
Chapter 10

Peer-to-Peer Computing

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of [sorting and] searching!”

– Donald E. Knuth, The Art of Computer Programming

10.1 Introduction

Unfortunately, the term peer-to-peer (P2P) is ambiguous, used in a variety of
different contexts, such as:

• In popular media coverage, P2P is often synonymous to software or proto-
cols that allow users to “share” files, often of dubious origin. In the early
days, P2P users mostly shared music, pictures, and software; nowadays
books, movies or tv shows have caught on. P2P file sharing is immensely
popular, currently at least half of the total Internet traffic is due to P2P!

• In academia, the term P2P is used mostly in two ways. A narrow view
essentially defines P2P as the “theory behind file sharing protocols”. In
other words, how do Internet hosts need to be organized in order to deliver
a search engine to find (file sharing) content efficiently? A popular term
is “distributed hash table” (DHT), a distributed data structure that im-
plements such a content search engine. A DHT should support at least a
search (for a key) and an insert (key, object) operation. A DHT has many
applications beyond file sharing, e.g., the Internet domain name system
(DNS).

• A broader view generalizes P2P beyond file sharing: Indeed, there is a
growing number of applications operating outside the juridical gray area,
e.g., P2P Internet telephony à la Skype, P2P mass player games on video
consoles connected to the Internet, or P2P live video streaming as in
Zattoo. So, again, what is P2P?! Still not an easy question... Trying
to account for the new applications beyond file sharing, one might define
P2P as a large-scale distributed system that operates without a central
server bottleneck. However, with this definition almost everything we

83

84 CHAPTER 10. PEER-TO-PEER COMPUTING

learn in this course is P2P! Moreover, according to this definition early-
day file sharing applications such as Napster (1999) that essentially made
the term P2P popular would not be P2P! On the other hand, the plain
old telephone system or the world wide web do fit the P2P definition...

• From a different viewpoint, the term P2P may also be synonymous for
privacy protection, as various P2P systems such as Freenet allow publish-
ers of information to remain anonymous and uncensored. (Studies show
that these freedom-of-speech P2P networks do not feature a lot of content
against oppressive governments; indeed the majority of text documents
seem to be about illicit drugs, not to speak about the type of content in
audio or video files.)

In other words, we cannot hope for a single well-fitting definition of P2P, as
some of them even contradict. In the following we mostly employ the academic
viewpoints (second and third definition above). In this context, it is generally
believed that P2P will have an influence on the future of the Internet. The P2P
paradigm promises to give better scalability, availability, reliability, privacy,
and security, just about everything researchers expect from a future Internet
architecture.

One might naively assume that for instance scalability is not an issue in
today’s Internet, as even most popular web pages are generally highly available.
However, this is not really because of our well-designed Internet architecture,
but rather due to the help of so-called overlay networks: The Google website for
instance manages to respond so reliably and quickly because Google maintains a
large distributed infrastructure, essentially a P2P system. Similarly companies
like Akamai sell “P2P functionality” to their customers to make today’s user
experience possible in the first place. Quite possibly today’s P2P applications
are just testbeds for tomorrow’s Internet architecture.

10.2 Architecture Variants

Several P2P architectures are known:

• Client/Server goes P2P: Even though Napster is known to the be first P2P
system (1999), by today’s standards its architecture would not deserve the
label P2P anymore. Napster clients accessed a central server that managed
all the information of the shared files, i.e., which file was to be found on
which client. Only the downloading process itself was between clients
(“peers”) directly, hence peer-to-peer. In the early days of Napster the
load of the server was relatively small, so the simple Napster architecture
made a lot of sense. Later on, it became clear that the server would
eventually be a bottleneck, and more so an attractive target for an attack.
Indeed, eventually a judge ruled the server to be shut down, in other
words, he conducted a juridical denial of service attack.

