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Summary. A quorum system is a collection of sets (quo-
rums) every two of which intersect. Quorum systems have
been used for many applications in the area of distributed
systems, including mutual exclusion, data replication and
dissemination of information. In this paper we introduce
a general class of quorum systems called Crumbling ¼alls
and study its properties. The elements (processors) of
a wall are logically arranged in rows of varying widths.
A quorum in a wall is the union of one full row and
a representative from every row below the full row. This
class considerably generalizes a number of known quorum
system constructions. The best crumbling wall is the
CWlog quorum system. It has small quorums, of size
O(lg n), and structural simplicity. The CWlog has optimal
availability and optimal load among systems with such
small quorum size. It manifests its high quality for all
universe sizes, so it is a good choice not only for systems
with thousands or millions of processors but also for
systems with as few as 3 or 5 processors. Moreover, our
analysis shows that the availability will increase and the
load will decrease at the optimal rates as the system
increases in size.

Key words: Availability — Coteries — Distributed comput-
ing — Fault tolerance — Load — Quorum systems

1 Introduction

1.1 Motivation

Quorum systems serve as a basic tool providing a uniform
and reliable way to achieve coordination between proces-
sors in a distributed system. Quorum systems are defined
as follows. A set system is a collection of sets S"

MS
1
,2, S

m
N over an underlying universe º"Mu

1
,2, u

n
N.

A set system is said to satisfy the intersection property, if
every two sets S, R3S have a nonempty intersection. Set
systems with the intersection property are known as quo-
rum systems, and the sets in such a system are called
quorums.

Quorum systems have been used in the study of distrib-
uted control and management problems such as mutual
exclusion (cf. [34]), data replication protocols (cf. [8, 14]),
name servers (cf. [24]), selective dissemination of informa-
tion (cf. [37]), and distributed access control and signa-
tures (cf. [26]).

A protocol template based on quorum systems works
as follows. In order to perform some action (e.g., update
the database, enter a critical section), the user selects
a quorum and accesses all its elements. The intersection
property then guarantees that the user will have a consis-
tent view of the current state of the system. For example, if
all the members of a certain quorum give the user per-
mission to enter the critical section, then any other user
trying to enter the critical section before the first user has
exited (and released the permission-granting quorum from
its lock) will be refused permission by at least one member
of any quorum it chooses to access.

We consider three criteria of measuring the quality of
a quorum system:

1. Quorum size — having small quorums has obvious
advantages such as a low message complexity of the proto-
col using the system or a low number of replicas kept.

2. Availability — assuming that each element fails with
probability p, what is the probability, F

p
, that the surviv-

ing elements do not contain any quorum? This failure
probability measures how resilient the system is, and we
would like F

p
to be as small as possible. A desirable

asymptotic behavior of F
p
is that F

p
P0 when nPRfor all

p(1
2
, and such an F

p
is called Condorcet.

3. ¸oad — A strategy is a rule giving each quorum an
access probability (so that the probabilities sum up to 1).
A strategy induces a load on each element, which is the
sum of the probabilities of all quorums it belongs to. This
represents the fraction of the time an element is used. For
a given quorum system S, the load L(S) is the minimal



1We use lg to denote log
2

Fig. 1. The crumbling wall CWS1, 5, 4, 4, 6, 5, 3, 4T, with one quo-
rum shaded

load on the busiest element, minimizing over the strategies.
The load measures the quality of a quorum system in the
following sense. If the load is low, then each element is
accessed rarely, thus it is free to perform other unrelated
tasks.

These criteria are conflicting, so there can be no quo-
rum system construction that is optimal with respect to all
of them. The quorum systems which have optimal avail-
ability or optimal load (or achieve a tight tradeoff between
these two criteria) have relatively large quorums, of size
X (Jn). Additionally some of the best systems are asymp-
totic in nature, manifesting their optimality only in very
large systems. This situation leads to a quest for new
quorum system constructions that combine small quorum
sizes with high availability and low load, both asymp-
totically and for practical system sizes.

