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Algorithms for Sensor Networksg
…what is it good for?!

Algorithms for Sensor Networks   – Roger Wattenhofer   3/2



Let‘s take a practical viewpoint...

• Algorithms for Sensor Networks, What is it Good For?

• Absolutely nothing!? The merit of theory and algorithms in the 
context of wireless sensor and ad hoc networks is often questioned. q
Admittedly, coming up with theory success stories that will be 
accepted by practitioners is not easy. In my talk I will discuss the 
current score of the Theory vs. Practice game after playing sevencurrent score of the Theory vs. Practice game after playing seven 
years for the Theory team. (Probably due to a "seven year itch" I 
recently also started playing for the Practice team...)
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Absolutely nothing?!?

Hypothesis: Impact(Theory) ²Hypothesis: Impact(Theory) ²
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Scoring for Theory

• “Theory is important, even if it sometimes does not have impact”
sometimes decades later e g number theory for cryptography– sometimes decades later, e.g., number theory for cryptography

• Packet switching (very important for sensor networks) was g ( y )
promoted by theory guys in the early 60s:
– Paul Baran, Donald Davies, Leonard Kleinrock, et al.
– Later followed by Lawrence Roberts Robert Kahn Vinton Cerf et al– Later followed by Lawrence Roberts, Robert Kahn, Vinton Cerf, et al.
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Scoring for Systems

• Baran et al. was almost 50 years ago

• Systems people get it “right” quite often…

• Many important difficult problems are “not really theoretical”…

Impact(Recent Theory) ²!
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Why? (More theory whining)

• Why does theory not have impact on practical systems?

Practice is Theory is useless trivial…Theory is useless…

TheoryPractice
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Systems people don’t read theory papers

• Sometimes for good reasons…
unreadable– unreadable

– don’t matter that much (only getting out the last %)
– wrong models
– theory is lagging behind
– bad theory merchandising/branding

– systems papers provide easy to remember acronymssystems papers provide easy to remember acronyms
– “On the Locality of Bounded Growth” vs. “Smart Dust”

– good theory rarely comes from the top 5 US Universities
having hundreds of workshops does not help– having hundreds of workshops does not help, 
is just a good excuse for not following up research 

• … do I sound embittered?!? :-)
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Why recent theory does not have impact on real systems...

1) Systems people don’t read theory papers

2) Theory people don’t build systems Maybe theory people should 
build systems themselves?!?

3) Ergo, theory does not have practical impact

1 : 0
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Systems Perspective: DozerSystems Perspective: Dozer
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Example: Dozer [Burri, von Rickenbach, W, IPSN 2007]

• Up to 10 years of network life-time
• Mean energy consumption: 0.066 mWgy p
• Operational network in use > 1 year
• High availability, reliability (99.999%)
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Is Dozer a theory-meets-systems success story?

• Good news
Theory people can develop good systems!– Theory people can develop good systems! 

– Dozer is to the best of my knowledge more energy-efficient and 
reliable than all other published systems protocols… 

– For more than 1 year already!

• Bad news• Bad news
– Dozer does not have an awful lot of theory inside

• Ugly news
– Dozer v2 has even less theory than Dozer v1

• Hope
– Despite not being aware still subliminal theory ideas in system?
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Environmental Monitoring

• Continuous data gathering

• Unattended operation

• Low data rates

• Battery powered

• Network latency• Network latency

• Dynamic bandwidth demands

Energy conservation is crucial to prolong network lifetimeEnergy conservation is crucial to prolong network lifetime
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Energy-Efficient Protocol Design

• Communication subsystem is the main energy consumer
Power down radio as much as possible– Power down radio as much as possible

TinyNode Power Consumption

uC sleep, radio off 0.015 mW

Radio idle, RX, TX 30 – 40 mW

• Issue is tackled at various layers
– MAC 
– Topology control / clustering
– Routing

Orchestration of the whole network stack
to achieve duty cycles of ~1‰
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Dozer System

• Tree based routing towards data sink
– No energy wastage due to multiple paths– No energy wastage due to multiple paths
– Current strategy: SPT

TDMA b d li k h d li• TDMA based link scheduling
– Each node has two independent schedules 
– No global time synchronization child

parent

g y

• The parent initiates each TDMA round with a beacon
Enables integration of disconnected nodes– Enables integration of disconnected nodes

– Children tune in to their parent’s schedule

activation frame

contention window

beacon

beacon

activation frame
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Dozer System

• Parent decides on its children data upload times
Each interval is divided into upload slots of equal length– Each interval is divided into upload slots of equal length

– Upon connecting each child gets its own slot
– Data transmissions are always ack’ed

• No traditional MAC layer
– Transmissions happen at exactly predetermined point in timeTransmissions happen at exactly predetermined point in time 
– Collisions are explicitly accepted
– Random jitter resolves schedule collisions

Clock drift queuing

data transfer

Clock drift, queuing, 
bootstrap, etc.

time

jitter

slot 1 slot 2 slot n
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Dozer System

• Lightweight backchannel
Beacon messages comprise commands– Beacon messages comprise commands

• Bootstrap periodic channel 

– Scan for a full interval
– Suspend mode during network downtime

activity check

• Potential parents
– Avoid costly bootstrap mode on link failure
– Periodic refresh the list
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Dozer System

• Clock drift compensation
fixed guard times– fixed guard times

• Application scheduling
– TinyOS is single threaded and non-preemptive
– TDMA is highly time critical

• Queuing strategy
– Fixed size buffers
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Evaluation

• Platform
TinyNode– TinyNode 

– MSP 430
– Semtech XE1205

Ti OS 1– TinyOS 1.x

• Testbed
– 40 Nodes
– Indoor deployment

> 1 month uptime– > 1 month uptime
– 30 sec beacon interval
– 2 min data sampling interval
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Dozer in Action
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Tree Maintenance

1 week of operation

on average 1.2%
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Energy Consumption

on average 1.67‰

Mean energy consumption of 0.082 mW
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Energy Consumption

2.8‰ duty cycle

3.2‰ duty cycle

scanning

overhearingoverhearing

updating

#children

• Relay node• Leaf node • Relay node
• No scanning

• Leaf node
• Few neighbors
• Short disruptions
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Dozer Conclusions & Possible Future Work

• Conclusions
Dozer achieves duty cycles in the magnitude of 1‰– Dozer achieves duty cycles in the magnitude of 1‰.

– Abandoning collision avoidance was the right thing to do.

• Possible Future work
– Incorporate clock drift compensation.
– Optimize delivery latency of sampled sensor data.Optimize delivery latency of sampled sensor data.
– Make use of multiple frequencies to further reduce collisions.
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Open problem

• Continuous data gathering is somewhat well understood, both 
practically and theoretically in contrast to the two other paradigmspractically and theoretically, in contrast to the two other paradigms, 
event detection and query processing.

