points Maximum Points

1 - Weak Byzantine Agreement 20

2 - Approximate Agreement 19

3 - Game Theory 18

4 - Internet Computer 19

5 - Blockchain 14

Total 90

1 Weak Byzantine Agreement (20 points)

In class, we studied Byzantine Agreement (BA) protocols, which satisfy All-Same Validity,
Agreement and Termination. In this exercise, we study protocols achieving a weaker variant
called Weak Byzantine Agreement (WBA). For simplicity, we restrict ourselves to nodes holding
binary inputs 0 or 1. In a WBA protocol, nodes are additionally allowed to output ⊥, with the
meaning “I don’t know!”. A WBA protocol should satisfy All-Same Validity and Termination,
while Agreement is relaxed to the following weaker requirement:

• (Weak Agreement) If two correct nodes output y and y′, either y = y′, or y = ⊥, or y′ = ⊥.

a) [4] Consider n = 3 nodes with inputs x = (x1, x2, x3) and outputs y = (y1, y2, y3). Nodes
1 and 2 are correct while node 3 is byzantine. Which of the following could be correct
outcomes of running a WBA protocol:

True # False x = (1, 0, 0) and y = (⊥,⊥,⊥)

True # False x = (0, 0, 1) and y = (⊥,⊥,⊥)

True # False x = (1, 0, 1) and y = (⊥, 0, 1)

True # False x = (1, 0, 1) and y = (0, 1,⊥)

Alice proposes a simple protocol to solve WBA in the synchronous model. We will look for
tight resilience thresholds. A protocol achieves some property up to some resilience threshold,
such as f < n/100, if this property holds in every execution where f < n/100. This resilience
threshold is tight if there is some execution where f ≤ n/100 and the property fails.

Algorithm 1 Alice’s Protocol

1: x := input value
2: Send x to all nodes. Let cy be the number of received y’s for y ∈ {0, 1}.
3: if c0 > c1 then
4: Output 0.
5: else if c1 > c0 then
6: Output 1.
7: else
8: Output ⊥.
9: end if

b) [6] Alice’s protocol satisfies the following. Fill in the blanks with tight conditions; e.g.,
f < n/100. For each statement, give a short counterexample showing that your threshold
is tight. Full marks will be awarded only with a valid counterexample.

All-Same Validity for: f <

Weak-Agreement for: f <

Bob proposes another protocol to solve WBA in the synchronous model:

Algorithm 2 Bob’s Protocol

1: x := input value
2: Send x to all nodes. Let cy be the number of received y’s for y ∈ {0, 1}.
3: if c0 ≥ n− f then
4: Output 0.
5: else if c1 ≥ n− f then
6: Output 1.
7: else
8: Output ⊥.
9: end if

c) [8] Bob’s protocol satisfies the following. Fill in the blanks with tight conditions; e.g.,
f < n/100. For each statement, give a short counterexample showing that your threshold
is tight. Full marks will be awarded only with a valid counterexample.

All-Same Validity for: f <

Weak-Agreement for: f <

d) [2] Name a protocol from the lecture achieving synchronous BA. Give a quantifiable
advantage of using Bob’s protocol over the previous (not just “it’s simpler”).

SO
LU
TI
ON

a) • (True)

• (False) Fails All-Same Validity.

• (True)

• (False) Fails Weak Agreement.

For the following two parts, only the right bounds (bold) and counterexamples were required
for full marks. Here we also briefly explain why the protocols work for the given bounds.

b) • All-Same Validity: As long as f < n/2 the property holds: the most efficient way the
Byzantine nodes can break pre-agreement is if they all propose the opposite value.
This succeeds whenever f ≥ n− f ⇐⇒ f ≥ n/2.

• Weak-Agreement: Only f = 0 works, since already for f = 1 the property can fail
for n = 3: two correct nodes have inputs 0 and 1, respectively. The Byzantine node
sends 0 to one node and 1 to the other, making them output conflicting answers. The
same construction works for any odd n > 1.1

c) • All-Same Validity: The asymmetry between 0 and 1 in the algorithm matters here. If
all correct nodes hold input 0, then they all execute line 4, even for f < n. However,
if they all hold input 1, then it might be the case that someone still gets n − f
zeros and outputs 0 as a result (because that “if” takes precedence). This can only
(and indeed does) happen if Byzantine nodes propose at least n− f zeros, requiring
f ≥ n− f ⇐⇒ f ≥ n/2. Hence, the answer is f < n/2.