1.2 Related work

The first distributed control protocols using quorum sys-
tems [12, 36] use voting to define the quorums. Each
processor has a number of votes, and a quorum is any set
of processors with a combined number of votes exceeding
half of the system’s total number of votes. The simple
majority system is the most obvious voting system.

The availability of voting systems is studied in [5]. It is
shown that in terms of availability, the majority is the best
quorum system when p(1

2
. In [9, 28] the failure probabil-

ity function F
p
is characterized, and among other things it

is shown that the singleton has the best availability when
p'1

2
. The case when the elements fail with different prob-

abilities p
i
is addressed in [35] and extended in [4].

The first paper to explicitly consider mutual exclusion
protocols in the context of intersecting set systems is [11].
In this work the term coterie and the concept of domination
are introduced. Several basic properties of dominated and
non-dominated coteries are proved.

Alternative protocols based on quorum systems (rather
than on voting) appear in [22] (using finite projective
planes), [1] (the Tree system), [6, 20] (using a grid), [18, 19,
32, 33] (hierarchical systems). The triangular system is due
to [10, 21]. A generalization of the triangular system ap-
pears in [27] under the name Lovász coteries. The Wheel
system appears in [23].

In [15], the question of how evenly balanced the work
load can be is studied. Tradeoffs between the potential
load balancing of a system and its average load are ob-
tained. The notion of load is studied further in [25]. Lower
bounds on the load and tradeoffs between the load and
availability are shown. Four quorum system constructions
are shown, featuring optimal load and high availability.
The question of how many probes are needed for a live
quorum to be found is addressed in [31].

While the majority quorum system is the best in terms
of availability, and the finite projective planes (FPP) con-
struction has excellent load, they fail according to the
other criteria: the load of majority is 1/2 and the failure
probability of the FPP tends to 1 as the number of ele-
ments grows. The constructions of [25] have both optimal
load and high availability, however the availability be-
comes high only for large values of n. Additionally, all the

existing constructions have quorum sizes larger than Jn
(except for the Tree construction of [1]).

1.3 New results

This paper introduces a new class of quorum system con-
structions, which we call Crumbling ¼alls (or simply
walls). The crumbling walls are a generalization of the
triangular construction of [10, 21], the Grid of [6], the
hollow grids of [20], the Wheel of [23] and the Lovász
coteries of [27]. The elements are arranged in rows, and
a quorum is the union of one full row and a single repre-
sentative from every row below the full row. However,
unlike the triangular system, we do not require that row
i have exactly i elements, and allow the ‘‘wall ’’ to crumble
at its edge (see Fig. 1). A crumbling wall with a sequence of
row widths n"(n

1
, n

2
,2, n

d
) is denoted by CWSnT.

We first discuss some general properties of the crumbl-
ing wall construction. We show that a wall is a non-
dominated (ND) coterie iff the first row is of width 1 and
rows 2,2, d are of width72. It follows that the number
of ND walls over a universe of size n elements is exponen-
tial in n (in fact it is exactly a Fibonacci number). Then we
show that for any element failure probability 0(p(1,
the availability of a wall is improved if the widths form
a monotone increasing sequence. We also consider the
load of crumbling walls. We prove a lower bound on the
load, and show access strategies that achieve near optimal
load.

Next we introduce what we consider to be the best
crumbling wall, the CWlog system, with quorums of size
lg n!lg lg n.1 We show that it has optimal load among the
quorum systems with logarithmic size quorums, namely
L(CWlog)"O(1/log n). In [30] it is shown that CWlog
also has optimal availability among quorum systems in
that class, namely F

p
(CWlog)"O(n~e) for some constant

e(p)'0. We show that CWlog has high availability for
small universe sizes as well; its availability is much better
than the Grid and slightly better than the Tree, beginning
from universe size n"5. We present two simple proced-
ures to pick quorums, designed to minimize different cri-
teria. The first always picks the smallest live quorum but
induces a high load. The second induces a near optimal
load but occasionally picks larger quorums. We show that
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the asymptotic load of the CWlog system remains low
even when failures may occur. Specifically, as long as the
elements’ failure probability is below 0.432 then with high
probability the CWlog still has load of O(1/log n). We
conclude that CWlog is a good candidate to be the con-
struction of choice in practice, featuring high availability,
low load, small quorums, and structural simplicity.

