$\mathrm{FS}~2010$

Prof. R. Wattenhofer / C. Lenzen

Principles of Distributed Computing Exercise 10

For this exercise, you may use the following *Chernoff bound*.¹

Theorem 1 (Chernoff's Bound)

Let $X := \sum_{i=1}^{N} X_i$ be the sum of N independent 0-1 random variables X_i . Then with high probability² (w.h.p.)

 $|X - \mathbb{E}[X]| \in O\left(\log n + \sqrt{\mathbb{E}[X]\log n}\right).$

1 Diameter of the Augmented Grid

Recall the network from the lecture where nodes were arranged in a grid and each node had an additional directed link to an uniformly and independently at random drawn node in the network (i.e., $\alpha = 0$). In the lecture, a proof of the fact that such a network has diameter $O(\log n)$ w.h.p. was sketched. We will now fill in the details.

a) Show that $O(cn/\log n)$ many nodes are enough to guarantee with high probability that at least one of their random links connects to a given set of $\Omega(\log^2 n)$ nodes. Prove this (i) by direct calculation and (ii) using Chernoff's bound.

Hint: Use that $1 - p \le e^{-p}$ for any p.

b) Suppose for some node set S we have that $|S| \in \Omega((\log n)^2) \cap o(n)$ and denote by H the set of nodes hit by their random links. Prove that H and together with its grid neighbors contains w.h.p. (5 - o(1))|S| nodes!

Hint: Observe that *independently* of all previous random choices, each new link has at least a certain probability p of connecting to a node whose complete neighborhood has not been reached yet. Then use Chernoff's bound on the sum of |S| many variables.

c) Infer from b) that starting from $\Omega(\log^2 n)$ nodes, with each hop the number of reached nodes w.h.p. more than doubles, as long as we have still $O(n/\log n)$ nodes (regardless of the constants in the *O*-notation).

Hint: Play with the constant c in the definition of w.h.p. and use the union bound.

d) Conclude that the diameter of the network is w.h.p. in $O(\log n)$.

¹Chernoff-type and similar probability bounds are very powerful tools that allowed to design a plethora of randomized algorithms that *almost* guarantee success. Frequently this "almost" makes a huge difference in e.g. running time and/or approximation quality.

²I.e., with probability at least $1-1/n^c$ for any fixed constant c > 0. The "fixed" here indicates that we typically see c as a constant with regard to O-notation. Thus, if someone names a constant c, then for instance the statement "the algorithm requires $O(\log n)$ rounds with high probability" translates to "the algorithm requires $O(\log n)$ rounds with probability" translates to "the algorithm requires $O(\log n)$ rounds with probability" translates to "the algorithm requires $O(\log n)$ rounds with probability at least $1 - 1/n^c$ ", where the $O(\log n)$ could mean e.g. $5c^2 \log n + e^{c^2} + 1001$.

2 Greedy Routing in the Augmented Grid

Consider now $\alpha = 2$, i.e., the random link of node u connects it to node w with probability $d(u, w)^{-2} / \sum_{v \in V \setminus \{u\}} d(u, v)^{-2}$. In the lecture, we saw that with probability $\Omega(1/\log n)$, in each step we get to the next phase when we employ greedy routing. Hence, the expected number of steps is in $O(\log^2 n)$. Prove that the same bound on the number of steps holds w.h.p.!