• Unstructured P2P: The Gnutella protocol is the anti-thesis of Napster,
as it is a fully decentralized system, with no single entity having a global
picture. Instead each peer would connect to a random sample of other
peers, constantly changing the neighbors of this virtual overlay network
by exchanging neighbors with neighbors of neighbors. (In such a system

10.2. ARCHITECTURE VARIANTS 85

it is part of the challenge to find a decentralized way to even discover a
first neighbor; this is known as the bootstrap problem. To solve it, usu-
ally some random peers of a list of well-known peers are contacted first.)
When searching for a file, the request was being flooded in the network
(Algorithm 11 in Chapter 3). Indeed, since users often turn off their client
once they downloaded their content there usually is a lot of churn (peers
joining and leaving at high rates) in a P2P system, so selecting the right
“random” neighbors is an interesting research problem by itself. However,
unstructured P2P architectures such as Gnutella have a major disadvan-
tage, namely that each search will cost m messages, m being the number
of virtual edges in the architecture. In other words, such an unstructured
P2P architecture will not scale.

• Hybrid P2P: The synthesis of client/server architectures such as Napster
and unstructured architectures such as Gnutella are hybrid architectures.
Some powerful peers are promoted to so-called superpeers (or, similarly,
trackers). The set of superpeers may change over time, and taking down
a fraction of superpeers will not harm the system. Search requests are
handled on the superpeer level, resulting in much less messages than in
flat/homogeneous unstructured systems. Essentially the superpeers to-
gether provide a more fault-tolerant version of the Napster server, all
regular peers connect to a superpeer. As of today, almost all popular
P2P systems have such a hybrid architecture, carefully trading off relia-
bility and efficiency, but essentially not using any fancy algorithms and
techniques.

• Structured P2P: Inspired by the early success of Napster, the academic
world started to look into the question of efficient file sharing. Indeed,
even earlier, in 1997, Plaxton, Rajaraman, and Richa proposed a hy-
percubic architecture for P2P systems. This was a blueprint for many
so-called structured P2P architecture proposals, such as Chord, CAN,
Pastry, Tapestry, Viceroy, Kademlia, Koorde, SkipGraph, SkipNet, etc.
In practice structured P2P architectures are not yet popular, apart from
the Kad (from Kademlia) architecture which comes for free with the eMule
client. Indeed, also the Plaxton et al. paper was standing on the shoulders
of giants. Some of its eminent precursors are:

– Research on linear and consistent hashing, e.g., the paper “Consistent
hashing and random trees: Distributed caching protocols for relieving
hot spots on the World Wide Web” by Karger et al. (co-authored
also by the late Daniel Lewin from Akamai), 1997.

– Research on locating shared objects, e.g., the papers “Sparse Parti-
tions” (see also Chapter 6) or “Concurrent Online Tracking of Mobile
Users” by Awerbuch and Peleg, 1990 and 1991.

– Work on so-called compact routing: The idea is to construct routing
tables such that there is a trade-off between memory (size of routing
tables) and stretch (quality of routes), e.g., “A trade-off between
space and efficiency for routing tables” by Peleg and Upfal, 1988.

– . . . and even earlier: hypercubic networks, see next section!

86 CHAPTER 10. PEER-TO-PEER COMPUTING

10.3 Hypercubic Networks

(Thanks to Christian Scheideler, TUM, for the pictures in this section.)

In this section we will introduce some popular families of network topologies.
These topologies are used in countless application domains, e.g., in classic paral-
lel computers or telecommunication networks, or more recently (as said above)
in the emerging area of P2P computing. Similarly to Chapter 9 we employ the
All-to-All communication model of Chapter 7, i.e., each node can set up direct
communication links to arbitrary other nodes. Such a virtual network is called
an overlay topology, or in this context, P2P architecture. In this section we
present a few overlay topologies of general interest.

The most basic network topologies used in practice are trees, rings, grids or
tori. Many other suggested networks are simply combinations or derivatives of
these. The advantage of trees is that the routing is very easy: for every source-
destination pair there is only one possible simple path. However, since the root
of a tree is usually a severe bottleneck, so-called fat trees have been used. These
trees have the property that every edge connecting a node v to its parent u has
a capacity that is equal to all leaves of the subtree routed at v. See Figure 10.1
for an example.

2

1

4

Figure 10.1: The structure of a fat tree.