• Weak-Agreement: The protocol works for f < n/3: if two correct parties got outputs
y = 0 and y′ = 1, this means that at least n − f parties sent at least one 0 and at
least n−f parties sent at least one 1. Therefore, there are at least n−2f > f parties
that sent both a zero and a one. However, this can’t happen with only f byzantine
parties. The bound is tight: for n = 3f one can use the same n = 3, f = 1 example
from above.

d) King’s algorithm. Bob’s protocol only needs one round of communication, while for full
BA we know from the lecture that f + 1 = Ω(n) rounds are required.

1For even n, Weak-Agreement holds for f = 1 but fails again at f = 2 for similar reasons. This observation
wasn’t required for full marks.

2 Approximate Agreement (19 points)

In the Approximate Agreement chapter, you have learned about a special validity condition
called Correct-Range Validity: the correct nodes’ outputs are within the range of their
inputs. In this exercise, we will achieve asynchronous Byzantine Agreement that satisfies this
condition, assuming that the the correct nodes hold inputs in Z (that is, integers). We
have n nodes in a fully connected asynchronous network. Out of the n nodes, f < n/3 are
byzantine. Before moving forward, we recall the following properties.

a) [1] In an Approximate Agreement algorithm:

• (Correct-Range Validity) Correct nodes’ outputs are within the range of their inputs.

• (ε-Agreement) For any given ε > 0, if two correct nodes output y and y′, .

• (Termination) Every correct node outputs some value.

b) [1] In an algorithm achieving Byzantine Agreement with All-Same Validity:

• (All-Same Validity) If all correct nodes have the same input x,

• (Agreement) Correct nodes output the same value.

• (Termination) Every correct node outputs some value (with probability 1).

Let us take a look at a few additional properties of the correct nodes’ outputs in Approximate
Agreement. These properties will help us design our asynchronous Byzantine Agreement algo-
rithm that achieves Correct-Range Validity. Hence, in the following, we assume that correct
nodes run Approximate Agreement with ε := 1/3 and inputs x ∈ Z, and they obtain outputs y.

c) [2] Assuming that correct nodes’ inputs are in Z, show that, for every correct node, both
⌊y⌋ and ⌈y⌉ satisfy Correct-Range Validity.

d) [2] Assume that there is some a ∈ Z such that, for every correct node, a < y < a + 1.
Show that all correct nodes hold the same value ⌊y⌋, and that all correct nodes hold the
same value ⌈y⌉.

e) [2] Every node defines z as the closest integer to its output y. That is, if y−⌊y⌋ ≤ ⌈y⌉−y,
z := ⌊y⌋. Otherwise, z := ⌈y⌉.
Assume that there is some a ∈ Z such that a correct node v has obtained y ≤ a, while a
correct node v′ has obtained y′ ≥ a. Show all the correct nodes hold the same value z.

We may now focus on achieving asynchronous Byzantine Agreement with Correct-Range Valid-
ity. We assume an asynchronous algorithm achieving Approximate Agreement (denoted by AA),
and an algorithm achieving Byzantine Agreement on bits (denoted by BBA).
We will be working with the template provided by Algorithm 3: the nodes first run AA on
their input values x ∈ Z, with ε := 1/3. This way, the correct nodes obtain values y that
satisfy Correct-Range Validity and ε-Agreement, but not Agreement. To make the step from
ε-Agreement to Agreement, we want to make use of BBA.

Algorithm 3 Byzantine Agreement with f -Median Validity

1: x := input value in Z
2: Join AA (for ε = 1/3) with input x. Upon obtaining output y:
3: Define z := ⌊y⌋ if y − ⌊y⌋ ≤ ⌈y⌉ − y, and z := ⌈y⌉ otherwise.

4: Bit b :=
5: Join BBA with input b. Upon obtaining output bit b′:

6:

7: Output

f) [11] Complete the missing lines in Algorithm 3 such that asynchronous Byzantine
Agreement with Correct-Range Validity for inputs in Z is achieved. Alternatively, you
may design your own algorithm achieving these guarantees. Either way, prove that the
algorithm is correct.

SO
LU
TI
ON

a) (ε-Agreement) For any given ε > 0, if two correct nodes output y and y′, |y − y′| ≤ ε.

b) (All-Same Validity) If all correct nodes have the same input x, no correct node outputs y ̸= x.

c) Approximate Agreement ensures that y ∈ [xmin, xmax], where xmin and xmax denote the
lowest resp. highest correct inputs. Since xmin, xmax ∈ Z, xmin ≤ ⌊y⌋ and ⌈y⌉ ≤ xmax.

d) All correct nodes obtain ⌊y⌋ = a and ⌈y⌉ = a+ 1.

e) ε-Agreement ensures that all correct nodes obtain values in [a−1/3, a+1/3], and therefore
all correct nodes obtain z = a.

f) We can complete the algorithm as follows:

Algorithm 4 Asynchronous Byzantine Agreement with Correct-Range Validity

1: x := input value
2: Join AA (for ε = 1/3) with input x. Upon obtaining output y:
3: Define z := ⌊y⌋ if y − ⌊y⌋ ≤ y − ⌈y⌉, and z := ⌈y⌉ otherwise.
4: b := 0 if z is even and 1 otherwise.
5: Join ByzantineAgreement with input b. Upon obtaining output b′:
6: If b ̸= b′, z := ⌈y⌉ if y − ⌊y⌋ ≤ y − ⌈y⌉, and z := ⌊y⌋ otherwise.
7: Output z.