• One possible open question is about event detection. Assume that 
you have a battery-operated sensor network, both sensing and 
having your radio turned on costs energy. How can you build ahaving your radio turned on costs energy. How can you build a 
network that raises an alarm quickly if some large-scale event 
(many nodes will notice the event if sensors are turned on) 
happens? What if nodes often sense false positives (nodes oftenhappens? What if nodes often sense false positives (nodes often 
sense something even if there is no large-scale event)?
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again what is theory good for?!?again, what is theory good for?!?
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My own private answer

• Understanding the basic principles and limitations!

• In other words, lower bounds and impossibility results

• On the following slides, I showcase a few examples
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Time SynchronizationTime Synchronization
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Rating

• Area maturity

First steps                                                         Text book

• Practical importance

No apps Mission critical

Th ti l i t

No apps                                                     Mission critical

• Theoretical importance

Not really                                                          Must have
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Overview

• Motivation
Cl k S• Clock Sources

• Reference-Broadcast Synchronization (RBS)
• Time-sync Protocol for Sensor Networks (TPSN)Time sync Protocol for Sensor Networks (TPSN) 
• Gradient Clock Synchronization
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Motivation

• Time synchronization is essential for many applications
Coordination of wake up and sleeping times (energy efficiency)– Coordination of wake-up and sleeping times (energy efficiency)

– TDMA schedules
– Ordering of collected sensor data/events

C ti f lti l d– Co-operation of multiple sensor nodes
– Estimation of position information (e.g. shooter detection)

• Goals of clock synchronization
– Compensate offset between clocks
– Compensate drift between clocks
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Properties of Synchronization Algorithms

• External versus internal synchronization
E t l N d h i ith t l l k (UTC)– External sync: Nodes synchronize with an external clock source (UTC)

– Internal sync: Nodes synchronize to a common time
– to a leader, to an averaged time, or to anything else

• Instant versus periodic synchronization
P i di h i ti i d t t l k d ift– Periodic synchronization required to compensate clock drift

• A-priori versus a-posterioriA priori versus a posteriori
– A-posteriori clock synchronization triggered by an event

• Local versus global synchronization
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Clock Sources

• Radio Clock Signal:
Clock signal from a reference source (atomic clock)– Clock signal from a reference source (atomic clock) 
is transmitted over a longwave radio signal 

– DCF77 station near Frankfurt, Germany transmits at 
77 5 kH ith t i i f t 2000 k77.5 kHz with a transmission range of up to 2000 km

– Accuracy limited by the distance to the sender, 
Frankfurt-Zurich is about 1ms.

– Special antenna/receiver hardware required

• Global Positioning System (GPS):• Global Positioning System (GPS):
– Satellites continuously transmit own position and 

time code
Li f i h b lli d i i d– Line of sight between satellite and receiver required

– Special antenna/receiver hardware required
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Clock Devices in Sensor Nodes

• Structure
E t l ill t ith i l f ( 32 kH )– External oscillator with a nominal frequency (e.g. 32 kHz)

– Counter register which is incremented with oscillator pulses
– Works also when CPU is in sleep state

• Accuracy
– Clock drift: random deviation from the nominal rate dependent on power 

supply temperature etcsupply, temperature, etc.
– E.g. TinyNodes have a maximum drift of 30-50 ppm at room temperature

P f t

This is a drift of up to 
50 μs per second

ur
ed

 T
im

e
Jittering 
Clock

Perfect
ClockClock with

Drift

50 μs per second 
or 0.18s per hour

M
ea

su

Clock 
with Offset
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Sender/Receiver Synchronization

• Round-Trip Time (RTT) based synchronization

t 2 t 3
B

Request 
from A

Answer 
from B

Time accor-
ding to B

t 1 t 4
A Time accor-

ding to A

• Receiver synchronizes to the sender‘s clock
• Propagation delay δ and clock offset θ can be calculated

2
2314

)t(t+)t(tδ))+(t(tδ))+(t(t

)t(t)t(t=δ −−−

22
43123412 )t(t+)t(t=δ))+(t(tδ))+(t(t=θ −−−−−
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Disturbing Influences on Packet Latency

• Influences
– Sending Time S (up to 100ms)
– Medium Access Time A (up to 500ms)
– Transmission Time T (tens of milliseconds, depending on size)
– Propagation Time PA,B (microseconds, depending on distance),
– Reception Time R (up to 100ms)

S A TS A T

RP

Timestamp TA

RPA,B

Critical path
Timestamp TB

• Asymmetric packet delays due to non-determinism
• Solution: timestamp packets at MAC Layer
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Reference-Broadcast Synchronization (RBS)

• A sender synchronizes a set of receivers with one another
• Point of reference: beacon’s arrival time

,12 AASSS RPAStt ++++= A
2t

θ

)()( ,,32

,13

BABSAS

BBSSS

RRPPtt
RPAStt

−+−=−=

++++=

θ BS

1t 3t

θ

• Only sensitive to the difference in propagation and reception time
• Time stamping at the interrupt time when a beacon is received

3

• After a beacon is sent, all receivers exchange their reception times to 
calculate their clock offset

• Post-synchronization possible
• Least-square linear regression to tackle clock drifts
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Time-sync Protocol for Sensor Networks (TPSN)

• Traditional sender-receiver synchronization (RTT-based) 
• Initialization phase: Breadth-first-search flooding• Initialization phase: Breadth-first-search flooding

– Root node at level 0 sends out a level discovery packet
– Receiving nodes which have not yet an assigned level set their level

to +1 and start a random timerto +1 and start a random timer
– After the timer is expired, a new level discovery packet will be sent
– When a new node is deployed, it sends out a level request packet after 

a random timeouta random timeout

0

1

1

1

2
2

2 2
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Time-sync Protocol for Sensor Networks (TPSN)

• Synchronization phase
Root node issues a time sync packet which triggers a random timer at– Root node issues a time sync packet which triggers a random timer at 
all level 1 nodes

– After the timer is expired, the node asks its parent for synchronization 
i h i ti lusing a synchronization pulse

– The parent node answers with an acknowledgement
– Thus, the requesting node knows the round trip time and can calculate 

its clock offset
– Child nodes receiving a synchronization pulse also start a random timer 

themselves to trigger their own synchronizationgg y

0Time Sync

1

A

1

B

2ACKSync pulse
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Time-sync Protocol for Sensor Networks (TPSN)
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)()()()( ,,

,34

ABABBABABA

AABBB

RRPPAASS
RPAStt

−+−+−+−
=

++++=

θ

2t
3t

1

1

B

2
1t

• Time stamping packets at the MAC layer 

2
θ

A
2 2

1t
4t

p g p y
• In contrast to RBS, the signal propagation time might be negligible
• Authors claim that it is “about two times” better than RBS
• Again, clock drifts are taken into account using periodical 

synchronization messages

• Problem: What happens in a non-tree topology (e.g. ring)?!? 
– Two neighbors may have exceptionally bad synchronization
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Theoretical Bounds for Clock Synchronization

• Network Model:
– Each node i has a local clock Li(t)i( )
– Network with n nodes, diameter D.
– Reliable point-to-point communication with minimal delay µ
– Jitter ε is the uncertainty in message delay– Jitter ε is the uncertainty in message delay

• Two neighboring nodes u, v cannot distinguish whether message is faster 
from u to v and slower from v to u or vice versa Hence clocks offrom u to v and slower from v to u, or vice versa. Hence clocks of 
neighboring nodes can be up to ε off.

