
Chapter 5

Shared Memory

5.1 Introduction

In distributed computing, various different models exist. So far, the focus of the
course was on loosely-coupled distributed systems such as the Internet, where
nodes asynchronously communicate by exchanging messages. The “opposite”
model is a tightly-coupled parallel computer where nodes access a common
memory totally synchronously—in distributed computing such a system is called
a Parallel Random Access Machine (PRAM).
A third major model is somehow between these two extremes, the shared

memory model. In a shared memory system, asynchronous processes (or proces-
sors) communicate via a common memory area of shared variables or registers:

Definition 5.1 (Shared Memory). A shared memory system is a system that
consists of asynchronous processes that access a common (shared) memory. A
process can atomically access a register in the shared memory through a set of
predefined operations. Apart from this shared memory, processes can also have
some local (private) memory.

Remarks:

• Various shared memory systems exist. A main difference is how they allow
processes to access the shared memory. All systems can atomically read
or write a shared register R. Most systems do allow for advanced atomic
read-modify-write (RMW) operations, for example:

– test-and-set(R): t := R; R := 1; return t

– fetch-and-add(R, x): t := R; R := R+ x; return t

– compare-and-swap(R, x, y): if R = x then R := y; return true else
return false; endif;

– load-link/store-conditional: Load-link returns the current value of
the specified register. A subsequent store-conditional to the same
register will store a new value (and return true) only if no updates
have occurred to that register since the load-link. If any updates
have occurred, the store-conditional is guaranteed to fail (and return
false), even if the value read by the load-link has since been restored.

41



42 CHAPTER 5. SHARED MEMORY

• Maurice Herlihy suggested that the power of RMW operations can be
measured with the so-called consensus-number : The consensus-number
of a RMW operation defines whether one can solve consensus for k pro-
cesses. Test-and-set for instance has consensus-number 2 (one can solve
consensus with 2 processes, but not 3), whereas the consensus-number of
compare-and-swap is infinite. In his 1991 paper, Maurice Herlihy proved
the “universality of consensus”, i.e., the power of a shared memory sys-
tem is determined by the consensus-number. This insight had a remark-
able theoretical and practical impact. In practice for instance, hardware
designers stopped developing shared memory systems supporting weak
RMW operations. Consequently, Maurice Herlihy was awarded the Dijk-
stra Prize in Distributed Computing in 2003.

• Many of the results derived in the message passing model have an equiva-
lent in the shared memory model. Consensus for instance is traditionally
studied in the shared memory model.

• Whereas programming a message passing system is rather tricky (in partic-
ular if fault-tolerance has to be integrated), programming a shared mem-
ory system is generally considered easier, as programmers are given access
to global variables directly and do not need to worry about exchanging
messages correctly. Because of this, even distributed systems which phys-
ically communicate by exchanging messages can often be programmed
through a shared memory middleware, making the programmer’s life eas-
ier.

• We will most likely find the general spirit of shared memory systems in
upcoming multi-core architectures. As for programming style, the multi-
core community seems to favor an accelerated version of shared memory,
transactional memory.

• From a message passing perspective, the shared memory model is like a
bipartite graph: One one side you have the processes (the nodes) which
pretty much behave like nodes in the message passing model (asynchro-
nous, maybe failures). On the other side you have the shared registers,
which just work perfectly (no failures, no delay).

5.2 Mutual Exclusion

A classic problem in shared memory systems is mutual exclusion. We are given
a number of processes which occasionally need to access the same resource. The
resource may be a shared variable, or a more general object such as a data
structure or a shared printer. The catch is that only one process at the time is
allowed to access the resource. More formally:

Definition 5.2 (Mutual Exclusion). We are given a number of processes, each
executing the following code sections:
<Entry> → <Critical Section> → <Exit> → <Remaining Code>
A mutual exclusion algorithm consists of code for entry and exit sections, such
that the following holds



5.2. MUTUAL EXCLUSION 43

• Mutual Exclusion: At all times at most one process is in the critical sec-
tion.

• No deadlock: If some process manages to get to the entry section, later
some (possibly different) process will get to the critical section.

Sometimes we in addition ask for

• No lockout: If some process manages to get to the entry section, later the
same process will get to the critical section.

• Unobstructed exit: No process can get stuck in the exit section.

Using RMW primitives one can build mutual exclusion algorithms quite easily.
Algorithm 20 shows an example with the test-and-set primitive.

Algorithm 20 Mutual Exclusion: Test-and-Set

Input: Shared register R := 0
<Entry>
1: repeat

2: r := test-and-set(R)
3: until r = 0

<Critical Section>
4: . . .