Correct nodes’ values y satisfy Correct-Range Validity and ε-Agreement for ε := 1/3.

Then, if there is some a ∈ Z such that a < y < a+1 for all correct nodes, Task d) ensures
that all correct nodes obtain the same rounding options ⌊y⌋ and ⌈y⌉. Regardless of b′,
the correct nodes output the same rounding option, which satisfies Correct-Range Validity
according to Task c).

Otherwise, there is some a ∈ Z such that y ≤ a for some correct node v, while y′ ≥ a for
some correct node v′. Task e) ensures that correct nodes obtain the same z, which satisfies
Correct-Range Validity according to Task c). Therefore they join BA with the same bit b,
obtain b′ = b due to All-Same Validity, and output the initial rounding option z.

3 Game Theory (18 points)

In the Game Theory chapter, you saw that the (Optimistic) Price of Anarchy of Selfish Caching
can be Θ(n). Figure 1 shows the example network from the lecture. The problem is that only
a single node caches in the Nash Equilibria (NE) instead of two like in social optima.

..
.

..
.

0

0

0

0

1− ε

0

0

0

0

n/2 nodes n/2 nodes

Figure 1: A network with a Price of Anarchy of θ(n) in the Selfish Caching model.

You have an idea to encourage more nodes to cache: Paying for file requests! In Selfish Caching
with Payments (SCWP), if a node v requests a file from u, then it must pay u a fixed price p.
So a node v can either:
(a) request the file from another node u, which costs cv←u + p, where cv←u is the usual cost
given by the distance between v and u (we assume unit demands) or
(b) cache the file locally, which costs 1−nvp, where nv is the number of non-caching nodes that
request the file from v.
Note that non-caching nodes request the file from the nearest caching node. If multiple nearest
caching nodes exist, the payment p is shared equally among them. If no nodes cache, the cost
is infinite for all nodes. You want to check whether payments improve the Price of Anarchy.
Consider the setting of a fully connected graph on n nodes with all distances equal to zero.

a) [2] In the fully connected graph, what is the socially optimal total cost with n = 8 and
p = 0.2?

b) [5] Find all pure Nash Equilibria (NE) and their total costs when n = 8 and p = 0.2.

c) [6] What are the pure Nash Equilibria (NE) for general n and p? You may assume
0 < p < 1.

d) [5] What is the Price of Anarchy for Selfish Caching with Payments? You can choose any
n, any p, and even any graph. Do payments help, i.e., is the PoA in the worst case better
than Θ(n)?

SO
LU
TI
ON

a) SO = 1

b) Let nc be the number of nodes caching nodes. We consider three cases:

nc = 0: All nodes have infinite cost. Therefore all nodes prefer to cache. Not an NE.

nc = 1: Cost of caching = 1− 7(0.2) = −0.4, cost if caching node switches ∞.

Cost of not caching = 0.2, cost if non-caching node switches = 1− 6
2(0.2) = 0.4.

Therefore, a single node caching is an NE.

nc = 2: Cost of caching = 1− 6
2(0.2) = 0.4, cost if caching node switches 0.2.

A caching node will switch so this cannot be an NE. The same holds for nc > 2.

Therefore, any single node caching is a pure NE. There are no other pure NEs. The total
cost is 1 since all payments cancel out when summing the costs over all nodes.

c) Let nc be the number of nodes caching. Cost of caching:

ccache = 1−
(
n− nc

nc

)
p

Cost of not caching:
cnot cache = p

Therefore cache if

1−
(
n− nc

nc

)
p < p

nc < np = 16× 0.2 = 3.2

Therefore, any set of three nodes caching is a pure NE. The total cost is 3 since all payments
cancel out when summing the costs.

d) Given a fixed p, we can always choose n large enough such that ⌊np⌋ = O(n) nodes cache
in a pure Nash Equilibrium, with total cost ⌊np⌋. But the social optimum is SO = 1. So
the Price of Anarchy is still linear in n.