0 1 2 3 0 1 2 3
v v

H t d t di t D h l k hi h D ff

0 1 2 3

µ µ + ε

0 1 2 3

µµ + ε

u u

• Hence, two nodes at distance D may have clocks which are εD off.
• This can be achieved by a simple flooding algorithm: Whenever a node 

receives a new minimum value, it sets its clock to the new value and 
forwards its new clock value to all its neighbors
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Clock Synchronization

1. Global property: Minimize clock skew between any two nodes
2 Local (“gradient”) property: Small clock skew between two nodes if2. Local ( gradient ) property: Small clock skew between two nodes if 

the distance between the nodes is small.
3. Clock should not be allowed to jump backwards

You don’t want new events to be registered earlier than older events.

E l Root node• Example:

1
0

1
Small clock skew

Root node

2 2
1

2
3 3

4

3
2

4
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Trivial Solution: Let t = 0 at all nodes and times

1. Global property: Minimize clock skew between any two nodes
2 Local (gradient) property: Small clock skew between two nodes if2. Local (gradient) property: Small clock skew between two nodes if 

the distance between the nodes is small.
3. Clock should not be allowed to jump backwards

• To prevent trivial solution, we need a fourth constraint:

4. Clock should always to move forward. 
• Sometimes faster, sometimes slower is OK. ,
• But there should be a minimum and a maximum speed.
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Gradient Clock Synchronization

• Model
Each node has a hardware clock H ( ) with a clock rate [ ]ULth )( ∈– Each node has a hardware clock Hi(·) with a clock rate 
where 0 < L < U and U ≥ 1

– The time of node i at time t is dtthtH
t

ii ∫= )()(

[ ]ULthi ,)( ∈

– Each node has a logical clock Li(·) which increases at the rate of Hi(·)
– Employ a synchronization algorithm A to update the local clock with 

0

fresh clock values from neighboring nodes (clock cannot run 
backwards)

– Nodes inform their neighboring nodes when local clock is updated
Time is 142 Time is 152

Time is 140 Time is 150

???
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Synchronization Algorithms: Amax

• Question: How to update the local clock based on the messages 
from the neighbors?from the neighbors?

• Idea: Minimizing the skew to the fastest neighbor
– Set the clock to the maximum clock value received from any neighbor

(if greater than local clock value)
• Poor gradient algorithm: Fast propagation of the largest clock value 

could lead to a large skew between two neighboring nodescould lead to a large skew between two neighboring nodes

New time is D+x New time is D+x Skew D!

…
Time is D+x Time is D+x Time is D+x

Clock value:
D+x

Old clock value:
D+x-1

Old clock value:
x+1

Old clock value:
x
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Synchronization Algorithms: Amax’

• The problem of Amax is that the clock is always increased to the 
maximum valuemaximum value

• Idea: Allow a constant slack γ between the maximum neighbor clock 
value and the own clock value

• The algorithm Amax’ sets the local clock value Li(t) to

))(max),(max(:)( γ−= ∈ tLtLtL jNjii i

→ Worst-case clock skew between two neighboring nodes is still 
Θ(D) independent of the choice of γ!

• How can we do better?
– Idea: Take the clock of all neighbors into account by choosing theIdea: Take the clock of all neighbors into account by choosing the

average value
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Synchronization Algorithms: Aavg

• Aavg sets the local clock to the average value of all neighbors:

∑
∈

=
iNj

j
i

ii tL
N

tLtL ))(1),(max(:)(

• Surprisingly, this algorithm is even worse!

∈ iNj

• We will now proof that in a very natural execution of this algorithm, 
the clock skew becomes large!

…
Time is x+(n-1)2 Time is x+(n-2)2 Time is x+4n n-1 2 1Time is x+1

Clock value:
x+(n-1)2

Clock value:
x+(n-2)2

Clock value:
x+1

Clock value:
x

Skew 2n-3
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Synchronization Algorithms: Aavg

Consider the following execution: All messages arrive 
after 1 time unit!

…
n n-1 1

Clock rate:
hn = 1

Clock rate:
hn-1 = 1 - εn-1

Clock rate:
h1 = 1 - ε1

All εi for i ∈ {1,…,n-1} are arbitrary values in the range (0,1)
The clock rates can be viewed as relative rates compared to the 
fastest node n!fastest node n!

Theorem: In the given execution, the largest g , g
skew between neighbors is 2n-3 ∈ O(D).

Algorithms for Sensor Networks   – Roger Wattenhofer   3/48



Synchronization Algorithms: Aavg

We first prove two lemmas:

Lemma 1 In this e ec tion it holds that ∀ t ∀ i ∈ {2 n}Lemma 1: In this execution it holds that ∀ t ∀ i ∈ {2,…,n}:
Li(t) –Li-1(t) ≤ 2i – 3, independent of the choices of εi > 0.

Proof:
Define ΔLi(t) := Li(t) – Li(t-1). It holds that ∀ t ∀ i: ΔLi(t) ≤ 1.
L1(t) = L2(t-1) as node 1 has only one neighbor (node 2).
Since ΔL2(t) ≤ 1 for all t, we know that L2(t) – L1(t) ≤ 1 for all t.

Assume now that it holds for ∀ t ∀ j ≤ i: Lj(t) –Lj-1(t) ≤ 2j – 3.
We prove a bound on the skew between node i and i+1:We prove a bound on the skew between node i and i 1:
For t = 0 it is trivially true that Li+1(t) – Li(t) ≤ 2(i+1) – 3.
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Synchronization Algorithms: Aavg

Assume that it holds for all t’ ≤ t. For t+1 we have that

Th fi t i lit h ld b th l i l l k l i l• The first inequality holds because the logical clock value is always 
at least the average value of its neighbors.

• The second inequality follows by induction.y y

• The third and fourth inequalities hold because ΔLi(t) ≤ 1. □
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Synchronization Algorithms: Aavg

Lemma 2: ∀ i ∈ {1,…,n}: limt →∞ ΔLi(t) = 1.

P fProof:
Assume ΔLn-1(t) does not converge to 1.
Case (1):Case (1):
∃ ε > 0 such that ∀ t: ΔLn-1(t) ≤ 1 - ε.
As ΔLn(t) is always 1, if there is such an ε, then
limt →∞ Ln(t) - Ln-1(t) = ∞, a contradiction to Lemma 1.
Case (2):
ΔL (t) 1 l f t th th i b d d b fΔLn-1(t) = 1 only for some t, then there is an unbounded number of 

times t’ where ΔLn-1(t) < 1, which also implies that
limt →∞ Ln(t) - Ln-1(t) = ∞, again contradicting Lemma 1.→∞

Hence, limt →∞ ΔLn-1(t) = 1. Applying the same argument to the other 
nodes, it follows inductively that ∀ i ∈ {1,…,n}: limt →∞ ΔLi(t) = 1.   □
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Synchronization Algorithms: Aavg

Theorem: In the given execution, the largest skew between neighbors
is 2n-3.

