An application of the Cole-Vishkin algorithm: approximating vertex covers in anonymous networks

Jukka Suomela
Principles of Distributed Computing
10 March 2010
Vertex cover problem

• **Vertex cover** for a graph G:
 • Subset C of nodes that “covers” all edges: each edge incident to at least one node in C

• **Minimum vertex cover**:
 • Vertex cover with the smallest number of nodes

• **Minimum-weight vertex cover**:
 • Vertex cover with the smallest total weight
Vertex cover problem

- Classical NP-hard optimisation problem: given a graph G, find a minimum vertex cover

- Simple 2-approximation algorithm:
 - Find a maximal matching, output all endpoints
 - At most 2 times as large as minimum VC

- No polynomial-time algorithm with approximation factor 1.9999 known
Research question

• Can we find a 2-approximation of a minimum vertex cover in a **distributed setting**?

• Focus:

 • Fast, synchronous, **deterministic** distributed algorithms

 • Port-numbering model
Distributed algorithms

- Communication graph G
- Node = computer
- Edge = communication link
Distributed algorithms

- All nodes are identical, run the same algorithm
- We can choose the algorithm
- An adversary chooses the structure of G
- Our algorithm must produce a valid vertex cover in any graph G
Synchronous distributed algorithms

1. Each node reads its own **local input**:
 - node identifier
 - if we assume unique node IDs
 - node weight
 - if we study weighted graphs
Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds
 ...

[Diagram showing a network of nodes communicating]
Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds until all nodes have announced their local outputs
 - $1 = \text{in vertex cover}$
Synchronous distributed algorithms

- Running time = number of rounds
- Worst-case analysis
Distributed algorithms: two models

1. Unique identifiers
 - The standard model commonly used in the field

2. Port-numbering model
 - Much weaker model of computation
 - Our focus today
Model 1: Unique identifiers

- Node identifiers are a permutation of $1, 2, \ldots, n$
 - Or a subset of $1, 2, \ldots, \text{poly}(n)$
- Permutation chosen by adversary
Model 2: Port-numbering model

- No unique identifiers
- A node of degree d can refer to its neighbours by integers 1, 2, ..., d
- Port-numbering chosen by adversary
Cole-Vishkin algorithm

- **Colour reduction technique**
 - For cycles and trees — similar ideas can be used in more general graphs as well

- Replaces a k-colouring with an $O(\log k)$-colouring in one round
 - Repeated application: replaces a k-colouring with a 6-colouring in $O(\log^* k)$ rounds
 - Simple additional tricks can be used to find a 3-colouring
Cole-Vishkin algorithm

- Colour reduction technique
- If we have unique identifiers:
 - Interpret unique IDs as an n-colouring
 - Cole-Vishkin finds a 3-colouring in $O(\log^* n)$ rounds
- However, we can’t use this trick in the port-numbering model
 - And we are trying to find a vertex cover, not a colouring!
Vertex cover in the port-numbering model

- Convenient to study a more general problem: minimum-weight vertex cover
 - More general problems are sometimes easier to solve?

Notation: \(w(v) = \text{weight of } v \)
Edge packings and vertex covers

- **Edge packing**: weight \(y(e) \geq 0 \) for each edge \(e \)
 - Packing constraint: \(y[v] \leq w(v) \) for each node \(v \), where \(y[v] = \) total weight of edges incident to \(v \)
Edge packings and vertex covers

- **Edge packing**: weight $y(e) \geq 0$ for each edge e
 - Packing constraint: $y[v] \leq w(v)$ for each node v, where $y[v] = \text{total weight of edges incident to } v$

![Graph diagram]

$y[u] = 2$
$w(u) = 6$
Edge packings and vertex covers

• **Edge packing**: weight \(y(e) \geq 0 \) for each edge \(e \)

 • Packing constraint: \(y[v] \leq w(v) \) for each node \(v \), where \(y[v] \) = total weight of edges incident to \(v \)

\[y[v] = 3 + 0 + 4 + 0 + 0 + 2 \]
\[w(v) = 9 \]
Edge packings and vertex covers

- Node \(v \) is \textbf{saturated} if \(y[v] = w(v) \)
 - Total weight of edges incident to \(v \) is \textit{equal} to \(w(v) \), i.e., the packing constraint holds with equality
Edge packings and vertex covers

• Edge e is **saturated** if at least one endpoint of e is saturated

 • Equivalently: edge weight $y(e)$ can’t be increased

$2 + \varepsilon$ would violate a packing constraint
Edge packings and vertex covers

- **Maximal edge packing**: all edges saturated
 \[\iff \text{none of the edge weights } y(e) \text{ can be increased} \]
 \[\iff \text{saturated nodes form a vertex cover!} \]
Edge packings and vertex covers

- Minimum-weight vertex cover C^* difficult to find:
 - Centralised setting: NP-hard
 - Distributed setting: integer problem (choose 0 or 1), symmetry-breaking issues

- Maximal edge packing y easy to find:
 - Centralised setting: trivial greedy algorithm
 - Distributed setting: linear problem, no symmetry-breaking issues (?)
Edge packings and vertex covers