4 Internet Computer (19 points)

a) [3] Imagine that a user sends message m to canister A and later message m′ to canister
B. Describe three circumstances (in one sentence each) in which m′ can be replied before
m.

b) [6] Consider the canisters as objects, and the computation done by them as operations
that are initiated by messages. The output of the consensus algorithm of each subnet can
be simplified as operations coming from a single (virtual) node. Operations are performed
atomically inside canisters.

Which statements are true? For each statement explain your answer in at most two
sentences.

True # False Execution is linearizable inside a subnet.

True # False Execution is sequentially consistent across subnets.

c) [6] In this question we compare the Internet Computer to Bitcoin and Ethereum. For
each statement explain your answer in one sentence.

True # False Cyclic arbitrage is easier to accomplish on the Internet Computer than
on Ethereum.

True # False Contrary to Bitcoin, the Internet Computer never experiences reorgs.
In other words, confirmed blocks will never be reverted.

True # False Contrary to Bitcoin, the Internet Computer never experiences forks.

d) [4] In a subnet consisting of 12 nodes, an adversary controls 4 nodes. First, can the
adversary negatively influence the execution of the subnet? Second, can the adversary
negatively influence any other subnet? For each, in at most two sentences, illustrate a
possible attack vector, or explain why no attack is possible.

SO
LU
TI
ON

a) Multiple factors can make it so m′ is replied before m:

• Canisters A and B can be in different subnets, in which case consensus algorithms
are independent, and might pick up one message before the other.

• They might be in the same subnet, but canister A can have a much longer queue.

• Messages can be re-ordered on the way to nodes.

• Nodes can reorder messages when creating blocks.

b) • True. Every execution is restricted to a single node. Thus every execution is a
sequential execution, and trivially linearizable.

• True. Just like regular messages, xnet messages also go through consensus first.
Every execution E | o is linearizable, since canisters are accessed through queues,
and thus have linearization points. Thus, by the composability of linearizability E
is linearizable. Since linearizability implies sequential consistency, the statement is
true. Alternatively, this can also be argued through happened-before consistency,
which is equivalent to sequential consistency.

c) • False. Both on Ethereum and on the Internet Computer computation is being kicked
off by a user message. On Ethereum, all resulting computation is done atomically,
while the Internet Computer has no such guarantees. Thus, on Ethereum, the exact
price of each trade in the cycle can be computed at the very start of a transaction,
while the Internet Computer gives no such guarantees.

• True. The IC does not use eventual consistency, i.e., blocks that are finalized will
remain finalized deterministically.

• False. The IC consensus algorithm still builds a DAG that can have forks.

d) The adversary can finalize two blocks inside the compromised subnet. Furthermore, it
can create conflicting or even just duplicated cross-net messages that might negatively
influence other subnets: Any application that relies on the consistency of a canister in the
compromised subnet might also be compromised.

5 Blockchain (14 points)

a) [6] You just finished building a practical quantum computer in your garage. When testing
it, you realize that it can create forgeries for Bitcoin’s ECDSA signature scheme in just a
few minutes of computing time.

Which of the following attacks are possible with your newly gained power? For each
statement explain your answer in at most two sentences.

Possible
Impossible

Double spend by forking the blockchain.

Possible
Impossible

After observing a transaction t in the memory pool, create a conflicting
transaction sending the funds of t to you.

Possible
Impossible

Drain a wallet that is reusing a public key across transactions.

b) [8] For each statement regarding Ethereum, mark whether it is true or false.

True # False An Ethereum transaction, if not immediately included in a block, re-
mains valid and may be included in a future block.

True # False Smart contracts can be configured to periodically and automatically
initiate a transaction.

True # False Smart contracts can only be programmed in one specialized program-
ming language (Solidity).

True # False A user can spam the network with transactions that run out of gas for
free, as transactions are aborted once too much gas is consumed.

This page is intentionally left blank.

SO
LU
TI
ON

a) Impossible, because the resistance against forks of the proof-of-work system only relies on
the security properties of the underlying cryptographic hash functions.

Possible, because the transaction contains the public key and you can use that to create
another transaction with a forged signature.

Possible, because any of the existing transactions contains the public key and thus allows
you to craft a transaction draining the wallet.

b) True. Before being included in a block a transaction is not in any way bound to a specific
block. This is also why the account nonce is needed.

False. Every transaction is initiated by an externally-owned address, smart contracts only
act upon incoming calls.

False. Smart contracts on Ethereum are deployed as EVM bytecode, which can be the
product of compiling any of multiple higher-level languages.

False. The gas fee must be paid for any transaction even if it is aborted, reverted, especially
if it out of gas.

SO
LU
TI
ON