Proof:
We show that ∀ i ∈ {2,…,n}: limt →∞ Li(t) – Li-1(t) = 2i – 3.
Since L1(t) = L2(t–1), it holds that limt → L2(t) – L1(t) = ΔL1(t) = 1,Since L1(t)  L2(t 1), it holds that limt →∞ L2(t) L1(t)  ΔL1(t)  1,
according to Lemma 2.
Assume that ∀ j ≤ i: limt →∞ Lj(t) – Lj-1(t) = 2j – 3.
According to Lemma 1 & 2 lim L (t) L (t) = Q for a valueAccording to Lemma 1 & 2, limt →∞ Li+1(t) – Li(t) = Q for a value
Q ≤ 2(i+1) – 3. If (for the sake of contradiction) Q < 2(i+1) – 3, then

and thus limt →∞ ΔLi(t) < 1, a contradiction to Lemma 2. □

Algorithms for Sensor Networks   – Roger Wattenhofer   3/52



Synchronization Algorithms: Abound

• Idea: Minimize the skew to the slowest neighbor
Update the local clock to the maximum value of all neighbors as long as– Update the local clock to the maximum value of all neighbors as long as 
no neighboring node’s clock is more than B behind.

• Gives the slowest node time to catch up
• Problem: Chain of dependency

– Node n-1 waits for node n-2, node n-2 waits for node n-3,  …
→ Chain of length Θ(n) = Θ(D) results in Θ(D) waiting timeChain of length Θ(n)  Θ(D) results in Θ(D) waiting time
→ Θ(D) skew!

Time is x Time is x B Time is x 2B

…
n n-1 n-2

Clock value: Clock value: Clock value:

Time is x Time is x-B Time is x-2B

Clock value:
x

Clock value:
x - B

Clock value:
x - 2B
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Synchronization Algorithms: Aroot

• How long should we wait for a slower node to catch up?
Do it smarter: Set skew is allowed to be)( DOB )( DO– Do it smarter: Set                    → skew is allowed to be
→ waiting time is at most                               as well

)( DOB = )( DO
)()/( DOBDO =

Node with

)( DOWaiting time

fast clock

Node with

Skew )( DO

slow clock

…

Chain of 
length )( DO

)( DO

)(
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Synchronization Algorithms: Aroot

• When a message is received, execute the following steps:

max := Maximum clock value of all neighboring nodes

1+DU

min := Minimum clock value of all neighboring nodes

if (max > own clock and min +                > own clock
l k i ( i )1DUown clock := min(max, min +  )

inform all neighboring nodes about new clock value
end if

1+DU

• This algorithm guarantees that the worst-case clock skew between 
neighbors is bounded by             .)( DO

• In [Fan and Lynch, PODC 2004] it is shown that when logical clocks 
need to obey minimum/maximum speed rules, the skew of two 
neighboring clocks can be p to Ω(log D / log log D)neighboring clocks can be up to Ω(log D / log log D).
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Open Problem

• The obvious open problem is about gradient clock synchronization. 

• Nodes in an arbitrary graph are equipped with an unmodifiable
hardware clock and a modifiable logical clock. The logical clock g g
must make progress roughly at the rate of the hardware clock, i.e., 
the clock rates may differ by a small constant. Messages sent over 
the edges of the graph have delivery times in the range [0, 1].the edges of the graph have delivery times in the range [0, 1]. 
Given a bounded, variable drift on the hardware clocks, design a 
message-passing algorithm that ensures that the logical clock skew 
of adjacent nodes is as small as possible at all timesof adjacent nodes is as small as possible at all times.

• Indeed, there is a huge gap between upper bound of √D and lower 
bound of log D / log log D.
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Data GatheringData Gathering
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Rating

• Area maturity

First steps                                                         Text book

• Practical importance

No apps Mission critical

Th ti l i t

No apps                                                     Mission critical

• Theoretical importance

Not really                                                          Must have
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Distributed Aggregation

Growing interest in distributed
aggregation!

Sensor networks, distributed
databasesdatabases...

Aggregation functions?
Distributive (max, min, sum, count)
Algebraic (plus, minus, average)
Holistic (median, kth smallest/largest value)( , g )

Combinations of these functions enable complex queries!p q
„What is the average of the 10% largest values?“

What cannot be 
computed using
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Aggregation Model

How difficult is it to compute these aggregation primitives?
Simple 

breadth first
Model:

Connected graph G = (V,E) of diameter DG, |V| = n.
Nodes vi and vj can communicate directly if (vi,vj) ∈ E. C il b

breadth-first
construction!

Nodes vi and vj can communicate directly if (vi,vj) ∈ E.
A spanning tree is available (diameter D ≤ 2DG)
Asynchronous model of communication.
All nodes hold a single element

Can easily be
generalized to 

an arbitrary
number of 

l t !All nodes hold a single element.
Messages can contain only a constant number of elements.

elements!

19

8

9
365

28 12345

31415

2718
19
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4968128
101

1980

3
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Distributive & Algebraic Functions

How difficult is it to compute these aggregation primitives?

We are interested in the time complexity! Worst-case for every
legal input and every
execution scenario!

Distributive (sum count ) and
Slowest message arrives 

after 1 time unit!

Distributive (sum, count...) and 
algebraic (plus, minus...) functions 
are easy to compute:

Time complexity: Θ(D)

Use a simple flooding-echo procedure convergecast!

Time complexity: Θ(D)

What about holistic functions (such as k-selection)???What about holistic functions (such as k-selection)???
Is it (really) harder...?
Impossible to perform in-network aggregation?

Algorithms for Sensor Networks   – Roger Wattenhofer   3/61



Distributed Selection

• Database requests („SELECT ...“) consist 
of combinations of functions such as MAX, 

Total Bytes Xmitted vs. Aggregation Function
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AVG, COUNT, kth largest, etc.

• In a (sensor) network, most functions are 
trivially computable in diameter time. 40000
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trivially computable in diameter time.
• Only selection (median, kth largest, 90% 

smallest values, etc.) is considered to be 
impossible (or at least difficult)
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impossible (or at least difficult). 
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Results

• [Locher, Kuhn, W, SPAA 2007] showed that

Selection can be done in time O(D·logD n).
This is asymptotically optimal as there is D = diameter

n = # of nodesy p y p
a matching Ω(D·logD n) lower bound. For 
deterministic algorithms: O(D·log2

D n). 

n = # of nodes
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Holistic Functions

It is widely believed that holistic functions are hard to compute using
in-network aggregation.
Example: TAG is an aggregation service for ad-hoc sensor networks

It is fast for other aggregates, but not for the MEDIAN aggregate:

Total Bytes Xmitted vs. Aggregation Function

90000
100000

„Thus, we have shown that
(...) in network aggregation

d i ti
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can reduce communication
costs by an order of 
magnitude over centralized
approaches and that even

0
10000
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l B
ytapproaches, and that, even

in the worst case (such as 
with MEDIAN), it provides
performance equal to the 0

EXTERNAL MAX AVERAGE COUNT MEDIAN
Aggregation Function

performance equal to the
centralized approach.“

TAG simulation: 2500 nodes in a 50x50 grid
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Is it difficult?