Remark:

• Fat trees belong to a family of networks that require edges of non-uniform
capacity to be efficient. Easier to build are networks with edges of uniform
capacity. This is usually the case for grids and tori. Unless explicitly
mentioned, we will treat all edges in the following to be of capacity 1. In
the following, [x] means the set {0, 1, . . . , x− 1}.

Definition 10.1 (Torus, Mesh). Let m, d ∈ N . The (m, d)-mesh M(m, d) is a
graph with node set V = [m]d and edge set

E =

{
{(ad−1 . . . a0), (bd−1 . . . b0)} | ai, bi ∈ [m],

d−1∑

i=0

|ai − bi| = 1

}
.

10.3. HYPERCUBIC NETWORKS 87

The (m, d)-torus T (m, d) is a graph that consists of an (m, d)-mesh and
additionally wrap-around edges from (ad−1 . . . ai+1(m − 1) ai−1 . . . a0) to
(ad−1 . . . ai+1 0 ai−1 . . . a0) for all i ∈ [d] and all aj ∈ [m] with j 6= i. M(m, 1)
is also called a line, T (m, 1) a cycle, and M(2, d) = T (2, d) a d-dimensional
hypercube. Figure 10.2 presents a linear array, a torus, and a hypercube.

011010

110

100

000 001

101

111

M(2,3)

0 1 2

M(,1)m

−1m

01

02

00 10

11

12

03

20

21

22

13

30

31

32

23 33

(4,2)T

Figure 10.2: The structure of M(m, 1), T (4, 2), and M(2, 3).

Remarks:

• Routing on mesh, torus, and hypercube is trivial. On a d-dimensional
hypercube, to get from a source bitstring s to a target bitstring d one only
needs to fix each “wrong” bit, one at a time; in other words, if the source
and the target differ by k bits, there are k! routes with k hops.

• The hypercube can directly be used for a structured P2P architecture. It
is trivial to construct a distributed hash table (DHT): We have n nodes,
n for simplicity being a power of 2, i.e., n = 2d. As in the hypercube, each
node gets a unique d-bit ID, and each node connects to d other nodes,
i.e., the nodes that have IDs differing in exactly one bit. Now we use a
globally known hash function f(), mapping file names to long bit strings;
SHA-1 is popular in practice, providing 160 bits. Let fd() be the first d
bits (prefix) of the bitstring produced by f(). If a node is searching for
file name X, it routes a request message f(X) to node fd(X). Clearly,
node fd(X) can only answer this request if all files with hash prefix fd(X)
have been previously registered at node fd(X).

• There are a few issues which need to be addressed before our DHT works,
in particular churn (nodes joining and leaving without notice). To deal
with churn the system needs some level of replication, i.e., a number of
nodes which are responsible for each prefix such that failure of some nodes
will not compromise the system. We give some more details in Section
10.4. In addition there are other issues (e.g., security, efficiency) which
can be addressed to improve the system. Delay efficiency for instance is
already considered in the seminal paper by Plaxton et al. These issues are
beyond the scope of this lecture.

• The hypercube has many derivatives, the so-called hypercubic networks.
Among these are the butterfly, cube-connected-cycles, shuffle-exchange,
and de Bruijn graph. We start with the butterfly, which is basically a
“rolled out” hypercube (hence directly providing replication!).

88 CHAPTER 10. PEER-TO-PEER COMPUTING

Definition 10.2 (Butterfly). Let d ∈ N . The d-dimensional butterfly BF (d)
is a graph with node set V = [d + 1]× [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(i, α), (i + 1, α)} | i ∈ [d], α ∈ [2]d}

and

E2 = {{(i, α), (i + 1, β)} | i ∈ [d], α, β ∈ [2]d, α and β differ
only at the ith position} .

A node set {(i, α) | α ∈ [2]d} is said to form level i of the butterfly. The
d-dimensional wrap-around butterfly W-BF(d) is defined by taking the BF (d)
and identifying level d with level 0.

