
Chapter 6

Consensus

This chapter is the first to deal with fault tolerance, one of the most fundamental
aspects of distributed computing. Indeed, in contrast to a system with a single
processor, having a distributed system may permit getting away with failures
and malfunctions of parts of the system. This line of research was motivated
by the basic question whether, e.g., putting two (or three?) computers into
the cockpit of a plane will make the plane more reliable. Clearly fault-tolerance
often comes at a price, as having more than one decision-maker often complicates
decision-making.

6.1 Impossibility of Consensus

Imagine two cautious generals who want to attack a common enemy.1 Their
only means of communication are messengers. Unfortunately, the route of these
messengers leads through hostile enemy territory, so there is a chance that a
messenger does not make it. Only if both generals attack at the very same time
the enemy can be defeated. Can we devise a protocol such that the two generals
can agree on an attack time? Clearly general A can send a message to general
B asking to e.g. “attack at 6am”. However, general A cannot be sure that
this message will make it, so she asks for a confirmation. The problem is that
general B getting the message cannot be sure that her confirmation will reach
general A. If the confirmation message indeed is destroyed, general A cannot
distinguish this case from the case where general B did not even get the attack
information. So, to be save, general B herself will ask for a confirmation of her
confirmation. Taking again the position of general A we can similarly derive
that she cannot be sure unless she also gets a confirmation of the confirmation
of the confirmation. . .

To make things worse, also different approaches do not seem to work. In
fact it can be shown that this two generals problem cannot be solved, in other
words, there is no finite protocol which lets the two generals find consensus! To
show this, we need to be a bit more formal:

1If you don’t fancy the martial tone of this classic example, feel free to think about some-

thing else, for instance two friends trying to make plans for dinner over instant messaging

software, or two lecturers sharing the teaching load of a course trying to figure out who is in

charge of the next lecture.

51

52 CHAPTER 6. CONSENSUS

Definition 6.1 (Consensus). Consider a distributed system with n nodes. Each
node i has an input xi. A solution of the consensus problem must guarantee the
following:

• Termination: Every non-faulty node eventually decides.

• Agreement: All non-faulty nodes decide on the same value.

• Validity: The decided value must be the input of at least one node.

Remarks:

• The validity condition infers that if all nodes have the same input x, then
the nodes need to decide on x. Please note that consensus is not demo-
cratic, it may well be that the nodes decide on an input value promoted
by a small minority.

• Whether consensus is possible depends on many parameters of the distri-
buted system, in particular whether the system is synchronous or asyn-
chronous, or what “faulty” means. In the following we study some simple
variants to get a feeling for the problem.

• Consensus is a powerful primitive. With established consensus almost
everything can be computed in a distributed system, e.g. a leader.

Given a distributed asynchronous message passing system with n ≥ 2 nodes.
All nodes can communicate directly with all other nodes, simply by sending a
message. In other words, the communication graph is the complete graph. Can
the consensus problem be solved? Yes!

Algorithm 25 Trivial Consensus

1: Each node has an input
2: We have a leader, e.g. the node with the highest ID
3: if node v is the leader then
4: the leader shall simply decide on its own input
5: else

6: send message to the leader asking for its input
7: wait for answer message by leader, and decide on that
8: end if

Remarks:

• This algorithm is quite simple, and at first sight seems to work perfectly,
as all three consensus conditions of Definition 6.1 are fulfilled.

• However, the algorithm is not fault-tolerant at all. If the leader crashes
before being able to answer all requests, there are nodes which will never
terminate, and hence violate the termination condition. Is there a deter-
ministic protocol that can achieve consensus in an asynchronous system,
even in the presence of failures? Let’s first try something slightly different.

6.1. IMPOSSIBILITY OF CONSENSUS 53

Definition 6.2 (Reliable Broadcast). Consider an asynchronous distributed
system with n nodes that may crash. Any two nodes can exchange messages,
i.e., the communication graph is complete. We want node v to send a reliable
broadcast to the n − 1 other nodes. Reliable means that either nobody receives
the message, or everybody receives the message.

Remarks:

• This seems to be quite similar to consensus, right?

• The main problem is that the sender may crash while sending the message
to the n− 1 other nodes such that some of them get the message, and the
others not. We need a technique that deals with this case:

Algorithm 26 Reliable Broadcast

1: if node v is the source of message m then

2: send message m to each of the n− 1 other nodes
3: upon receiving m from any other node: broadcast succeeded!
4: else

5: upon receiving message m for the first time:
6: send message m to each of the n− 1 other nodes
7: end if

Theorem 6.3. Algorithm 26 solves reliable broadcast as in Definition 6.2.