The organization of this paper is as follows. In Sect. 2
we introduce the definitions and notation, and list some
useful theorems. Section 3 contains proofs of the basic
properties of crumbling walls. In Sect. 4 we introduce the
CWlog system and discuss its properties.

An extended abstract of this paper can be found in
[29].

2 Preliminaries

2.1 Definitions and notation

Let us first define the basic terminology used later on.

Definition 2.1. A Set System S"MS
1
,2,S

m
N is a collec-

tion of subsets S
i
-º of a finite universe º. A Quorum

System is a set systemS that has the Intersection property:
SWR9H for all S, R3S.

Alternatively, quorum systems are known as intersect-
ing set systems or as intersecting hypergraphs. The sets of
the system are called quorums. The number of elements in
the underlying universe is denoted by n"Dº D. The car-
dinality of the smallest quorum in S is denoted by
c(S )"minMDS D : S3SN.

Definition 2.2. A Coterie is a quorum system S that has
the Minimality property: there are no S, R3S, s.t. SLR.

Definition 2.3. Let R,S be coteries (over the same uni-
verse º ). Then R dominates S, denoted RzS, if R9S
and for each S3S there is R3R such that R-S. A
coterie S is called dominated if there exists a coterie R
such that RzS. If no such coterie exists then S is
non-dominated (ND). Let NDC denote the class of all ND
coteries.

2.2 Examples

Let us illustrate the concept of quorum systems by giving
some examples, that play an important role in the results
of this paper. The following constructions are known to be
non-dominated coteries, except for the Grid system.

The singleton system, denoted by Sngl, is the set system
Sngl"MMuNN.

The majority system [36], denoted by Maj, is the

collection of all sets of
n#1

2
elements over a universe º,

when n"Dº D is odd.
The Wheel [23, 28] contains n!1 ‘‘spoke’’ quorums of

the form M1, iN for i"2,2, n, and one ‘‘rim’’ quorum,
M2,2, nN.

In the triangular system [10, 21], denoted by Triang,
the elements are arranged in d rows, with row i containing

i elements. A quorum is any set composed of one complete
row i, and a representative from every row j'i.

The Lovász coteries of [27] are a generalization of the
Triang, in which the first row contains a single element,
and all the other rows contain at least 2 element each.
A quorum in the system is defined as in the Triang.

In the Tree system [1] the elements are organized in
a complete rooted binary tree. A quorum in the system is
defined recursively to be either (i) the union of the root and
a quorum in one of the two subtrees, or (ii) the union of
two quorums, one in each subtree.

In the Grid [6] the n"d2 elements are arranged in
a d]d grid, and a quorum in the system consists of one
complete row and a representative element from all the
other rows.

2.3 The probabilistic failure model

We use a simple probabilistic model of the failures in the
system. We assume that the elements (processors) fail inde-
pendently with a fixed uniform probability p. We assume
that the failures are transient, that the failures are crash
failures (i.e., a failed element stops to function rather than
functions incorrectly), and that they are detectable.

Note that this model implicitly assumes that the com-
munication links are perfect, and that the network is fully
connected, hence the network never partitions. In general
this is an oversimplification of real communication net-
works (see [3] for an empirical evaluation of network
connectivity). However we believe that such a model is
reasonable for some important cases, and especially for
a well maintained local area network (LAN).

Notation. We use q"1!p to denote the probability of
an element’s survival.

In this failure model with probability p, the following
events can be defined.

Definition 2.4 (Quorum failure). For every quorum S3S
let E

S
be the event that S is hit, i.e., at least one element i3S

has failed. Let fail(S) be the event that all the quorums
S3S were hit, i.e., fail(S)"§

S|S
E
S
.

Now we can define the global system failure probability of
a quorum system S (cf. [28]), as follows.

Definition 2.5 F
p
(S )"P(fail (S))"P (§

S|S
E
S
).

The following theorem of [28] describes an important
property of the failure probability F

p
.