Remarks:

• Figure 10.3 shows the 3-dimensional butterfly BF (3). The BF (d) has
(d+1)2d nodes, 2d · 2d edges and degree 4. It is not difficult to check that
combining the node sets {(i, α) | i ∈ [d]} into a single node results in the
hypercube.

• Butterflies have the advantage of a constant node degree over hypercubes,
whereas hypercubes feature more fault-tolerant routing.

• The structure of a butterfly might remind you of sorting networks from
Chapter 9. Although butterflies are used in the P2P context (e.g.
Viceroy), they have been used decades earlier for communication switches.
The well-known Benes network is nothing but two back-to-back butter-
flies. And indeed, butterflies (and other hypercubic networks) are even
older than that; students familiar with fast fourier transform (FFT) will
recognize the structure without doubt. Every year there is a new applica-
tion for which a hypercubic network is the perfect solution!

• Indeed, hypercubic networks are related. Since all structured P2P archi-
tectures are based on hypercubic networks, they in turn are all related.

• Next we define the cube-connected-cycles network. It only has a degree
of 3 and it results from the hypercube by replacing the corners by cycles.

000 100010 110001 101011 111

1

2

0

3

Figure 10.3: The structure of BF(3).

10.3. HYPERCUBIC NETWORKS 89

Definition 10.3 (Cube-Connected-Cycles). Let d ∈ N . The cube-connected-
cycles network CCC(d) is a graph with node set V = {(a, p) | a ∈ [2]d, p ∈ [d]}
and edge set

E =
{{(a, p), (a, (p + 1) mod d)} | a ∈ [2]d, p ∈ [d]

}

∪{{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], a = b except for ap

}

000 001 010 011 100 101 110 111

2

1

0

(110,1)

(011,2)

(101,1)

(001,2)

(001,1)

(001,0)(000,0)

(100,0)

(100,1)

(100,2)

(000,2)

(000,1)

(010,1)

(010,0)

(010,2)

(110,2)

(110,0) (111,0)

(111,1)

(111,2)

(011,1)

(011,0)

(101,2)

(101,0)

Figure 10.4: TThe structure of CCC(3).

Remarks:

• Two possible representations of a CCC can be found in Figure 10.4.

• The shuffle-exchange is yet another way of transforming the hypercubic
interconnection structure into a constant degree network.

Definition 10.4 (Shuffle-Exchange). Let d ∈ N . The d-dimensional shuffle-
exchange SE(d) is defined as an undirected graph with node set V = [2]d and
an edge set E = E1 ∪ E2 with

E1 = {{(ad−1 . . . a0), (ad−1 . . . ā0)} | (ad−1 . . . a0) ∈ [2]d, ā0 = 1− a0}

and
E2 = {{(ad−1 . . . a0), (a0ad−1 . . . a1)} | (ad−1 . . . a0) ∈ [2]d} .

Figure 10.5 shows the 3- and 4-dimensional shuffle-exchange graph.

000 001

100

010

101

011

110 111 0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

SE(3) SE(4)

E

E
1

2

Figure 10.5: The structure of SE(3) and SE(4).

90 CHAPTER 10. PEER-TO-PEER COMPUTING

Definition 10.5 (DeBruijn). The b-ary DeBruijn graph of dimension d
DB(b, d) is an undirected graph G = (V, E) with node set V = {v ∈ [b]d}
and edge set E that contains all edges {v, w} with the property that w ∈
{(x, vd−1, . . . , v1) : x ∈ [b]}, where v = (vd−1, . . . , v0).

010

100

001

110

1111100

01

000
101

011

10

Figure 10.6: The structure of DB(2, 2) and DB(2, 3).

Remarks:

• Two examples of a DeBruijn graph can be found in Figure 10.6. The
DeBruijn graph is the basis of the Koorde P2P architecture.

• There are some data structures which also qualify as hypercubic networks.
An obvious example is the Chord P2P architecture, which uses a slightly
different hypercubic topology. A less obvious (and therefore good) exam-
ple is the skip list, the balanced binary search tree for the lazy programmer:

Definition 10.6 (Skip List). The skip list is an ordinary ordered linked list
of objects, augmented with additional forward links. The ordinary linked list is
the level 0 of the skip list. In addition, every object is promoted to level 1 with
probability 1/2. As for level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next level with probability
1/2. A special start-object points to the smallest/first object on each level.

