
FS 2010 Prof. R. Wattenhofer / C. Lenzen

Principles of Distributed Computing

Exercise 6: Sample Solution

1 Shared Sum

In the following, let X (initialized to 0) always denote the shared register used to hold the sum
x =

∑n

i=1
xi, and assume that all xi (and thus also x) are initially 0. Denote by ∆xi the amount by

which xi is changed by process pi at some time, i.e., if xi := x′

i is assigned by pi, then ∆xi = x′

i−xi.

a) To update x, pi calls fetch-and-add(X,∆xi). Therefore, X changes exactly the same as xi

and holds the correct value. Since no process has to wait or retry, we have neither lockouts
nor deadlocks. A simple read on X (or fetch-and-add(X, 0)) gets the current value of x.

b) An update is done by the following code:

1: x := X

2: while not compare-and-swap(X,x, x + ∆xi) do
3: x := X

4: end while

The loop is left after X changed by ∆xi exactly once, thus the code is correct. Again, x can
be obtained by a simple read. Since the compare-and-swap may only fail if another process
pj changed the value of X between pi reading it and calling compare-and-swap, there is no
deadlock. However, other updates may delay a change by some pi indefinitely, hence lockouts
are possible.

c) A write is implemented by

1: x := load-link(X)
2: while not store-conditional(X,x + ∆xi) do
3: x := load-link(X)
4: end while

and is correct for the same reasons as in b). Reads are again simple. Again, deadlocks are
impossible since the store-conditional may only fail if something has been written to the
register beforehand, but lockouts may occur.

d) It can be done. We use a special encoding on X. Either it stores a regular value and ⊥ (i.e.,
(x,⊥)) or the value and an additional identifier identifier id(i) of a process pi. A node will
effectively acquire a lock on X by writing its ID to X and only afterwards write its update
to X.



When xi is changed, pi executes

1: while true do
2: (x, id) := X // simple read
3: (x, id) := compare-and-swap(X, (x,⊥), (x, id(i))) // try to lock X with own ID
4: if id = id(i) then
5: X := (x + ∆xi,⊥) // regular write, but compare-and-swap would also do
6: break
7: end if
8: end while

Because writing by compare-and-swap works only if the second argument equals the value
of the register, once a process “locks” X with its identifier, no other process may do so until
the same process performs the write enclosed in the if-condition. Thus, this write happens
exactly if the compare-and-swap was successful. The only reason to check the identifier by
an if-statement rather than using compare-and-swap again is that we need to ensure that
the process leaves the loop after changing X by ∆xi. On the other hand, the while loop can
only be left after a succesful write, thus X is updated correctly. Reads are again plain reads.

As before, the solution is free of deadlocks: At least one process can write, because after
each write the ID part of X contains ⊥, i.e., one process will succeed in “locking” X. As in
b) and c), the solution is prone to lockouts.

2


