
SS 2003 Prof. R. Wattenhofer / Regina Bischoff / Fabian Kuhn

Exam

Principles of Distributed Computing
Monday, October 6, 2003

Do not open or turn until told so by the supervisor!

Notes

There is a total of 90 points. The number of points is given before each individual question in
parentheses. The total for each group of questions is indicated after the title.

Your answers can be in English or in German. Algorithms can be specified in high-level pseudo-
code or as a verbal description. You do not need to give every last detail, but the main aspects
need to be there. Big-O notation is acceptable when giving algorithmic complexities.

Points

Please fill in your name and student ID before the exam starts.

Name Legi-Nr.

Question Nr. Achieved Points Max Points

1 15

2 22

3 24

4 14

5 5

6 10

Total 90



1 Complexity of Distributed Algorithms (15 Points)

a) (3) How is time complexity defined in the asynchronous model?

b) (3) Consider a flooding algorithm in a graph: A source transmits a message (with an ID)
and each node forwards the message to all neighbors if it has not yet seen it. What is the
time complexity of this algorithm in the synchronous and in the asynchronous model?

c) (3) How is the message complexity defined for synchronous algorithms? What is different
for asynchronous algorithms?

d) (6) In an asynchronous setting, design an algorithm that synchronizes a given protocol. More
precisely, assume you are given a synchronous algorithm S. You need to devise an algorithm
A which guarantees that S will work as specified even if the network is asynchronous. What
is the message complexity of your algorithm?

2 Restructuring the LSS (22 Points)

Recall the organizational structure of the LSS (the Liechtensteinian Secret Service from Ex-
ercise 3): each member of the LSS can communicate only with his direct superior and his direct
subordinates over a secure phone line. On top of this tree hierarchy sits L, the “big boss.” Mem-
bers who do not have any subordinates are the field agents. All others (including L) are office

workers. Let the total number of LSS members be n > 1.

a) (4) In an effort to improve the efficiency of the LSS, L suspects that there are too many
office workers and not enough field agents to save the world. To that end, she needs to know
exactly how many people in the company are office workers and how many are field agents.
Devise an efficient asynchronous, distributed algorithm, started by L, to determine those
numbers.

b) (2) What are the time and message complexities of your algorithm?

Because of political turbulences, Liechtenstein is now being split into two countries, Lichtstein and
Lampenstein, who each want to have their own secret services, LiSS and LaSS, respectively. The
politicians agree to create two groups of people out of the original LSS. The goal is that each new
group collectively has the capacity to perform the same jobs as the LSS before. The jobs were
such that, in the original LSS, every member knew how to execute his own task and all the tasks
of his direct contacts (i.e. the direct superior’s and subordinates’ tasks). And since a person is
only allowed single citizenship, he can only be part of either the LiSS or the LaSS. Note that we
do not care about the internal structure of the future LiSS and LaSS at this point, only about
membership.

c) (5) Devise an asynchronous algorithm that assigns each member of the LSS to either LiSS
or LaSS. The algorithm is initiated by L and should terminate in time O(depth(T )), where
T refers to the LSS structure.

d) (8) Same task as above. Now the algorithm may be synchronous, is started by all members
simultaneously and should terminate in time O(log∗ n), where n is the number of members
in the original LSS. You may use the algorithms of the lecture as a black box. Show that
your algorithm correctly solves the problem in the specified amount of time.

e) (3) If Liechtenstein had been split into several countries, how many such entities could have
been created maximally and why?

2



3 Routing and Contention (24 Points)

In this problem, we consider the contention of routing on two different topologies. The con-
tention at a node v is defined to be the number of routing messages passing through node v during
the execution. The contention of a routing problem then is the contention of the worst-case node.
Throughout Problem 3, use n for the number of nodes in the graph/topology. Give all results as
a function of n.

a) (2) Give an oblivious routing algorithm for the 2-dimensional mesh.

b) (1) Neglecting contention, how long does it take to send a message from a source s to a
destination t with your algorithm (in the worst case)?

c) (3) Construct a one-to-one (or a permutation) routing problem which has worst-case con-
tention for your routing algorithm. Give a worst-case node. How bad is the contention?

We will now look at the same problem on hypercubes.

d) (4) Give a deterministic, oblivious routing algorithm for the hypercube which sends messages
on shortest paths.

e) (1) Neglecting contention, how long does it take to send a message from a source s to a
destination t with your algorithm (in the worst case)?

f) (8) Construct a one-to-one (or a permutation) routing problem which has bad (i.e. as large
as possible) contention for your routing algorithm. Give a worst-case node. How bad is the
contention?

g) (5) Show that the contention of your one-to-one routing problem for Question f) is (up to a
constant factor) worst-case for your algorithm.

4 Byzantine Quorum Systems (14 Points)

Quorum systems have been defined in the lecture for load balancing and for tolerating faulty
servers. The possible failures were limited to crashes.

Consider now a Byzantine quorum system (i.e., one that tolerates arbitrary (Byzantine) fail-
ures) and its application to a replicated read-write register. As with crash failures, the idea is that
a client writes by sending a message to all servers in a quorum and reads by receiving a message
from all servers in a quorum. No digital signatures must be used.

a) (4) Let P = {P1, . . . , Pn} be a set of servers. For a given t, define a Byzantine quorum
system on P that tolerates t failures. (Hint: We still require that some non-faulty server is
in the intersection of every two quorums. But faulty servers may give wrong answers and the
reader must still be able to determine the most recent value/timestamp pair from a correct
server.)

b) (4) Describe algorithms for writing to and reading from a single-reader single-writer repli-
cated read/write register, implemented by a Byzantine quorum system.

c) (6) Based on the 2-dimensional Grid quorum system, describe a Byzantine quorum system
that tolerates t faulty servers. What is its load?

3



5 Arrow (5 Points)

Consider the tree for the Arrow shared variable protocol in Figure 1 below. The token is held
by the circled node labeled r. Draw in the arrows for this initial state. Next, assume that there
are six concurrent requests placed by the nodes v1 through v6. Assuming a synchronous execution
of Arrow give the order of serviced requests.

v3

v2

v1

r

v6

v4

v5

Figure 1: Tree for Question 5.

6 Independent Set (10 Points)

a) (4) Devise a synchronous uniform algorithm that computes a large independent set on a
ring in O(1) number of rounds. By large we mean that the computed set should be, in the
expectation, a constant fraction of a maximum independent set. (Hint: Use randomization.)

b) (6) Give the value of your approximation ratio and prove it.

4