Remark:

• Search, insert, and delete can be implemented in O(log n) expected time
in a skip list, simply by jumping from higher levels to lower ones when
overshooting the searched position. Also, the amortized memory cost of
each object is constant, as on average an object only has two forward
pointers.

• The randomization can easily be discarded, by deterministically promoting
a constant fraction of objects of level i to level i + 1, for all i. When
inserting or deleting, object o simply checks whether its left and right
level i neighbors are being promoted to level i + 1. If none of them is,
promote object o itself. Essentially we establish a MIS on each level, hence
at least every third and at most every second object is promoted.

• There are obvious variants of the skip list, e.g., the skip graph. Instead
of promoting only half of the nodes to the next level, we always promote
all the nodes, similarly to a balanced binary tree: All nodes are part of
the root level of the binary tree. Half the nodes are promoted left, and
half the nodes are promoted right, on each level. Hence on level i we have

10.4. DHT & CHURN 91

have 2i lists (or, more symmetrically: rings) of about n/2i objects. This
is pretty much what we need for a nice hypercubic P2P architecture.

• One important goal in choosing a topology for a network is that it has a
small diameter. The following theorem presents a lower bound for this.

Theorem 10.7. Every graph of maximum degree d > 2 and size n must have
a diameter of at least b(log n)/(log(d− 1))c − 1.

Proof. Suppose we have a graph G = (V, E) of maximum degree d and size
n. Start from any node v ∈ V . In a first step at most d other nodes can be
reached. In two steps at most d · (d−1) additional nodes can be reached. Thus,
in general, in at most k steps at most

1 +
k−1∑

i=0

d · (d− 1)i = 1 + d · (d− 1)k − 1
(d− 1)− 1

≤ d · (d− 1)k

d− 2

nodes (including v) can be reached. This has to be at least n to ensure that v
can reach all other nodes in V within k steps. Hence,

(d− 1)k ≥ (d− 2) · n
d

⇔ k ≥ logd−1((d− 2) · n/d) .

Since logd−1((d− 2)/d) > −2 for all d > 2, this is true only if k ≥ blogd−1 nc −
1.

Remarks:

• In other words, constant-degree hypercubic networks feature an asymp-
totically optimal diameter.

• There are a few other interesting graph classes, e.g., expander graphs (an
expander graph is a sparse graph which has high connectivity properties,
that is, from every not too large subset of nodes you are connected to
a larger set of nodes), or small-world graphs (popular representations of
social networks). At first sight hypercubic networks seem to be related to
expanders and small-world graphs, but they are not.

10.4 DHT & Churn

As written earlier, a DHT essentially is a hypercubic structure with nodes having
identifiers such that they span the ID space of the objects to be stored. We
described the straightforward way how the ID space is mapped onto the peers
for the hypercube. Other hypercubic structures may be more complicated: The
butterfly network, for instance, may directly use the d+1 layers for replication,
i.e., all the d + 1 nodes with the same ID are responsible for the same hash
prefix. For other hypercubic networks, e.g., the pancake graph (see exercises),
assigning the object space to peer nodes may be more difficult.

In general a DHT has to withstand churn. Usually, peers are under control of
individual users who turn their machines on or off at any time. Such peers join
and leave the P2P system at high rates (“churn”), a problem that is not existent
in orthodox distributed systems, hence P2P systems fundamentally differ from

92 CHAPTER 10. PEER-TO-PEER COMPUTING

old-school distributed systems where it is assumed that the nodes in the system
are relatively stable. In traditional distributed systems a single unavailable
node is a minor disaster: all the other nodes have to get a consistent view of the
system again, essentially they have to reach consensus which nodes are available.
In a P2P system there is usually so much churn that it is impossible to have a
consistent view at any time.

