
Chapter 9

Clock Synchronization

9.1 Slide 9/32

Theorem 9�1� No matter what clock synchronization algorithm we run, the
skew between two neighboring clocks may always be Ω(α log β�α

αε

D), where D is

the diameter of the network, hardware clocks have a rate between 1−ε and 1+ε
�worst case), message delay is between 0 and 1 �worst case), and logical clocks
must run at least at rate α, and at most at rate β. �On the slides we assumed
that α = 1.)

Proof. (Sketch) The proof is on a chain of D + 1 nodes v1� v2� . . . � vD+1; we set
l0 := D.1 Assume that the nodes run their algorithm for time T0 :=

1+ε
4ε l0 ≤

l�
2ε ,

all nodes have a hardware clock rate of 1, and all messages are delayed for 1/2
time. This situation is indistinguishable for the nodes from a situation where
the nodes v1� v2� . . . � vD+1 have hardware clock rates 1 + ε� 1 + ε− ε/l0� 1 + ε−
2ε/l0� . . . � 1 if we adapt message delays accordingly, i.e., “down” messages are
slower than “up” messages. Since the difference between the hardware clock
rates between neighbors is exactly ε

l�
and T0 ≤

l�
2ε , we need to modify the

message delays by at most ε
l�
·

l�
2ε = 1/2, i.e., all message delays are still in the

valid range of [0� 1].2

Since the fastest node is running 1 + ε times faster than in the original
execution, and the executions are indistinguishable, it reaches the logical clock
value that it reached at time T0 already at time T �

0 :=
l�
4ε . Since the slowest

node still runs at rate 1, it reaches the same logical clock value at time T �

0 in
both executions. As the fastest node increased its logical clock at least at rate α
in the interval T0 − T �

0 =
l�
4 , the clock skew between the fastest and the slowest

node increased by at least α
4 l0 until time T �

0.
Now, in a second phase, we give the nodes time to adapt again, starting

at time T �

0. Assume that the nodes continue to run their algorithm for T1 :=
α�1+ε)
16�β�α) l0 ≤

α
8�β�α) l0 time, all nodes have a hardware clock rate of 1, and

messages again take time 1/2. Since the lagging bottom node can run at most
at rate β, and the top node must run at least at rate α, the clock skew between

�The proof also works on general graphs.
2In this short summary we will not prove this formally� but we encourage the reader to

verify it with an example.

11



12 CHAPTER 9. CLOCK SYNCHRONIZATION

these nodes reduces by at most (β − α) · α
8�β�α) l0 =

α
8 l0, i.e., the clock skew

is still at least α
8 l0. Because of the pigeonhole principle there is a sub-chain of

length l1 :=
αε

4�β�α) l0 with at clock skew of at least
α
8 l1 between the top and

the bottom node of the sub-chain. Note that T1 =
1+ε
4ε l1 ≤

l1
2ε . We can again

change the execution indistinguishably by setting the hardware clock rates along
this subchain to 1 + ε� 1 + ε − ε/l1� 1 + ε − 2ε/l1� . . . � 1 and adapt the message
delays (which again lie in the interval [0� 1]). Again, the topmost node reaches
the same logical clock value at time T �

1 :=
l1
4ε that it reached before at time T1.

Due to the fact that it increased its logical clock value at least at rate α in the
interval T1 − T �

1 =
l1
4 , the clock skew between the fastest and the slowest node

in this sub-chain increased by ast least α
4 l1, i.e., the clock skew is now at least

α
4 l1 +

α
8 l1 =

3α
8 l1.

Now we repeat this process recursively for sub-chains of lengths l2� l3� etc.
Since li+1 is a factor of

αε
4�β�α) smaller than li, we can only do this log4�β�α)/�αε) D

often. However, in each of these log4�β�α)/�αε) D phases, the average clock
skew between the top and the bottom node of a sub-chain will grow by α

8 .
In other words, the skew between some neighboring nodes will be at least
Ω(α log β�α

αε

D).