- Minimum-weight vertex cover C^* difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes $C(y)$ in y: 2-approximation of C^*
 - Textbook proof: LP-duality, relaxed complementary slackness
 - Minimum-weight fractional vertex cover and maximum-weight edge packing are dual problems
 - But we there’s a simple and more elementary proof...
Edge packings and vertex covers

\[\sum_{v \in C(y)} w(v) \]
Total weight of saturated nodes

= \[\sum_{v \in C(y)} y[v] \]
Saturated nodes have \(y[v] = w(v) \)

= \[\sum_{e \in E} y(e) | e \cap C(y) | \]
Interchange the order of summation

\leq 2 \sum_{e \in E} y(e) | e \cap C^* | \]
Each edge is covered at least \textit{once} by \(C^* \) and at most \textit{twice} by \(C(y) \)

= 2 \sum_{v \in C^*} y[v] \]
Interchange the order of summation

\leq 2 \sum_{v \in C^*} w(v) \]
All nodes have \(y[v] \leq w(v) \)
Edge packings and vertex covers

\[\sum_{v \in C(y)} w(v) \]
\[= \sum_{v \in C(y)} y[v] \]
\[= \sum_{e \in E} y(e) \mid e \cap C(y) \mid \]
\[\leq 2 \sum_{e \in E} y(e) \mid e \cap C^* \mid \]
\[= 2 \sum_{v \in C^*} y[v] \]
\[\leq 2 \sum_{v \in C^*} w(v) \]

Saturated nodes

\[\sum_{v \in C(y)} \sum_{e \in E: v \in e} y(e) \]

Interchange the order of summation

\[\sum_{e \in E} \sum_{v \in C(y): v \in e} y(e) \quad y[v] = w(v) \]

Interchange the order of summation

Each edge is covered at least once by \(C^* \) and at most twice by \(C(y) \)

All nodes have \(y[v] \leq w(v) \)
Part I: Summary

• Goal:
 • Find a 2-approximation of minimum-weight vertex cover
 • Deterministic algorithm in the port-numbering model

• Idea:
 • Find a maximal edge packing, take saturated nodes

• Part II:
 • Begin with a “greedy but safe” algorithm
 • We will see later how the Cole-Vishkin technique helps
Part II: Finding a maximal edge packing
Finding a maximal edge packing: phase I

- \(y[v]\) = total weight of edges incident to node \(v\)
- **Residual capacity** of node \(v\): \(r(v) = w(v) - y[v]\)
- Saturated node:
 \(r(v) = 0\)
Finding a maximal edge packing: phase I

Start with a trivial edge packing \(y(e) = 0 \)
Finding a maximal edge packing: phase I

Each node v offers $r(v)/\text{deg}(v)$ units to each incident edge
Finding a maximal edge packing: basic idea

Each edge **accepts** the smallest of the 2 offers it received

Increase \(y(e) \) by this amount

- Safe, can’t violate packing constraints
Finding a maximal edge packing: phase I

Update residuals...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...

Increase weights...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...

Increase weights...

Update residuals...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...

Increase weights...

Update residuals and graph, etc.
Finding a maximal edge packing: phase I

This is a simple deterministic distributed algorithm.

We are making some progress towards finding a maximal edge packing — but...
Finding a maximal edge packing: phase 1

This is a simple deterministic distributed algorithm.

We are making some progress towards finding a maximal edge packing — but this is too slow!
Finding a maximal edge packing: colouring trick

- Offer is a local minimum:
 - Node will be saturated
 - And all edges incident to it will be saturated as well
Finding a maximal edge packing: colouring trick

- Offer is a local minimum:
 - Node will be saturated
- Otherwise there is a neighbour with a different offer:
 - Interpret the offer sequences as “colours”
 - Nodes u and v have different colours: \{u, v\} is multicoloured
Finding a maximal edge packing: colouring trick

• Some progress guaranteed:
 • On each iteration, for each node, at least one incident edge becomes saturated or multicoloured
 • Such edges are be discarded in phase I: node degrees decrease by at least one on each iteration
 • Hence in Δ iterations all edges are saturated or multicoloured

$\Delta = \text{maximum degree}$
Finding a maximal edge packing: colouring trick

- Phase I: in Δ rounds all edges are **saturated** or **multicoloured**
 - Saturated edges are good — we’re trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?
Finding a maximal edge packing: colouring trick

- Phase I: in Δ rounds all edges are saturated or multicoloured
 - Saturated edges are good – we’re trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?
 - Let’s focus on unsaturated nodes and edges
Finding a maximal edge packing: colouring trick

- Colours are sequences of Δ offers, which are rational numbers.
- Assume that node weights are integers $1, 2, \ldots, W$.
- Let’s analyse the offers more carefully in that case…
Finding a maximal edge packing: colouring trick