<Exit>
5: R := 0

<Remainder Code>
6: . . .

Theorem 5.3. Algorithm 20 solves the mutual exclusion problem as in Defini-
tion 5.2.

Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let pi be the ith process to successfully execute the test-and-set,
where successfully means that the result of the test-and-set is 0. This happens
at time ti. At time t�i process pi resets the shared register R to 0. Between ti
and t�i no other process can successfully test-and-set, hence no other process can
enter the critical section concurrently.
Proofing no deadlock is similar: One of the processes loitering in the entry

section will successfully test-and-set as soon as the process in the critical section
exited.
Since the exit section only consists of a single instruction (no potential infi-

nite loops) we have unobstructed exit.

Remarks:

• No lockout, on the other hand, is not given by this algorithm. Even with
only two processes there are asynchronous executions where always the
same process wins the test-and-set.

• Algorithm 20 can be adapted to guarantee fairness (no lockout), essentially
by ordering the processes in the entry section in a queue.



44 CHAPTER 5. SHARED MEMORY

• A natural question is whether one can achieve mutual exclusion with only
reads and writes, that is without advanced RMW operations. The answer
is yes!

Our read/write mutual exclusion algorithm is for two processes p0 and p1 only.
In the remarks we discuss how it can be extended. The general idea is that
process pi has to mark its desire to enter the critical section in a “want” register
Wi by setting Wi := 1. Only if the other process is not interested (W1−i = 0)
access is granted. This however is too simple since we may run into a deadlock.
This deadlock (and at the same time also lockout) is resolved by adding a priority
variable Π. See Algorithm 21.

Algorithm 21 Mutual Exclusion: Peterson’s Algorithm

Initialization: Shared registers W0, W1,Π, all initially 0.
Code for process pi , i = {0, 1}
<Entry>
1: Wi := 1
2: Π := 1− i
3: repeat until Π = i or W1−i = 0

<Critical Section>
4: . . .

<Exit>
5: Wi := 0

<Remainder Code>
6: . . .

Remarks:

• Note that line 3 in Algorithm 21 represents a “spinlock” or “busy-wait”,
similarly to the lines 1-3 in Algorithm 20.

Theorem 5.4. Algorithm 21 solves the mutual exclusion problem as in Defini-
tion 5.2.

Proof. The shared variable Π elegantly grants priority to the process that passes
line 2 first. If both processes are competing, only process pΠ can access the
critical section because of Π. The other process p1−Π cannot access the critical
section because wΠ = 1 (and Π �= 1 − Π). The only other reason to access the
critical section is because the other process is in the remainder code (that is,
not interested). This proves mutual exclusion!
No deadlock comes directly with Π: Process pΠ gets direct access to the

critical section, no matter what the other process does.
Since the exit section only consists of a single instruction (no potential infi-

nite loops) we have unobstructed exit.
Thanks to the shared variable Π also no lockout (fairness) is achieved: If a

process pi loses against its competitor p1−i in line 2, it will have to wait until
the competitor resets W1−i := 0 in the exit section. If process pi is unlucky it
will not check W1−i = 0 early enough before process p1−i sets W1−i := 1 again
in line 1. However, as soon as p1−i hits line 2, process pi gets the priority due
to Π, and can enter the critical section.



5.3. STORE & COLLECT 45

Remarks:

• Extending Peterson’s Algorithm to more than 2 processes can be done by
a tournament tree, like in tennis. With n processes every process needs to
win log n matches before it can enter the critical section. More precisely,
each process starts at the bottom level of a binary tree, and proceeds to
the parent level if winning. Once winning the root of the tree it can enter
the critical section. Thanks to the priority variables Π at each node of the
binary tree, we inherit all the properties of Definition 5.2.

5.3 Store & Collect

5.3.1 Problem Definition

In this section, we will look at a second shared memory problem that has an
elegant solution. Informally, the problem can be stated as follows. There are
n processes p1, . . . , pn. Every process pi has a read/write register Ri in the
shared memory where it can store some information that is destined for the
other processes. Further, there is an operation by which a process can collect
(i.e., read) the values of all the processes that stored some value in their register.
We say that an operation op1 precedes an operation op2 iff op1 terminates

before op2 starts. An operation op2 follows an operation op1 iff op1 precedes
op2.

Definition 5.5 (Collect). There are two operations: A store(val) by process
pi sets val to be the latest value of its register Ri. A collect operation returns
a view, a partial function V from the set of processes to a set of values, where
V (pi) is the latest value stored by pi, for each process pi. For a collect

operation cop, the following validity properties must hold for every process pi:

• If V (pi) = ⊥, then no store operation by pi precedes cop.

