
FS 2010 Prof. R. Wattenhofer / C. Lenzen

Principles of Distributed Computing

Exercise 3: Sample Solution

1 Deterministic distributed algorithms

in the port-numbering model

Consider an oriented ring of n ≥ 3 nodes where we assign at each node portnumber 1 to the
outgoing and portnumber 2 to the incoming edge. Thus, all neighborhoods appear identical,
rendering any deterministic symmetry breaking impossible.

More precisely, all nodes run the same deterministic algorithm and their initial states are
identical to each other. Hence in the first round, whatever message one of the nodes sends to its
port 1, all other nodes will send the same message to their port 1; by the same reasoning, the
messages sent to port 2 are mutually identical as well. Hence the messages received from port 1 are
mutually identical and the same applies to the messages received from port 2. Therefore the local
states of the nodes are mutually identical after one communication round. The same reasoning
holds for any communication round: if the nodes have identical local states before the round, they
will also have dentical local states after the round. In particular, if one of them decides to stop
and announce its output, all nodes will do the same and announce the same output.

Therefore, any deterministic algorithm must produce the same output at all nodes. This is in
conflict with the output specifications of the problems from Parts a), b), d) and e). Since the
only possible valid output for Part c) is 0 (i.e., not in the set) at all nodes, the “approximation
ratio” must always be ∞. Finally, to output a vertex cover, all nodes must output 1 (i.e., in the
set), while an optimal solution picks every second node.

If randomization is allowed, we do the following. All nodes “flip a coin”. There is a positive
probability that exactly one node gets head. This node is the leader. Starting with itself, we
assign node “identifiers” 1, . . . , n, traversing the graph in a depth first search manner. Whenever
we encounter an already labeled node, we go back to the node we came from; if this node runs
out of edges, we go back to its parent. It is not difficult to see that all edges and thus all nodes
will be visited, and once we return to the leader and all of its edges are dealt with, we know that
all nodes have been labeled.

Having established distinct identifiers, it is now trivial to collect the graph topology at the
leader and deterministically compute an (optimal) solution to any problem that can be solved by
computation, in particular Parts a) to f) from the exercise.

Remark: If n is known, we can modify our approach to ensure success with high probability,
i.e., with probability 1 − 1/nc for any chosen constant c. Any node picks a random “identifier”
of ⌈(c + 1) log n⌉ bits. The maximum of the chosen values is with probability larger than 1 −
2−(c+1) log nn = 1/nc, i.e., with high probability, unique.1 Now all nodes assume to be the leader
and in parallel initiate the above strategy, however, labeling their messages with their “identifier”.
Once a node learns about a larger value than it currently assumes to be the leader’s, it discards
all state information and messages regarding the smaller value. Thus, in the end, with high
probability only the unique maximum value will “survive”.

1Two nodes have different values with probability 2−⌈(c+1) log n⌉. Applying the union bound and the fact that

we have n nodes yields the probability bound.



2 Calculations with the log∗ function

Recall that log∗ x = 1 if x ≤ 2 and log∗ x = 1 + log∗(log x) if x > 2.

a) k = (W (∆!)∆)∆ ≤ M((M !)M )M < M((MM )M )M = M · MM
3

= MM
3+1 < M2M

3

.

b) Since M ≥ 4, we have (2 log M)′ = 2
M

< 1 = M ′ for all possible M . Because for the
minimum value of M = 4 we have 2 log 4 = 4, it holds that 2 log M ≤ M for all M ≥ 4. We

conclude from Part a) that log k ≤ log
(

M2M
3

)

= 2M3 log M ≤ M4.

c) Applying the logarithm again, we get log log k ≤ log(M4) = 4 log M . As M ≥ 4, log M ≥ 2.
Similarly to Part b), we see that 2 + log M ≤ M . Thus, using the definition of log∗, we get
that log∗ k ≤ 2+log∗(4 log M) ≤ 3+log∗(log(4 log M)) ≤ 3+log∗(2+log M) ≤ 3+log∗(M) ∈
O(log∗ M).

d) Using Part c) and that log∗ is non-decreasing, we obtain that log∗ k ≤ 3 + log∗ M = 3 +
max{log∗ W, log∗ ∆, log∗ 4} ∈ O(log∗ ∆ + log∗ W ). Finally, certainly we have that log∗ ∆ ∈
O(∆), implying that ∆ + log∗ k ∈ O(∆ + log∗ W ).

2