Proof. First we should note that we do not care about nodes that crash during
the execution: whether or not they receive the message is irrelevant since they
crashed anyway. If a single non-faulty node u received the message (no matter
how, it may be that it received it through a path of crashed nodes) all non-
faulty nodes will receive the message through u. If no non-faulty node receives
the message, we are fine as well!

Remarks:

• While it is clear that we could also solve reliable broadcast by means of a
consensus protocol (first send message, then agree on having received it),
the opposite seems more tricky!

• No wonder, it cannot be done!! For the presentation of this impossibility
result we use the read/write shared memory model introduced in Chapter
5. Not only was the proof originally conceived in the shared memory
model, it is also cleaner.

Definition 6.4 (Univalent, Bivalent). A distributed system is called x-valent
if the outcome of a computation will be x. An x-valent system is also called
univalent. If, depending on the execution, still more than one possible outcome
is feasible, the system is called multivalent. If exactly two outcomes are still
possible, the system is called bivalent.

Theorem 6.5. In an asynchronous shared memory system with n > 1 nodes,
and node crash failures (but no memory failures!) consensus as in Definition
6.1 cannot be achieved by a deterministic algorithm.

54 CHAPTER 6. CONSENSUS

Proof. Let us simplify the proof by setting n = 2. We have processes u and v,
with input values xu and xv. Further let the input values be binary, either 0 or
1.

First we have to make sure that there are input values such that initially the
system is bivalent. If xu = 0 and xv = 0 the system is 0-valent, because of the
validity condition (Definition 6.1). Even in the case where process v immediately
crashes the system remains 0-valent. Similarly if both input values are 1 and
process u immediately crashes the system is 1-valent. If xu = 0 and xv = 1 and
v immediately crashes, process u cannot distinguish from both having input 0,
equivalently if u immediately crashes, process v cannot distinguish from both
having 1, hence the system is bivalent!

In order to solve consensus an algorithm needs to terminate. All non-faulty
processes need to decide on the same value x (agreement condition of Definition
6.1), in other words, at some instant this value x must be known to the system
as a whole, meaning that no matter what the execution is, the system will be
x-valent. In other words, the system needs to change from bivalent to univalent.
We may ask ourselves what can cause this change in a deterministic asynchro-
nous shared memory algorithm? We need an element of non-determinism; if
everything happens deterministically the system would have been x-valent even
after initialization which we proved to be impossible already.

The only nondeterministic elements in our model are the asynchrony of ac-
cessing the memory and crashing processes. Initially and after every memory
access, each process decides what to do next: Read or write a memory cell or
terminate with a decision. We take control of the scheduling, either choosing
which request is served next or making a process crash. Now we hope for a crit-
ical bivalent state with more than one memory request, and depending which
memory request is served next the system is going to switch from bivalent to
univalent. More concretely, if process u is being served next the system is going
x-valent, if process v (with v �= u) is served next the system is going y-valent
(with y �= x). We have several cases:

• If the operations of processes u and v target different memory cells, pro-
cesses cannot distinguish which memory request was executed first. Hence
the local states of the processes are identical after serving both operations
and the state cannot be critical.

• The same argument holds if both processes want to read the same register.
Nobody can distinguish which read was first, and the state cannot be
critical.

• If process u reads memory cell c, and process v writes memory cell c,
the scheduler first executes u’s read. Now process v cannot distinguish
whether that read of u did or did not happen before its write. If it did
happen, v should decide on x, if it did not happen, v should decide y. But
since v does not know which one is true, it needs to be informed about
it by u. We prevent this by making u crash. Thus the state can only be
univalent if v never decides, violating the termination condition!

• Also if both processes write the same memory cell we have the same issue,
since the second writer will immediately overwrite the first writer, and
hence the second writer cannot know whether the first write happened at
all. Again, the state cannot be critical.

6.1. IMPOSSIBILITY OF CONSENSUS 55

Hence, if we are unlucky (and in a worst case, we are!) there is no critical
state. In other words, the system will remain bivalent forever, and consensus is
impossible.

Remarks:

• The proof presented is a variant of a proof by Michael Fischer, Nancy
Lynch and Michael Paterson, a classic result in distributed computing.
The proof was motivated by the problem of committing transactions in
distributed database systems, but is sufficiently general that it directly
implies the impossibility of a number of related problems, including con-
sensus. The proof also is pretty robust with regard to different communi-
cation models.

• The FLP (Fischer, Lynch, Paterson) paper won the 2001 PODC Influential
Paper Award, which later was renamed Dijkstra Prize.

• One might argue that FLP destroys all the fun in distributed computing,
as it makes so many things impossible! For instance, it seems impossible to
have a distributed database where the nodes can reach consensus whether
to commit a transaction or not.