However, there is quite a lot of literature on distributed k-selection:

A straightforward idea: Use the sequential algorithm by Blum et al alsoA straightforward idea: Use the sequential algorithm by Blum et al. also 
in a distributed setting Time Complexity: O(D·n0.9114). Not so 

great...g

A simple idea: Use binary search to find the kth smallest value Time 
Complexity: O(D·log xmax), where xmax is the maximum value.

Assuming that xmax ∈ O(nO(1)), we get O(D·log n)... We do not 
want the 

complexity to

A better idea: Select values randomly check how many values are

complexity to 
depend on the 

values!

A better idea: Select values randomly, check how many values are 
smaller and repeat these two steps!

Time Complexity: O(D·log n) in expectation! Nice! Can we 
d b tt ?
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Randomized Algorithm

Choosing elements uniformly at random is a 
good idea vgood idea...

How is this done?

A i th t ll d k th i
p1 p2

pt

v

Assuming that all nodes know the sizes
n1,...,nt

of the subtrees rooted at their children
v1,...,vt, the request is forwarded to node vi

p2
request

with probability:

pi := ni / (1+ Σk nk). ...n1 n2 nt

With probability 1 / (1+ Σk nk) node v chooses itself.

Key observation: Choosing an element randomly requiresKey observation: Choosing an element randomly requires 
O(D) time! 
Use pipe-lining to select several random elements!
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Randomized Algorithm

Our algorithm also operates in phases The set of candidates
decreases in each phase!decreases in each phase!

A candidate is a node whose element is possibly the solution.

A phase of the randomized algorithm:

1. Count the number of candidates in all subtrees
E h t

2. Pick O(D) elements x1,...,xd uniformly at random

3. For all those elements, count the number of 

Each step can 
be performed 
in O(D) time!

smaller elements!

-∞ ∞x1 x2 xd
n1 elem. n2 elem. nd+1 elem.

a1a2 an-1an…… …
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Randomized Algorithm

Using these counts, the number of candidates can
be reduced by a factor of D in a constant number ofbe reduced by a factor of D in a constant number of 
phases with high probability.

We get the following result:

With probability at 
least 1-1/nc for a 

constant c≥1.
g g

Theorem: The time complexity of the
randomized algorithm is O(D log n) w h prandomized algorithm is O(D·logD n) w.h.p.

We further proved a time lower bound of Ω(D·logD n).
This simple randomized algorithm is asymptotically optimal!

More on 
that later...

This simple randomized algorithm is asymptotically optimal!

The only remaining question: What can we do deterministically???
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Deterministic Algorithm

Why is it difficult to find a good deterministic algorithm???
Hard to find a good selection of elements that provablyHard to find a good selection of elements that provably

reduces the set of candidates!

Simple idea: Always propagate the median of all received values! p y p p g

Problem: In one phase, only the hth

smallest element is found if h is the 3
height of the tree...

Time complexity: O(n / h)
3

2 100

One could do a lot better!!!

2 100

1 100 99 102One could do a lot better!!!
(Not shown in this course.) 1 100 99 102
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Lower Bound

The proof of the lower bound of Ω(D·logD n) consists of two parts:

Part I. Find a lower bound for the case of two nodes u and v
with N elements each.

Let u0 < u1 < ... < uN-1 and v0 < v1 < ... < vN-1.
How are the 2N elements distributed on u and v? What is the 

d

u v
u v

How are the 2N elements distributed on u and v? order 
between all ui

and vj?

u0
u1.

v0
v1.

uN-1

..

vN-1

..
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Lower Bound

Assume N = 2b. We use b independent Bernoulli variablesp
X0,...,Xb-1 to distribute the elements!
If Xb-1 = 0 N/2 smallest elements go to u and the N/2 
largest elements go to v.a gest e e e ts go to v
If Xb-1 = 1 it‘s the other way round.

The remaining N elements are recursively distributed using

Ordered list of 

the other variables X0,...,Xb-2!

a a a a
all 2N elements!

a1a2 ... a2N-1a2N...

u v
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Lower Bound

Crucial observation: For all 2b possibilities
for X0 Xb 1 the median is a different

Xb-1

for X0,...,Xb-1, the median is a different 
element.

Determining all Xi is equivalent to finding

Xb-2

the median!

We showed that at least Ω(log N) rounds are required if B elementsWe showed that at least Ω(log2B N) rounds are required if B elements
can be sent in a single round in this model!

Part II. Find a lower bound for the original model.

u0 v0D-2 dummy nodesLook at the following
u1

uN 1

v1

vN 1

Look at the following 
graph G of diameter D:
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Lower Bound

u0
u

v0
v

D-2 dummy nodes

u v u1

uN-1

v1

vN-1

u v

One can show that a time lower bound for the alternative model

alternative model original model

implies a time lower bound for the original model!

Theorem: Ω(D·log min{k N-k}) rounds are needed toTheorem: Ω(D logD min{k,N-k}) rounds are needed to 
find the kth smallest element.

Ω(D·logD n) lower bound
to find the median!
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Median Summary

• Simple randomized algorithm with time complexity
O(D·logD n) w.h.p.

• Easy to understand, easy to implement...

• Even asymptotically optimal! Our lower bound
h th t l ith b i ifi tlshows that no algorithm can be significantly

faster!

• Deterministic algorithm with time complexityDeterministic algorithm with time complexity
O(D·logD

2 n).

• If ∃c ≤ 1: D = nc k-selection can be solved

Recall the 
50x50 grid 

used to test out 
efficiently in Θ(D) time even deterministically!

used to test out
TAG!
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Data Gathering 2Data Gathering 2
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TinyDB and TinySQL

• Use paradigms
familiar fromfamiliar from 
relational
databases to
i lif thsimplify the

“programming”
interface for 
the application
developer.

• TinyDB then supports
in-network aggregation to
speed up communicationspeed up communication.
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Data Aggregation: Universal Spanning Tree

• SELECT MAX(temp) FROM sensors WHERE node_id < “H”.

Max = 23
Average, Median, Count Distinct, ...?!

