
Principles of

Distributed Computing

Roger Wattenhofer
wattenhofer@tik.ee.ethz.ch

Head Assistant: Christoph Lenzen (lenzen@tik.ee.ethz.ch)
Assistant: Thomas Locher (locher@tik.ee.ethz.ch)

Spring 2009



2



Introduction

What is Distributed Computing?

In the last two decades, we have experienced an unprecedented growth in the
area of distributed systems and networks; distributed computing now encom-
passes many of the activities occurring in today’s computer and communications
world. Indeed, distributed computing may appear in quite diverse application
areas, in networking as well as in distributed systems. Typical “old school”
examples are parallel computers or the Internet. More recent application exam-
ples of distributed computing include peer-to-peer systems, sensor networks, or
multi-core architectures.

These applications have in common that many processors or entities (often
called nodes) are active in the system at any moment. The nodes have certain
degrees of freedom: they have their own hardware, their own code, and some-
times their own independent task. Nevertheless the nodes are sharing common
resources and information. In other words, coordination is necessary.

Despite these commonalities, a peer-to-peer system, for example, is quite
different from a multi-core architecture. And indeed, the area of distributed
computing needs to deal with many different models and parameters. There are
systems where the nodes operate synchronously, and systems where they operate
asynchronously. There are simple homogeneous systems, and heterogeneous
systems where different types of nodes need to interact. There are different
ways of communication, nodes may communicate by exchanging messages, or
through shared memory. Sometimes the communication infrastructure is tailor-
made for an application, sometimes one has to work with an infrastructure that
has grown naturally. The nodes in a system sometimes work together to solve
a global task, occasionally the nodes are autonomous agents that all have their
own task and compete for common resources. Sometimes the nodes can be
assumed to work correctly, at times they may exhibit failures. In contrast to
a single-node system distributed systems may still function correctly despite
failures, as other nodes can take over the work of the failed nodes. There
are different kinds of failures, nodes may just crash, or they might exhibit an
erroneous behavior, maybe even to a degree where it cannot be distinguished
from malicious (also known as Byzantine) behavior. Maybe the nodes do follow
the rules, however they tweak the parameters to get most out of the system; in
other words, the nodes are selfish. As you see, there are many models (and even
more combinations of models) that we could study in class. We will not discuss
any of these models now, but simply define them when we use them. Towards
the end of the course a general picture should emerge. Hopefully!

3



4

This course introduces the principles of distributed computing, highlighting
common themes and techniques. We study some of the fundamental issues
underlying the design of distributed systems:

• Communication: Communication does not come for free; often communi-
cation cost dominates the cost of local processing or storage. Sometimes
we even assume that everything but communication is free.

• Coordination: How can you coordinate a distributed system that it per-
forms some task efficiently?

• Fault-tolerance: As mentioned above, one major advantage of a distribu-
ted system is that even in the presence of failures the system as a whole
may survive.

• Locality: Networks keep growing. Luckily global information is not al-
ways needed to solve a task, often it is sufficient if nodes talk to their
neighbors. Whether a local solution is possible is a fundamental question
in distributed computing that we will address in this course.

• Parallelism: How fast can you solve a task if you throw more hardware at
the problem? How much parallelism is possible for a given problem?

• Symmetry breaking: Sometimes some nodes need to be selected to orches-
trate the others. This is done by a technique called symmetry breaking.

• Synchronization: How can you implement a synchronous algorithm in an
asynchronous system?

• Uncertainty: If we need to agree on a single term describing this course,
it probably is “uncertainty”. As the whole system is distributed no node
knows what other nodes are doing at this exact moment.

Finally there are also a few areas that we will not cover in this course, mostly
because these topics have become so important that they deserve and have their
own courses. One example is distributed programming and software engineering,
another example is security or cryptography.

In summary, in this class we explore essential algorithmic ideas and lower
bound techniques, basically the “pearls” of distributed computing and network
algorithms. We will cover a fresh topic every week.

Have fun!


