
FS 2009 Prof. R. Wattenhofer / C. Lenzen / T. Locher

Principles of Distributed Computing

Exercise 5: Sample Solution

1 Shared Sum

In the following, let X (initialized to 0) always denote the shared register used to hold the sum
x =

∑n
i=1

xi, and assume that all xi (and thus also x) are initially 0. Denote by ∆xi the amount by
which xi is changed by process pi at some time, i.e., if xi := x′

i is assigned by pi, then ∆xi = x′

i−xi.

a) To update x, pi calls fetch-and-add(X,∆xi). Therefore, X changes exactly the same as xi

and holds the correct value. Since no process has to wait or retry, we have neither lockouts
nor deadlocks. A simple read on X (or fetch-and-add(X, 0)) gets the current value of x.

b) An update is done by the following code:

1: x := X
2: while not compare-and-swap(X,x, x + ∆xi) do
3: x := X
4: end while

The loop is left after X changed by ∆xi exactly once, thus the code is correct. Again, x can
be obtained by a simple read. Since the compare-and-swap may only fail if another process
pj changed the value of X between pi reading it and calling compare-and-swap, there is no
deadlock. However, other updates may delay a change by some pi indefinitely, hence lockouts
are possible.

c) A write is implemented by

1: x := load-link(X)
2: while not store-conditional(X,x + ∆xi) do
3: x := load-link(X)
4: end while

and is correct for the same reasons as in b). Reads are again simple.

d) It can be done. We use a special encoding on X. Either it stores a regular value (i.e., x) or
an identifier id(i) of a process pi in a distinguishable manner (e.g., marked by the first bit).
A node will effectively acquire a lock on X by writing its ID to X and only afterwards write
its update to X.



When xi is changed, pi executes

1: while true do
2: x := X
3: if x is not an identifier then
4: id := compare-and-swap(X,x, id(i)) //write own ID to X
5: end if
6: if id = id(i) then
7: X := x + ∆xi

8: break
9: end if

10: end while

The first if condition ensures that only one process at a time can “lock” X with its identifier,
i.e., between the compare-and-swap and the assignment of x + ∆x to X no other process
will change the value of X. Moreover, the second if condition is true for a process pi if and
only if the compare-and-swap succeeded, i.e., pi wrote its identifier to X. This means, that
X = x before the assignment X := x + ∆xi, implying that X is changed by ∆xi. Because
of the while loop and its abort condition this happens exactly once, therefore X is updated
correctly.

Since X now may temporarily contain an identifier instead of x, the read may also have to
wait:

1: x := X
2: while x is an identifier do
3: x := X
4: end while

Again, the solution is free of deadlocks when considered as a whole: At least one process can
write, because if X is not changed the compare-and-swap must succeed, and if no process
writes then all reads succeed. However, if nodes keep on writing all the time, reads may
consistently fail. As in b) and c), the solution is prone to lockouts.

2 Space Efficient Binary Tree Algorithm

a) In any splitter, in expectation at least half of the active processes decide differently. Thus,
with probability at least 1/3, at least one quarter of the processes decide differently (cf. the
proof of Theorem 4.11). Therefore, by linearity of expectation (Theorem 4.9), after 3 log4/3 k
nodes the number of expected remaining processes is at most 1, implying that a particular
process will stop after at most this number of expected steps.

b) Analogously to the proof of Corollary 4.14.

c) Since w.h.p. means with probability 1− 1/kc for arbitrary c ≥ 1, in particular we have that
each individual process will stop after O(log k) many steps with probability 1 − 1/kc+1 for
any choice of c ≥ 1. Thus, the probability that any of the k processes will take more steps
to stop is at most

∑k
i=1

1/kc+1 = 1/kc. In other words, the depth of the subtree induced by
the marked nodes is w.h.p. at most O(log k) as claimed.

2