X
23

22
X

A
C

GZ17

23 22

1822

19

B

FC
Y

E

23

15

20

D
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Selective data aggregation

• In sensor network applications
Queries can be frequent– Queries can be frequent 

– Sensor groups are time-varying
– Events happen in a dynamic fashion

• Option 1: Construct aggregation trees for each group
Setting p a good tree inc rs comm nication o erhead– Setting up a good tree incurs communication overhead

• Option 2: Construct a single spanning treep g p g
– When given a sensor group, simply use the induced tree
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Group-Independent (a.k.a. Universal) Spanning Tree

• Given
A set of nodes V in the Euclidean plane (or forming a metric space)– A set of nodes V in the Euclidean plane (or forming a metric space)

– A root node r ∈ V 
– Define stretch of a universal spanning tree T to be 

• We’re looking for a spanning tree T on V with minimum stretch.g p g

Algorithms for Sensor Networks   – Roger Wattenhofer   3/79



Example

• The red tree is the universal spanning tree. All links cost 1.

root/sink
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Given the lime subset…

root/sink
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Induced Subtree

• The cost of the induced subtree for this set S is 11. The optimal was 8.

root/sink
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Main results

• [Jia, Lin, Noubir, Rajaraman and Sundaram, STOC 2005]

• Theorem 1: (Upper bound)
For the minimum UST problem on Euclidean plane anFor the minimum UST problem on Euclidean plane, an 
approximation of O(log n) can be achieved within polynomial time.

• Theorem 2: (Lower bound)
No polynomial time algorithm can approximate the minimum UST 
problem with stretch better than Ω(log n / log log n)problem with stretch better than Ω(log n / log log n).

• Proofs: Not in this lecture.
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Algorithm sketch

• For the simplest Euclidean case:
R i l di id th l d l t d d• Recursively divide the plane and select random node.

• Results: The induced treeResults: The induced tree 
has logarithmic overhead.
The aggregation delay is 
also constantalso constant. 
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Simulation with random node distribution & random events
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Geo RoutingGeo-Routing
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Geo-Routing

??
Ali

???
Alice

B bBob
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Greedy Geo-Routing?

AliAlice

B bBob
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Greedy Geo-Routing?

B b

Carol

Bob

?
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What is Geographic Routing?

• A.k.a. geometric, location-based, position-based, etc.

• Each node knows its own position and position of neighborsEach node knows its own position and position of neighbors
• Source knows the position of the destination
• No routing tables stored in nodes!

• Geographic routing makes sense
O iti GPS/G lil l l iti i l ith– Own position: GPS/Galileo, local positioning algorithms

– Destination: Geocasting, location services, source routing++
– Learn about ad-hoc routing in generalLearn about ad hoc routing in general
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Geo-Routing Results

• Can be done (“face routing”)
[Kranakis Singh Urrutia CCCG 1999]– [Kranakis, Singh, Urrutia, CCCG 1999]

– [Bose, Morin, Stojmenovic, Urrutia, DIALM 1999]
– later: others… “GPSR”

• At what cost?
Geo routing cost (hops) is quadratic to optimal route– Geo-routing cost (hops) is quadratic to optimal route
[Kuhn, W, Zollinger, DIALM 2002]

• Can it be done in 3D?!?
– Does a technique like face routing exist for 3D?
– No! There is no deterministic 3D geo-routing algog g g

[Durocher, Kirkpatrick, Naranyanan, ICDCN 2008]
– … unless you use randomization

[Flury, W, Infocom 2008]
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PositioningPositioning
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Rating

• Area maturity

First steps                                                         Text book

• Practical importance

No apps Mission critical

Th ti l i t

No apps                                                     Mission critical

• Theoretical importance

Not really                                                          Must have
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Overview

• Motivation
GPS t l• GPS et al.

• Measurements
• AnchorsAnchors
• Virtual Coordinates
• Heuristics
• Boundary Recognition
• Practice
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Positioning

• Why positioning?
– Sensor nodes without position information is often meaninglessSensor nodes without position information is often meaningless
– Geo-routing

• Why not GPS (or Galileo)? A

Ame

• Why not GPS (or Galileo)?
– Heavy, large, and expensive
– Battery drain

A

– Not indoors
– Accuracy?

• Idea: equip small fraction with GPS (anchors)
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GPS

• A lot of recent progress, so attaching a GPS receiver to each sensor 
node becomes an alternativenode becomes an alternative.

• Example, u-bloxp
– footprint size: down to 4x4mm
– Power supply: 1.8 - 4.8V 

power consumption: 50 mW– power consumption: 50 mW
– power on: < 1 second
– update rate: 4Hz 
– support for Galileo!

• So GPS is definitely becoming more attractive; however some of• So GPS is definitely becoming more attractive; however, some of 
the problems of GPS (indoors, accuracy, etc.) remain.
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GPS Extensions

• GPS chips can be extended with other sensors such as gyroscope, 
direction indications or tachometer pulses (in cars) With these adddirection indications, or tachometer pulses (in cars). With these add-
ons, mobile devices get continued coverage indoors.

[u
-b

lo
x]

• Affordable technology has a distance error of less than 5% per 
distance travelled, and a direction error of less than 3 degrees per 
minuteminute.
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Measurements

Distance estimation
R i d Si l St th I di t (RSSI)• Received Signal Strength Indicator (RSSI)
– The further away, the weaker the received signal.
– Mainly used for RF signals.y g

• Time of Arrival (ToA) or Time Difference of Arrival (TDoA)
– Signal propagation time translates to distance.

RF aco stic infrared and ltraso nd– RF, acoustic, infrared and ultrasound.

Angle estimationg
• Angle of Arrival (AoA)

– Determining the direction of propagation of a radio-frequency wave 
incident on an antenna arrayincident on an antenna array.

• Directional Antenna
• Special hardware, e.g., laser transmitter and receivers.
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Example: Measuring distance with two radios

• Particularly interesting if the signal speed differs substantially, e.g. 
sound propagation is at about 331 m/s (depending on temperaturesound propagation is at about 331 m/s (depending on temperature, 
humidity, etc.), which is of course much less than the speed of light.

radio
s t

radio

(ultra)sound

• If you have free sight you may achieve

( )

If you have free sight you may achieve 
about a 1cm accuracy. But there are problems
– (Ultra)sound does not travel far

F d lt d li f i ht– For good results you need line of sight
– You have to deal with reflections
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Inferometry

• Interferometry is the technique of 
superimposing (interfering) two orsuperimposing (interfering) two or 
more waves, to detect differences 
between them

• Signals transmitted with a few 
hundred Hz difference at sendershundred Hz difference at senders 
A and B will give different phase 
offsets at C and D. With that one 
can compute the total distance ofcan compute the total distance of 
the four points A, B, C, D.

• However, one needs to solve a 
linear equation system, and one 
needs very accurate time
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Positioning (a.k.a. Localization)

• Task: Given distance or angle measurements or mere connectivity 
information find the locations of the sensorsinformation, find the locations of the sensors.

• Anchor-based
– Some nodes know their locations, either by a GPS or as pre-specified.

• Anchor-free
R l ti l ti l S ti ll d i t l di t– Relative location only. Sometimes called virtual coordinates.

– Theoretically cleaner model (less parameters, such as anchor density)

• Range-based
– Use range information (distance or angle estimation).

