Principles of Distributed Computing
Exercise 7: Sample Solution

1 Concurrent Ivy

a) The three nodes are served in the order \(v_2, v_3, v_1 \).

b) Figure 1 depicts the structure of the tree after the requests have been served. Since \(v_1 \) is served last, it is the holder of the token at the end.

\[\text{Figure 1: Tree after the requests have been served.} \]

2 Tight Ivy

In order to show that the bound of \(\log n \) steps on average is tight, we construct a special tree which is defined recursively as follows. The tree \(T_0 \) consists of a single node. The tree \(T_i \) consists of a root together with \(i \) subtrees, which are \(T_0, \ldots, T_{i-1} \), rooted at the \(i \) children of the root, see Figure 2.

First, we will show that the number of nodes in the tree \(T_i \) is \(2^i \). This obviously holds for \(T_0 \). The induction hypothesis is that it holds for all \(T_0, \ldots, T_{i-1} \). It follows that the number of nodes of \(T_i \) is \(n = 1 + \sum_{j=0}^{i-1} 2^j = 2^i \).

We will show now that the radius of the root of \(T_i \) is \(R(T_i) = i \). Again, this is trivially true for \(T_0 \). It is easy to see that \(R(T_i) = 1 + R(T_{i-1}) \), because \(T_{i-1} \) is the child with the largest radius. Inductively, it follows that \(R(T_i) = i \).

By definition, when cutting of the subtree \(T_{i-1} \) from \(T_i \), the resulting tree is again \(T_{i-1} \). Let \(C : T_i \mapsto T_{i-1} \) denote this cutting operation. For all \(i > 0 \), we thus have that \(C(T_i) = T_{i-1} \). We will now start a request at the single node \(r \) with a distance of \(i \) from the root in \(T_i \). On its path to the root, the request passes nodes that are roots of the trees \(T_1, \ldots, T_i \). All of those nodes become
children of the new root v according to the Ivy protocol. The new children lose their largest “child” subtree in the process, thus the children of node v have the structures $C(T_i), \ldots, C(T_i) = T_0, \ldots, T_{i - 1}$. Hence, the structure of the tree does not change due to the request and all subsequent requests can also cost i steps. Since $n = 2^i$, each request costs exactly $\log n$.

Figure 2: The trees T_0, \ldots, T_3.

- T_0
- T_1
- T_2
- T_3