• So are two-phase-commit (2PC), three-phase-commit (3PC) et al. wrong?!
No, not really, but sometimes they just do not commit!

• What about turning some other knobs of the model? Can we have con-
sensus in a message passing system? No. Can we have consensus in
synchronous systems? Yes, even if all but one node fails!

• Can we have consensus in synchronous systems even if some nodes are
mischievous, and behave much worse than simply crashing, and send for
example contradicting information to different nodes? This is known as
Byzantine behavior. Yes, this is also possible, as long as the Byzantine
nodes are strictly less than a third of all the nodes. This was shown
by Marshall Pease, Robert Shostak, and Leslie Lamport in 1980. Their
work won the 2005 Dijkstra Prize, and is one of the cornerstones not only
in distributed computing but also information security. Indeed this work
was motivated by the “fault-tolerance in planes” example. Pease, Shostak,
and Lamport noticed that the computers they were given to implement a
fault-tolerant fighter plane at times behaved strangely. Before crashing,
these computers would start behaving quite randomly, sending out weird
messages. At some point Pease et al. decided that a malicious behavior
model would be the most appropriate to be on the save side. Being able to
allow strictly less than a third Byzantine nodes is quite counterintuitive;
even today many systems are built with three copies. In light of the result
of Pease et al. this is a serious mistake! If you want to be tolerant against
a single Byzantine machine, you need four copies, not three!

• Finally, FLP only prohibits deterministic algorithms! So can we solve
consensus if we use randomization? The answer again is yes! We will
study this in the remainder of this chapter.

56 CHAPTER 6. CONSENSUS

6.2 Randomized Consensus

Can we solve consensus if we allow randomization? Yes. The following algorithm
solves Consensus even in face of Byzantine errors, i.e., malicious behavior of
some of the nodes. To simplify arguments we assume that at most f nodes will
fail (crash) with n > 9f , and that we only solve binary consensus, that is, the
input values are 0 and 1. The general idea is that nodes try to push their input
value; if other nodes do not follow they will try to push one of the suggested
values randomly. The full algorithm is in Algorithm 27.

Algorithm 27 Randomized Consensus

1: node u starts with input bit xu ∈ {0, 1}, round:=1.
2: broadcast BID(xu, round)
3: repeat

4: wait for n− f BID messages of current round
5: if at least n− 2f messages have value x then

6: xu := x; decide on x
7: else if at least n− 4f messages have value x then

8: xu := x
9: else

10: choose xu randomly, with Pr[xu = 0] = Pr[xu = 1] = 1/2
11: end if

12: round := round + 1
13: broadcast BID(xu, round)
14: until decided

Theorem 6.6. Algorithm 27 solves consensus as in Definition 6.1 even if up
to f < n/9 nodes exhibit Byzantine failures.

Proof. First note that it is not a problem to wait for n − f BID messages in
line 4 since at most f nodes are corrupt. If all nodes have the same input value
x, then all (except the f Byzantine nodes) will bid for the same value x. Thus,
every node receives at least n − 2f BID messages containing x, deciding on x
in the first round already. We have consensus!

If the nodes have different (binary) input values the validity condition be-
comes trivial as any result is fine. What about agreement? Let u be one of
the first nodes to decide on value x (in line 6). It may happen that due to
asynchronicity another node v received messages from a different subset of the
nodes, however, at most f senders may be different. Taking into account that
Byzantine nodes may lie, i.e., send different BIDs to different nodes, f addi-
tional BID messages received by v may differ from those received by u. Since
node u had at least n − 2f BID messages with value x, node v has at least
n − 4f BID messages with x. Hence every correct node will bid for x in the
next round, and then decide on x.

So we only need to worry about termination! We already have seen that
as soon as one correct node terminates (in line 6) everybody terminates in the
next round. So what are the chances that some node u terminates in line 6?
Well, if push comes to shove we can still hope that all correct nodes randomly
propose the same value (in line 10). Maybe there are some nodes not choosing

6.2. RANDOMIZED CONSENSUS 57

at random (i.e., entering line 8), but they unanimously propose either 0 or 1:
For the sake of contradiction, assume that both 0 and 1 are proposed in line
8. This means that both 0 and 1 had been proposed by at least n− 5f correct
nodes. In other words, we have a total of 2(n − 5f) + f = n + (n − 9f) > n
nodes. Contradiction!

Thus, at worst all n−f correct nodes need to randomly choose the same bit,
which happens with probability 2−(n−f). If so, all will send the same BID, and
the algorithm terminates. So the expected running time is smaller than 2n.

Remarks:

• The presentation of Algorithm 27 is a simplification of the typical presen-
tation in text books.