• If V (pi) = v �= ⊥, then v is the value of a store operation sop of pi that
does not follow cop, and there is no store operation by pi that follows
sop and precedes cop.

Hence, a collect operation cop should not read from the future or miss a
preceding store operation sop.
We assume that the read/write register Ri of every process pi is initialized

to ⊥. We define the step complexity of an operation op to be the number of
accesses to registers in the shared memory. There is a trivial solution to the
collect problem as shown by Algorithm 22.

Algorithm 22 Collect: Simple (Non-Adaptive) Solution

Operation store(val) (by process pi) :
1: Ri := val

Operation collect:

2: for i := 1 to n do

3: V (pi) := Ri // read register Ri

4: end for



46 CHAPTER 5. SHARED MEMORY

Remarks:

• Algorithm 22 clearly works. The step complexity of every store operation
is 1, the step complexity of a collect operation is n.

• At first sight, the step complexities of Algorithm 22 seem optimal. Because
there are n processes, there clearly are cases in which a collect operation
needs to read all n registers. However, there are also scenarios in which
the step complexity of the collect operation seems very costly. Assume
that there are only two processes pi and pj that have stored a value in
their registers Ri and Rj . In this case, a collect in principle only needs
to read the registers Ri and Rj and can ignore all the other registers.

• Assume that up to a certain time t, k ≤ n processes have finished or
started at least one operation. We call an operation op at time t adap-
tive to contention if the step complexity of op only depends on k and is
independent of n.

• In the following, we will see how to implement adaptive versions of store

and collect.

5.3.2 Splitters

Algorithm 23 Splitter Code

Shared Registers: X : {⊥} ∪ {1, . . . , n}; Y : boolean
Initialization: X := ⊥; Y := false

Splitter access by process pi:

1: X := i;
2: if Y then

3: return right

4: else

5: Y := true

6: if X = i then
7: return stop

8: else

9: return left

10: end if

11: end if

To obtain adaptive collect algorithms, we need a synchronization primitive,
called a splitter.

Definition 5.6 (Splitter). A splitter is a synchronization primitive with the
following characteristic. A process entering a splitter exits with either stop,
left, or right. If k processes enter a splitter, at most one process exits with
stop and at most k − 1 processes enter with left and right, respectively.

Hence, it is guaranteed that if a single process enters the splitter, then it
obtains stop, and if two or more processes enter the splitter, then there is
at most one process obtaining stop and there are two processes that obtain



5.3. STORE & COLLECT 47

k processors

at most 1

left

at most k−1

right

at most k−1

stop

Figure 5.1: A Splitter

different values (i.e., either there is exactly one stop or there is at least one
left and at least one right). For an illustration, see Figure 5.1. The code
implementing a splitter is given by Algorithm 23.

Lemma 5.7. Algorithm 23 correctly implements a splitter.

Proof. Assume that k processes enter the splitter. Because the first process that
checks whether Y = true in line 2 will find that Y = false, not all processes
return right. Next, assume that i is the last process that sets X := i. If i does
not return right, it will find X = i in line 6 and therefore return stop. Hence,
there is always a process that does not return left. It remains to show that at
most 1 process returns stop. For the sake of contradiction, assume pi and pj

are two processes that return stop and assume that pi sets X := i before pj sets
X := j. Both processes need to check whether Y is true before one of them
sets Y := true. Hence, they both complete the assignment in line 1 before the
first one of them checks the value of X in line 6. Hence, by the time pi arrives
at line 6, X �= i (pj and maybe some other processes have overwritten X by
then). Therefore, pi does not return stop and we get a contradiction to the
assumption that both pi and pj return stop.

5.3.3 Binary Splitter Tree

Assume that we are given 2n − 1 splitters and that for every splitter S, there
is an additional shared variable ZS : {⊥} ∪ {1, . . . , n} that is initialized to ⊥
and an additional shared variableMS : boolean that is initialized to false. We
call a splitter S marked if MS = true. The 2n − 1 splitters are arranged in a
complete binary tree of height n − 1. Let S(v) be the splitter associated with
a node v of the binary tree. The store and collect operations are given by
Algorithm 24.

Theorem 5.8. Algorithm 24 correctly implements store and collect. Let k
be the number of participating processes. The step complexity of the first store

of a process pi is O(k), the step complexity of every additional store of pi is
O(1), and the step complexity of collect is O(k).