R f• Range-free
– No distance estimation, use connectivity information such as hop count.
– It was shown that bad measurements don’t help a lot anyway.
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Trilateration and Triangulation

• Use geometry, measure the distances/angles to three anchors. 

• Trilateration: use distances
– Global Positioning System (GPS)g y ( )

• Triangulation: use angles 
– Some cell phone systems

• How to deal with inaccurate• How to deal with inaccurate 
measurements?
– Least squares type of approach
– What about strictly more than 

3 (inaccurate) measurements?
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Ambiguity Problems

• Same distances, different realization.

ie
 G

ao
]

[J
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Continuous deformation, flips, etc.

[Ji G ][Jie Gao]

• Rigidity theory: Given a set of rigid bars connected by hinges,Rigidity theory: Given a set of rigid bars connected by hinges, 
rigidity theory studies whether you can move them continuously.
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Simple hop-based algorithms

• Algorithm
– Get graph distance h to anchor(s)

– Intersect circles around anchors 
di di t t h– radius = distance to anchor

– Choose point such that maximum error is minimal
– Find enclosing circle (ball) of minimal radiusFind enclosing circle (ball) of minimal radius

– Center is calculated location

• In higher dimensions: 1 < d ≤ h
– Rule of thumb: Sparse graph

bad performancebad performance
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How about no anchors at all...?

• In absence of anchors...
nodes are clueless about real coordinates...nodes are clueless about real coordinates.

• For many applications, real coordinates are not necessary
Virtual coordinates are sufficient
Geometric Routing requires only virtual coordinates

– Require no routing tables
– Resource-frugal and scalable– Resource-frugal and scalable

s

d
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Virtual Coordinates

• Idea: 
Cl b d h i il di tClose-by nodes have similar coordinates
Distant nodes have very different coordinates

Similar coordinates imply physical proximity!

• Applications
– Geometric Routing

Locality-sensitive queries– Locality-sensitive queries
– Obtaining meta information on the network
– Anycast services („Which of the service nodes is closest to me?“)
– Outside the sensor network domain: e.g., Internet mapping
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Model

• Unit Disk Graph (UDG) to model 
i l lti h t k

v
wireless multi-hop network
– Two nodes can communicate iff 

Euclidean distance is at most 1

1

u

• Sensor nodes may not be capable of
Sensing directions to neighbors– Sensing directions to neighbors

– Measuring distances to neighbors

• Goal: Derive topologically correct coordinate information from 
connectivity information only. 
– Even the simplest nodes can derive connectivity information– Even the simplest nodes can derive connectivity information
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Context

Distance/Angle ConnectivityDistance/Angle

information

Connectivity

information only

With Anchors
Positioning

(Solution quality depends on anchor density)

No Anchors

( q y p y)

Distance/Angle based Connectivity based
No Anchors

Virtual Coordinates Virtual Coordinates

next
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Virtual Coordinates            UDG Embedding 

• Given the connectivity information for each node...

v1 v2 v4 v5v3
...and knowing the underlying 

h i UDG1

v2

v5

2

v1

v3

4

v3

v5

5

v1

v3

3

v2

v4

graph is a UDG...

v5 v3 v5 v3

v4

v4

v5

v1
...find a UDG embedding in the plane 

such that all connectivity requirements are
f lfill d! ( Fi d li ti f UDG)

v2 v5

fulfilled! ( Find a realization of a UDG)

This problem is NP-hard!
v4

v3

This problem is NP hard!
(Simple reduction to UDG-recognition

problem, which is NP-hard)
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UDG Approximation – Quality of Embedding

• Finding an exact realization of a UDG is NP-hard.
Find an embedding r(G) which approximates a realization.

• Particularly,
Map adjacent vertices (edges) to points which are close together.
Map non-adjacent vertices („non-edges“) to far apart points. 

• Define quality of embedding q(r(G)) as:Define quality of embedding q(r(G)) as:

Ratio between longest edge to shortest non-edge in the 
b ddiembedding.

Let ρ(u v) be theLet ρ(u,v) be the 
distance between 
points u and v in the 
embedding. 
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UDG Approximation

• For each UDG G, there exists
an embedding r(G), such 
that q(r(G)) ≤ 1that, q(r(G)) ≤ 1. 
(a realization of G)

• Finding such an embedding is NP-hard
• An algorithm ALG achieves approximation ratio α if for all unit disk 

graphs G, q(rALG(G))≤ α.

• Example: v• Example:

v1

v2

v2

v1

v4

v3

v5

v1

v3

v2

v5v1

v3

2

v5

1

v3

3

v5

1

v3

v4

2

v4

v5

v2 v4
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Some Results

• There are a few virtual coordinates algorithms
Almost all of them evaluated only by simulation on random graphs

Th i l ith hi h hi i ti

y y g p
• In fact there are very few provable approximation algorithms

There is an algorithm which achieves an approximation
ratio of O(log2.5 n), n being the number of nodes in G.
[Pemmaraju and Pirwani, 2007] 

Plus there are lower bounds on the approximability. 

There is no algorithm with approximation
ratio better than √3/2 – ² unless P = NP.
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Approximation Algorithm: Overview

• Four major steps

1 Compute metric on MIS of input

UDG Graph G with MIS M.

1. Compute metric on MIS of input
graph Spreading constraints
(Key conceptual difference to 

i h !) Approximate pairwise distancesprevious approaches!) Approximate pairwise distances 
between nodes such that, MIS 
nodes are neatly spread out.

2. Volume-respecting, high 
dimensional embedding

Volume respecting embedding of 

3. Random projection to 2D

nodes in Rn with small distortion.

2

4. Final embedding

Nodes spread out fairly well in R2.

2
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Lower Bound: Quasi Unit Disk Graph

• Definition Quasi Unit Disk Graph: 

Let V∈ R2, and d ∈ [0,1]. The symmetric
Euclidean graph G=(V E) such that forEuclidean graph G=(V,E), such that for
any pair u,v ∈ V

dist(u,v) ≤ d ⇒ {u,v} ∈ E
d

1
( ) { }

dist(u,v) > 1  ⇒ {u,v}    E

is called d-quasi unit disk graph.

d

is called d quasi unit disk graph. 

Note that between d and 1, the existence of an edge is unspecified.  , g p
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Reduction

• We want to show that finding an embedding with
, where ε goes to 0 for n ∞ is NP-hard.

• We prove an equivalent statement:

Given a unit disk graph G=(V,E), it is NP-
hard to find a realization of G as a d-quasi
unit disk graph with , where εg p ,
tends to 0 for n ∞.