Most P2P systems in the literature are analyzed against an adversary that
can crash a fraction of random peers. After crashing a few peers the system
is given sufficient time to recover again. However, this seems unrealistic. The
scheme sketched in this section significantly differs from this in two major as-
pects. First, we assume that joins and leaves occur in a worst-case manner. We
think of an adversary that can remove and add a bounded number of peers; it
can choose which peers to crash and how peers join. We assume that a joining
peer knows a peer which already belongs to the system. Second, the adversary
does not have to wait until the system is recovered before it crashes the next
batch of peers. Instead, the adversary can constantly crash peers, while the sys-
tem is trying to stay alive. Indeed, the system is never fully repaired but always
fully functional. In particular, the system is resilient against an adversary that
continuously attacks the “weakest part” of the system. The adversary could for
example insert a crawler into the P2P system, learn the topology of the system,
and then repeatedly crash selected peers, in an attempt to partition the P2P
network. The system counters such an adversary by continuously moving the
remaining or newly joining peers towards the sparse areas.

Clearly, we cannot allow the adversary to have unbounded capabilities. In
particular, in any constant time interval, the adversary can at most add and/or
remove O(log n) peers, n being the total number of peers currently in the sys-
tem. This model covers an adversary which repeatedly takes down machines by
a distributed denial of service attack, however only a logarithmic number of ma-
chines at each point in time. The algorithm relies on messages being delivered
timely, in at most constant time between any pair of operational peers, i.e., the
synchronous model. Using the trivial synchronizer this is not a problem. We
only need bounded message delays in order to have a notion of time which is
needed for the adversarial model. The duration of a round is then proportional
to the propagation delay of the slowest message.

In the remainder of this section, we give a sketch of the system: For sim-
plicity, the basic structure of the P2P system is a hypercube. Each peer is part
of a distinct hypercube node; each hypercube node consists of Θ(log n) peers.
Peers have connections to other peers of their hypercube node and to peers of
the neighboring hypercube nodes.1 Because of churn, some of the peers have to
change to another hypercube node such that up to constant factors, all hyper-
cube nodes own the same number of peers at all times. If the total number of
peers grows or shrinks above or below a certain threshold, the dimension of the
hypercube is increased or decreased by one, respectively.

The balancing of peers among the hypercube nodes can be seen as a dynamic
token distribution problem on the hypercube. Each node of the hypercube has a
certain number of tokens, the goal is to distribute the tokens along the edges of
the graph such that all nodes end up with the same or almost the same number

1Having a logarithmic number of hypercube neighbor nodes, each with a logarithmic num-
ber of peers, means that each peers has Θ(log2 n) neighbor peers. However, with some addi-
tional bells and whistles one can achieve Θ(log n) neighbor peers.

10.4. DHT & CHURN 93

of tokens. While tokens are moved around, an adversary constantly inserts and
deletes tokens. See also Figure 10.7.

Figure 10.7: A simulated 2-dimensional hypercube with four nodes, each con-
sisting of several peers. Also, all the peers are either in the core or in the
periphery of a node. All peers within the same node are completely connected
to each other, and additionally, all peers of a node are connected to the core
peers of the neighboring nodes. Only the core peers store data items, while the
peripheral peers move between the nodes to balance biased adversarial changes.

In summary, the P2P system builds on two basic components: i) an algo-
rithm which performs the described dynamic token distribution and ii) an in-
formation aggregation algorithm which is used to estimate the number of peers
in the system and to adapt the dimension of the hypercube accordingly:

Theorem 10.8 (DHT with Churn). We have a fully scalable, efficient P2P
system which tolerates O(log n) worst-case joins and/or crashes per constant
time interval. As in other P2P systems, peers have O(log n) neighbors, and the
usual operations (e.g., search, insert) take time O(log n).

Remarks:

• Indeed, handling churn is only a minimal requirement to make a P2P
system work. Later studies proposed more elaborate architectures which
can also handle other security issues, e.g., privacy or Byzantine attacks.

• It is surprising that unstructured (in fact, hybrid) P2P systems dominate
structured P2P systems in the real world. One would think that structured
P2P systems have advantages, in particular their efficient logarithmic data
lookup. On the other hand, unstructured P2P networks are simpler, in
particular in light of non-exact queries.