Proof. Because at most one process can stop at a splitter, it is sufficient to show
that every process stops at some splitter at depth at most k − 1 ≤ n− 1 when
invoking the first store operation to prove correctness. We prove that at most
k − i processes enter a subtree at depth i (i.e., a subtree where the root has
distance i to the root of the whole tree). By definition of k, the number of



48 CHAPTER 5. SHARED MEMORY

Algorithm 24 Adaptive Collect: Binary Tree Algorithm

Operation store(val) (by process pi) :
1: Ri := val
2: if first store operation by pi then

3: v := root node of binary tree
4: α := result of entering splitter S(v);
5: MS(v) := true

6: while α �= stop do

7: if α = left then

8: v := left child of v
9: else

10: v := right child of v
11: end if

12: α := result of entering splitter S(v);
13: MS(v) := true

14: end while

15: ZS(v) := i
16: end if

Operation collect:

Traverse marked part of binary tree:

17: for all marked splitters S do

18: if ZS �= ⊥ then

19: i := ZS ; V (pi) := Ri // read value of process pi

20: end if

21: end for // V (pi) = ⊥ for all other processes

processes entering the splitter at depth 0 (i.e., at the root of the binary tree)
is k. For i > 1, the claim follows by induction because of the at most k − i
processes entering the splitter at the root of a depth i subtree, at most k− i− 1
obtain left and right, respectively. Hence, at the latest when reaching depth
k − 1, a process is the only process entering a splitter and thus obtains stop.
It thus also follows that the step complexity of the first invocation of store is
O(k).
To show that the step complexity of collect is O(k), we first observe

that the marked nodes of the binary tree are connected, and therefore can
be traversed by only reading the variables MS associated to them and their
neighbors. Hence, showing that at most 2k − 1 nodes of the binary tree are
marked is sufficient. Let xk be the maximum number of marked nodes in a tree,
where k processes access the root. We claim that xk ≤ 2k − 1, which is true
for k = 1 because a single process entering a splitter will always compute stop.
Now assume the inequality holds for 1, . . . , k − 1. Not all k processes may exit
the splitter with left (or right), i.e., kl ≤ k − 1 processes will turn left and
kr ≤ min{k − kl, k − 1} turn right. The left and right children of the root are
the roots of their subtrees, hence the induction hypothesis yields

xk ≤ xkl
+ xkr

+ 1 ≤ (2kl − 1) + (2kr − 1) + 1 ≤ 2k − 1,

concluding induction and proof.



5.3. STORE & COLLECT 49

left

right

Figure 5.2: 5× 5 Splitter Matrix

Remarks:

• The step complexities of Algorithm 24 are very good. Clearly, the step
complexity of the collect operation is asymptotically optimal. In order
for the algorithm to work, we however need to allocate the memory for the
complete binary tree of depth n−1. The space complexity of Algorithm 24
therefore is exponential in n. We will next see how to obtain a polynomial
space complexity at the cost of a worse collect step complexity.

5.3.4 Splitter Matrix

Instead of arranging splitters in a binary tree, we arrange n2 splitters in an n×n
matrix as shown in Figure 5.2. The algorithm is analogous to Algorithm 24.
The matrix is entered at the top left. If a process receives left, it next visits
the splitter in the next row of the same column. If a process receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n2). The following theorem gives bounds on
the step complexities of store and collect.

Theorem 5.9. Let k be the number of participating processes. The step com-
plexity of the first store of a process pi is O(k), the step complexity of every
additional store of pi is O(1), and the step complexity of collect is O(k2).

Proof. Let the top row be row 0 and the left-most column be column 0. Let xi

be the number of processes entering a splitter in row i. By induction on i, we
show that xi ≤ k − i. Clearly, x0 ≤ k. Let us therefore consider the case i > 0.
Let j be the largest column such that at least one process visits the splitter in
row i−1 and column j. By the properties of splitters, not all processes entering
the splitter in row i− 1 and column j obtain left. Therefore, not all processes
entering a splitter in row i− 1 move on to row i. Because at most one processes



50 CHAPTER 5. SHARED MEMORY

stays in every row, we get that xi ≤ k − i. Similarly, the number of processes
entering column j is at most k− j. Hence, every processes stops at the latest in
row k−1 and column k−1 and the number of marked splitters is at most O(k2).
Thus, the step complexity of collect is at most O(k2). Because the longest
path in the splitter matrix is 2k, the step complexity of store is O(k).

Remarks:

• With a slightly more complicated argument, it is possible to show that the
number of processes entering the splitter in row i and column j is at most
k − i− j. Hence, it suffices to only allocate the upper left half (including
the diagonal) of the n× n matrix of splitters.

• The binary tree algorithm can be made space efficient by using a random-
ized version of a splitter. Whenever returning left or right, a randomized
splitter returns left or right with probability 1/2. With high probability,
it then suffices to allocate a binary tree of depth O(log n).

• Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity and
O(n2) space complexity.