Even when allowing non-edges to be smaller than 1, embedding a 
unit disk graph remains NP-hard! 
It follows that finding an approximation ratio better thang pp
is also NP-hard.  
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Reduction

• Reduction from 3-SAT (each variable appears in at most 3 clauses)
Gi i t C f thi 3 SAT i l i l ti• Given a instance C of this 3-SAT, we give a polynomial time 
construction of GC=(VC, EC) such that the following holds:

– C is satisfiable ⇒ GC is realizable as a unit disk graph
– C is not satisfiable ⇒ GC is not realizable as a d-quasi unit disk 

graph withgraph with 

• Unless P=NP, there is no approximation algorithm with 
approximation ratio better than                . 
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Proof idea

• Construct a grid drawing of the SAT instance. 
• Grid drawing is orientable iff SAT instance is satisfiable.

G id t ( l lit l i i )• Grid components (clauses, literals, wires, crossings,...) are 
composed of nodes Graph GC. 

• GC is realizable as a d-quasi unit disk graph withC q g p
iff grid drawing is orientable.  
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Heuristics: Spring embedder

• Nodes are “masses”, edges are “springs”. 
L th f th i l th di t t• Length of the spring equals the distance measurement.

• Springs put forces to the nodes, nodes move, until stabilization.
• Force: Fij =dij – rij, along the direction pipj.Force: Fij dij rij, along the direction pipj.
• Total force on ni: Fi=Σ Fij.
• Move the node ni by a small distance (proportional to Fi).

j
pj

j

p

dij

Fij

i
pi
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Spring Embedder Discussion

• Problems: 
may deadlock in local minimum– may deadlock in local minimum

– may never converge/stabilize (e.g. just two nodes)
• Solution: Need to start from a reasonably good initial estimation.y g

ao
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Heuristics: Priyantha et al.
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Continued
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Phase 2: Spring Embedder
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Heuristics: Gotsman et al.
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Continued
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Heuristics: Shang et al.
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Heuristics: Bruck et al.
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Boundary recognition

• Related problem, given a connectivity 
graph what is the boundary?graph, what is the boundary?

• So far heuristics only, one heuristic y
uses the idea of a independent nodes; 
specifically, an interior (non-boundary) 
node sees enough (e.g. 5) independentnode sees enough (e.g. 5) independent 
neighbors which in turn have a ring 
around them; these are called “flowers”. 
Flowers can be grown and connectedFlowers can be grown and connected 
to compute the boundary. 

• However, this is only a heuristic, and 
does not always work…
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Boundary recognition
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Practical lessons

Theory Practice

RSSI in sensor networks: good but not for “reasonable” localizationRSSI in sensor networks: good, but not for reasonable  localization

For exact indoor localization
Buy special hardware (e g UWB)• Buy special hardware (e.g., UWB)

• Place huge amount of short range anchors for single-hop localization
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Open problem

• One tough open problem of this chapter obviously is the UDG
embedding problem: Given the adjacency matrix of a unit diskembedding problem: Given the adjacency matrix of a unit disk 
graph, find positions for all nodes in the Euclidean plane such that 
the ratio between the maximum distance between any two adjacent 

d d th i i di t b t t dj tnodes and the minimum distance between any two non-adjacent 
nodes is as small as possible.

• There is a large gap between the best known lower bound, which is 
a constant, and the polylogarithmic upper bound. It is a challenging 
task to either come up with a better approximation algorithm ortask to either come up with a better approximation algorithm or 
prove a stronger (non-constant) lower bound. Once we understand 
this better, we can try networks with anchors, or with (approximate) 
distance/angle informationdistance/angle information.

• Generally, beyond GPS this area is in its infancy.
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Generally, beyond GPS this area is in its infancy.



moremore…
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Global Optimization with Local Information?

• Towards a theory for understanding large-scale networks/systems

• Nodes in network/system only have local knowledge
– nodes must make decision based on their 

W ‘local information only

We pro ed the first pper and lo er bo nds for

We‘ve seen
• We proved the first upper and lower bounds for 

traditional network optimization problems
– now we have a much better understanding what is (in)feasible

this already!
– basis for understanding self-organization & dynamic systems

• [Linial SIAM JoC 1992]
δ2 δ1 δ0 δ3 δ2 δ0

[Linial, SIAM JoC 1992]
• [Kuhn, Moscibroda, W, PODC 2004]
• [Gfeller, Vicari, PODC 2007] δ0δ2δ3δ3 δ1 δ0δ0δ1δ2

δ2 δ0δ3 δ1 δ0 δ3 δ0δ2δ3δ2 δ1 δ0
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Data Gathering in Wireless Sensor Networks

• Data gathering & aggregation
– Classic application of sensor networks

S d i di ll i t– Sensor nodes periodically sense environment
– Relevant information needs to be transmitted to sink

W ‘• Functional Capacity of Sensor Networks
– Sink peridically wants to compute a function fn of sensor data

At h t t thi f ti b t d?

We‘ve seen
– At what rate can this function be computed?this already!

,fn
(2)fn

(1) ,fn
(3)

sink
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Summary

• Lower Bounds and Impossibility Results
– Clock SynchronizationClock Synchronization
– Distributed Selection / Median
– Geo-Routing

P iti i– Positioning
– Local Algorithms
– Data Gathering / Capacity

1     :      1
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Theory for sensor networks, what is it good for?!

How many lines of pseudo code // 
Can you implement on a sensor node?

The best algorithm is often complex //
And will not do what one expects. [Edwin Starr]

[Ali G]

Theory models made lots of progress //

[ ]

Reality, however, they still don’t address.

My advice: invest your research £££s //
in ... impossibility results and lower bounds!
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Conclusions & Discussion

Algorithms for Sensor Networks   – Roger Wattenhofer   3/136



Some topics

Application 1 Applications
7 Positioning

Application

T t

1 Applications
8 Time Synchronization

12 TTransport

3 Geo Routing5 Mobility

12 Transport

Network
3 Geo-Routing5 Mobility

6 Data Gathering11 Routing

Link 4 Topology Control 7 Clustering10 MAC

Physical 2 Basics 2 Models 13 Capacity
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General Trend in Information Technology

Large-scaleCentralized Networked Large-scale
Distributed Systems

Centralized
Systems

Networked
Systems

New Applications and
System Paradigms

Internet
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My Own Private View on Networking Research

Class Analysis Communi
cation 
model

Node 
distribution

Other 
drawbacks

Popu
larity

model
Imple-
mentation

Testbed Reality Reality(?) “Too specific” 5%

Heuristic Simulation UDG to 
SINR

Random, 
and more

Many…! (no 
benchmarks)

80%

Scaling 
law

Theorem/
proof

SINR, 
and more

Random Existential 
(no protocols)

10%

Algorithm Theorem/
proof

UDG, and 
more

Any (worst-
case)

Worst-case 
unusual

5%
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Conclusions

• We have seen many stories about sensor networks. These stories 
show that there still is quite a bit of research ahead of usshow that there still is quite a bit of research ahead of us.

Practice is Theory is useless trivial…Theory is useless…

TheoryPractice

• The stories also show that theory and practice are not really 
connecting well in this area. If even a group doing both cannot 
combine the theory and practice one shall not be
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combine the theory and practice, one shall not be 
surprised that the two camps largely ignore each other.



Thank You!Thank You!
Questions & Comments?
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