

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FS 2009

Prof. R. Wattenhofer / C. Lenzen / T. Locher

Principles of Distributed Computing Exercise 5: Sample Solution

1 Shared Sum

In the following, let X (initialized to 0) always denote the shared register used to hold the sum $x = \sum_{i=1}^{n} x_i$, and assume that all x_i (and thus also x) are initially 0. Denote by Δx_i the amount by which x_i is changed by process p_i at some time, i.e., if $x_i := x'_i$ is assigned by p_i , then $\Delta x_i = x'_i - x_i$.

- a) To update x, p_i calls fetch-and-add $(X, \Delta x_i)$. Therefore, X changes exactly the same as x_i and holds the correct value. Since no process has to wait or retry, we have neither lockouts nor deadlocks. A simple read on X (or fetch-and-add(X, 0)) gets the current value of x.
- **b)** An update is done by the following code:

```
1: x := X

2: while not compare-and-swap(X, x, x + \Delta x_i) do

3: x := X

4: end while
```

The loop is left after X changed by Δx_i exactly once, thus the code is correct. Again, x can be obtained by a simple read. Since the compare-and-swap may only fail if another process p_j changed the value of X between p_i reading it and calling compare-and-swap, there is no deadlock. However, other updates may delay a change by some p_i indefinitely, hence lockouts are possible.

c) A write is implemented by

```
1: x := \text{load-link}(X)

2: while not store-conditional(X, x + \Delta x_i) do

3: x := \text{load-link}(X)

4: end while
```

and is correct for the same reasons as in **b**). Reads are again simple.

d) It can be done. We use a special encoding on X. Either it stores a regular value (i.e., x) or an identifier id(i) of a process p_i in a distinguishable manner (e.g., marked by the first bit). A node will effectively acquire a lock on X by writing its ID to X and only afterwards write its update to X. When x_i is changed, p_i executes

```
1: while true do
2:
      x := X
      if x is not an identifier then
3:
         id := \text{compare-and-swap}(X, x, id(i)) //\text{write own ID to } X
4:
      end if
5:
      if id = id(i) then
6:
         X := x + \Delta x_i
7:
         break
8:
9:
      end if
10: end while
```

The first if condition ensures that only one process at a time can "lock" X with its identifier, i.e., between the compare-and-swap and the assignment of $x + \Delta x$ to X no other process will change the value of X. Moreover, the second if condition is true for a process p_i if and only if the compare-and-swap succeeded, i.e., p_i wrote its identifier to X. This means, that X = x before the assignment $X := x + \Delta x_i$, implying that X is changed by Δx_i . Because of the while loop and its abort condition this happens exactly once, therefore X is updated correctly.

Since X now may temporarily contain an identifier instead of x, the read may also have to wait:

```
    x := X
    while x is an identifier do
    x := X
    end while
```

Again, the solution is free of deadlocks when considered as a whole: At least one process can write, because if X is not changed the compare-and-swap must succeed, and if no process writes then all reads succeed. However, if nodes keep on writing all the time, reads may consistently fail. As in **b**) and **c**), the solution is prone to lockouts.

2 Space Efficient Binary Tree Algorithm

- a) In any splitter, in expectation at least half of the active processes decide differently. Thus, with probability at least 1/3, at least one quarter of the processes decide differently (cf. the proof of Theorem 4.11). Therefore, by linearity of expectation (Theorem 4.9), after $3 \log_{4/3} k$ nodes the number of expected remaining processes is at most 1, implying that a particular process will stop after at most this number of expected steps.
- b) Analogously to the proof of Corollary 4.14.
- c) Since w.h.p. means with probability $1 1/k^c$ for arbitrary $c \ge 1$, in particular we have that each individual process will stop after $O(\log k)$ many steps with probability $1 1/k^{c+1}$ for any choice of $c \ge 1$. Thus, the probability that *any* of the k processes will take more steps to stop is at most $\sum_{i=1}^{k} 1/k^{c+1} = 1/k^c$. In other words, the depth of the subtree induced by the marked nodes is w.h.p. at most $O(\log k)$ as claimed.