• What about an algorithm that allows for crashes only, but can manage
more failures? Good news! Slightly changing the presented algorithm will
do that for f < n/4! See exercises.

• Unfortunately Algorithm 27 is still impractical as termination is awfully
slow. In expectation about the same number of nodes choose 1 or 0 in line
10. Termination would be much more efficient if all nodes chose the same
random value in line 10! So why not simply replacing line 10 with “choose
xu := 1”?!? The problem is that a majority of nodes may see a majority
of 0 bids, hence proposing 0 in the next round. Without randomization it
is impossible to get out of this equilibrium. (Moreover, this approach is
deterministic, contradicting Theorem 6.5.)

• The idea is to replace line 10 with a subroutine where all nodes compute
a so-called shared (or common, or global) coin. A shared coin is a random
variable that is 0 with constant probability and 1 with constant probabil-
ity. Sounds like magic, but it isn’t! We assume at most f < n/3 nodes
may crash:

Algorithm 28 Shared Coin (code for node u)

1: set local coin xu := 0 with probability 1/n, else xu := 1
2: use reliable broadcast to tell everybody about your local coin xu

3: memorize all coins you get by others in the set cu

4: wait for exactly n− f coins
5: copy these coins into your local set su (but keep learning coins)
6: use reliable broadcast to tell everybody about your set su

7: wait for exactly n− f sets sv (which satisfy sv ⊆ cu)
8: if seen at least a single coin 0 then
9: return 0

10: else

11: return 1
12: end if

Theorem 6.7. If f < n/3 nodes crash, Algorithm 28 implements a shared coin.

58 CHAPTER 6. CONSENSUS

Proof. Since only f nodes may crash, each node sees at least n − f coins and
sets in lines 4 resp. 7. Thanks to the reliable broadcast protocol each node
eventually sees all the coins in the other sets. In other words, the algorithm
terminates in O(1) time.

The general idea is that a third of the coins are being seen by everybody. If
there is a 0 among these coins, everybody will see that 0. If not, chances are
high that there is no 0 at all! Here are the details:

Let u be the first node to terminate (satisfy line 7). For u we draw a matrix
of all the seen sets sv (columns) and all coins cu seen by node u (rows). Here is
an example with n = 7, f = 2, n− f = 5:

s1 s3 s5 s6 s7

c1 X X X X X
c2 X X X
c3 X X X X X
c5 X X X X
c6 X X X X
c7 X X X X

Note that there are exactly (n − f)2 X’s in this matrix as node u has seen
exactly n − f sets (line 7) each having exactly n − f coins (lines 4 to 6). We
need two little helper lemmas:

Lemma 6.8. There are at least f + 1 rows that have at least f + 1 X’s

Proof. Assume (for the sake of contradiction) that this is not the case. Then
at most f rows have all n − f X’s, and all other rows (at most n − f) have at
most f X’s. In other words, the number of total X’s is bounded by

|X| ≤ f · (n− f) + (n− f) · f = 2f(n− f).

Using n > 3f we get n− f > 2f , and hence |X| ≤ 2f(n− f) < (n− f)2. This
is a contradiction to having exactly (n− f)2 X’s!

Lemma 6.9. Let W be the set of local coins for which the corresponding matrix
row has more than f X’s. All local coins in the set W are seen by all nodes that
terminate.

Proof. Let w ∈ W be such a local coin. By definition of W we know that w is
in at least f + 1 seen sets. Since each node must see at least n − f seen sets
before terminating, each node has seen at least one of these sets, and hence w
is seen by everybody terminating.

Continuing the proof of Theorem 6.7: With probability (1− 1/n)n ≈ 1/e ≈ .37
all nodes chose their local coin equal to 1, and 1 is decided. With probability
1 − (1 − 1/n)|W | there is at least one 0 in W . With Lemma 6.8 we know that
|W | ≈ n/3, hence the probability is about 1− (1−1/n)n/3 ≈ 1− (1/e)1/3 ≈ .28.
With Lemma 6.9 this 0 is seen by all, and hence everybody will decide 0. So
indeed we have a shared coin.

Theorem 6.10. Plugging Algorithm 28 into Algorithm 27 we get a randomized
consensus algorithm which finishes in a constant expected number of rounds.

6.2. RANDOMIZED CONSENSUS 59

Remarks:

• If some nodes go into line 8 of Algorithm 27 the others still have a constant
probability to guess the same shared coin.

• For crash failures there exists an improved constant expected time algo-
rithm which tolerates f failures with 2f < n.

• For Byzantine failures there exists a constant expected time algorithm
which tolerates f failures with 3f < n.

• Similar algorithms have been proposed for the shared memory model.