Theorem 2.6 (Symmetry) [28]. For any S3NDC, F
p
(S)

#F
1~p

(S)"1.

When we consider the asymptotic behavior of F
p
(S

n
) for

a sequence S
n
of quorum systems over a universe with an

increasing size n, we find that for many constructions it is
similar to the behavior described by the Condorcet Jury
Theorem [7]. Hence, the following definition of [28].

Definition 2.7 [28]. A parameterized family of functions
g
p
(n) :NP[0, 1], for p3[0, 1], is said to be Condorcet if

lim
n?=

g
p
(n)"G

0,

1,

p(1
2
,

p'1
2
,
and g

1@2
(n)"1

2
for all n.
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2Usually a quorum in a Grid is one full row and a representative in
every other row. Our somewhat improved variant, in which represen-
tatives are required only below the full row, has smaller quorums and
dominates the regular Grid

In [28] it is shown that the Maj and Tree quorum systems
have Condorcet failure probability functions, while the
Sngl, Wheel, Triang and Grid systems do not.

2.4 The load

In this section we list some definitions and theorems from
[25] regarding the load of a quorum system.

A protocol using a quorum system (for mutual exclu-
sion, say) occasionally needs to access quorums during its
run. A strategy is a probabilistic rule that governs which
quorum is chosen each time. In other words, a strategy
gives the probability that a quorum S

j
will be picked.

Definition 2.8. Let a quorum system S"(S
1
,2, S

m
) be

given over a universe º. Then w3[0, 1]m is a strategy for
S if it is a probability distribution over the quorums
S
j
3S, i.e., +m

j/1
w
j
"1.

For every element i3º, a strategy w of picking quorums
induces a probability that the element i is accessed, which
we call the load on i. The system load,L(S ), is the load on
the busiest element induced by the best possible strategy.

Definition 2.9. Let a strategy w be given for a quorum
systemS"(S

1
,2, S

m
) over a universe º. For an element

i3º, the load induced by w on i is l
w
(i)"+

S
j

Ui
w
j
. The load

induced by a strategy w on a quorum system S is

L
w
(S)"max

i|U
l
w
(i ).

The system load on a quorum system S is L (S)"
min

w
ML

w
(S)N, where the minimum is taken over all strat-

egies w.

Following are lower bounds of [25] on the loadL (S) and
the failure probability F

p
in terms of the smallest quorum

size c(S ).

Proposition 2.10 [25]. L(S)7
1

c(S)
for any quorum

system S.

Proposition 2.11 [25]. F
p
(S)7pc (S) for any quorum sys-

tem S and any p3[0, 1].

In [25] it is shown that the Maj and Wheel have a load of
'1

2
, while the Tree has a load of O(1/lg n) and the Grid

and Triang have a load of O(1/Jn) (which is optimal up to
constants).

3 Basic properties of crumbling walls

3.1 What are crumbling walls

Definition 3.1 (Crumbling Wall). Let n"(n
1
,2, n

d
) be

such that +d
i/1

n
i
"n. ¸et º

1
,2 ,º

d
be nonempty disjoint

subsets of the universe º with Dº
i
D"n

i
. ¹hen

CWSnT"

Mº
i
XMu

i`1
,2, u

d
N : u

j
3º

j
for j"i#1,2 , dN

is the crumbling wall defined by n. The set º
i
is called the

i’th row and n
i
is its width. A quorum that uses row i as the

full row is called based on row i.

The class of crumbling walls encompasses a number of
other coterie classes as special cases: the Sngl, Triang,
Wheel, Grid and Lovász coteries. The Sngl coterie is a triv-
ial wall with n"(1), the Triang with d rows is a wall
defined by n"(1, 2,2 , d), the Wheel over n elements is
a wall defined by n"(1, n!1), and a d]d Grid is a wall
defined by n"(d, d,2 , d).2 A Lovász coterie is a wall
with n

1
"1 and n

i
72 for all i72.

The following proposition of [27] shows that Lovász
coteries are ND.

Proposition 3.2 [27]. If n
1
"1 and n

i
72 for all i72 then

CWSnT3NDC.