- Offers are rationals of the form $q/(\Delta!)^\Delta$
 - Proof idea: multiply weights by $(\Delta!)^\Delta$
 - Then $r(v)$ is a multiple of $(\Delta!)^\Delta$ before iteration 1
 - Offer $r(v)/\deg(v)$ is a multiple of $(\Delta!)^{\Delta-1}$ on iteration 1
 - $r(v)$ is a multiple of $(\Delta!)^{\Delta-1}$ after iteration 1
 - ... (more formally: proof by induction)
- $r(v)$ is a multiple of $\Delta!$ before iteration Δ
- Offers are integers on iteration Δ
Finding a maximal edge packing: colouring trick

- Offers are rationals of the form $q/(\Delta!)^\Delta$
 - Proof idea: if we multiplied weights by $(\Delta!)^\Delta$, then the offers would integers throughout the algorithm
 - Without scaling, we get in the worst case $q/(\Delta!)^\Delta$
- If node weights are integers 1, 2, ..., W, then offers are rationals between 0 and W
 - Offer of v is at most $r(v) \leq w(v) \leq W$
- There are at most $W(\Delta!)^\Delta$ possible offers!
Finding a maximal edge packing: colouring trick

- Colours are sequences of Δ offers, which are rational numbers.
- Assume that node weights are integers $1, 2, \ldots, W$.
- Then there are at most $W(\Delta!)^\Delta$ possible offers.
- And hence only $k = (W(\Delta!)^\Delta)^\Delta$ possible colours.
Finding a maximal edge packing: colouring trick

- Only $k = (W(\Delta!))^\Delta$ possible colours
- Replace “inconvenient” colours (sequences of rationals) with “convenient” colours (integers 1, 2, ..., k)
Finding a maximal edge packing: phase II

• We have a proper k-colouring of the unsaturated subgraph

• Orient from lower to higher colour (acyclic directed graph)
Finding a maximal edge packing: phase II

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)
- Partition in Δ forests
 - Each node assigns its outgoing edges to different forests
Finding a maximal edge packing: phase II

- For each forest in parallel...
Finding a maximal edge packing: phase II

• For each forest in parallel:
 • Use Cole-Vishkin style colour reduction algorithm
 • Given a k-colouring, finds a 3-colouring in time $O(\log^* k)$
Finding a maximal edge packing: phase II

- For each forest and each colour $j = 1, 2, 3$ in sequence:
 - Consider all outgoing edges of colour-j nodes
Finding a maximal edge packing: phase II

- For each forest and each colour \(j = 1, 2, 3 \) in sequence:
 - Consider all outgoing edges of colour-\(j \) nodes
 - Node-disjoint stars: easy to saturate all such edges in parallel
 - Two simple cases:
 - saturate centre
 - saturate all leaves
Finding a maximal edge packing: phase II

- This way we can saturate all multicoloured edges:
 - Each edge belongs to one forest, and its tail has colour 1, 2, or 3
 - We simply go through all forests and all colours and therefore saturate everything
Finding a maximal edge packing: algorithm overview

- **Phase I:**
 - All edges become saturated or multicoloured

- **Phase II:**
 - Multicoloured edges are partitioned in Δ forests
 - Forests are 3-coloured
 - 3-coloured forests are saturated
Finding a maximal edge packing: running time analysis

• Total running time:
 • All edges become saturated or multicoloured: $O(\Delta)$
 • Multicoloured forests are 3-coloured: $O(\log^* k)$
 • 3-coloured forests are saturated: $O(\Delta)$

• $O(\Delta + \log^* k) = O(\Delta + \log^* W)$
 • k is huge, but \log^* grows slowly
Finding a maximal edge packing: summary

- Maximal edge packing and 2-approximation of vertex cover in time $O(\Delta + \log^* W)$
 - $W =$ maximum node weight
- Unweighted graphs: running time simply $O(\Delta)$, independent of n
- Everything can be implemented in the port-numbering model
Finding a maximal edge packing: recap

Phase I:

- **Residuals**
 \[r(v) = w(v) - y[v] \]
- **Offer** \(r(v)/\deg(v) \)
- **Accept minimum**, increase weights
- **Progress**: edges become *saturated* or *multicoloured* (different offers)
Finding a maximal edge packing: recap

Phase II:

- Saturated edges are already ok, we focus on multicoloured edges
- Colours are sequences of offers, re-colour with integers 1, 2, \ldots, k
- Partition in \(\Delta \) forests
- Cole-Vishkin: 3-colouring
- Use colours to saturate all edges
Finding a maximal edge packing: some intuition

- Regular graph with uniform weights:
 - Symmetry-breaking (e.g., graph colouring) is not possible in the port-numbering model
 - But it is trivial to find a maximal edge packing directly

- “Irregular” graph:
 - We have symmetry-breaking information, which can be used to find a graph colouring, which can be used to find a maximal edge packing

- Handling these two cases turns out to be enough!
Take-home messages

• Non-trivial problems can be solved in very restrictive models of distributed computing

• Generalise!
 • More difficult problems may be easier to solve: vertex cover \rightarrow weighted vertex cover \rightarrow weighted set cover...

• Cole-Vishkin technique is a powerful tool
 • Wide range of applications far beyond the textbook examples of colouring cycles with numerical IDs
 • \log^* of almost everything is something reasonable