In Proposition 3.5 we extend this result, showing that these
are in fact the only ND walls. We do this via two simple
lemmas.

Lemma 3.3. If n
i
"1 for some i72 then CWSnT is not

a coterie.

Proof. Assume that there exists some i72 such that
n
i
"1. Then any quorum S3CWSnT that is based on

row 1 contains the single element in row i, i.e., the whole
º

i
. But then S contains some other quorum R3CWSnT

(that is based on row i), violating the Minimality property,
so CWSnT is not a coterie. K

Lemma 3.4. if n
i
72 for all i then CWSnT is dominated.

Proof. Any set ¹"Mu
1
,2, u

d
N with u

i
3º

i
for 16i6d

intersects all the quorums, but ¹NCWSnT. Therefore
CWSnT is dominated. K

Proposition 3.5. CWSnT3NDC iff n
1
"1 and n

i
72 for

all 26i6d.

Proof. Immediate from Proposition 3.2, Lemmas 3.3 and
3.4. K

3.2 The number of ND walls

The number of ND coteries over a universe of size n is 22cn
for some constant c (Yannakakis, cf. [11]). Of these,
roughly 2nÈ are voting coteries ([11, 16] and the references
therein).

The following proposition shows that the number of
ND walls is exponential in n (in fact, it is exactly
a Fibonacci number). Note however that here we count
non-isomorphic walls, i.e., the number of different ND wall
shapes.

Proposition 3.6. ¹he number of non-dominated walls over
a universe of size n73 is Fib(n!3), where Fib(i) is the i’th
Fibonacci number, Fib(0)"1, Fib(1)"1.

Proof. Following Proposition 3.5, the first row of an ND
wall is of width 1, and all the other rows are of width72. If
there are d rows in the wall, then we need to distribute
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n!2d#1 identical elements among d!1 distinct rows
(excluding the first row). There are

A
(n!2d#1)#(d!1)!1

(d!1)!1 B"A
n!d!1

d!2 B
was to do so. Therefore

dWalls"+
d
A
n!d!1

d!2 B"+
j
A
n!3!j

j B
where the summations are over all the values giving non-
zero binomial coefficients. Using a combinatorial identity
[17, p. 84] we get dWalls"Fib(n!3). K
Remark. In order for this result to be comparable to the
numbers of ND coteries and voting systems, we must also
take into account the number of ways of mapping n ele-
ments onto a wall. But even if we ignore the fact that
elements in the same row are equivalent, and we multiply
the result of the proposition by n!, then dwalls62O(n -0'n),
which is still very small in comparison to both voting and
general ND coterie numbers.

3.3 The failure probability of crumbling walls

To calculate the failure probability of a given crumbling
wall, consider the following procedure to search the wall
for either a complete quorum or a failure configuration.
We go over the rows from the bottom up, starting with
row d. At row i we have three options:

1. If i"0 or all n
i
elements in the row have failed, stop;

the system has failed.
2. If all n

i
elements in the row are alive, stop; there is

a live quorum in the system.
3. Otherwise, continue to row i!1.

A moment’s reflection reveals that the procedure considers
row i!1 only if row i has both a failed element and a live
one. Therefore if a fully live row is found, its union with all
the live elements in rows below it gives a live quorum. On
the other hand, if a fully failed row is found, then it is
pointless to search rows above it and we know that all
rows below it contain a failed element, so no live quorum
exists. If no row is fully live then obviously no live quorum
exists. Thus both stopping decisions are correct.

Note that if row 1 consists of a single element, then
there is no need to check if i reaches zero since the proced-
ure must fall into one of the stopping cases.

Notation. Let F
p
(i ) denote F

p
of the sub-wall of the top

i rows.

Fact 3.7. ¹he failure probability F
p
(i ) obeys the recurrence

G
F
p
(1)"1!qnÇ,

F
p
(i)"pn

i
#(1!pn

i
!qn

i
)F

p
(i!1), i'1.

When n
1
"1 then 1!qnÇ"p, so we can expand the

recurrence to get

Fact 3.8. ¹he failure probability of a wall CWSnT on
d rows with n

1
"1 is

F
p
(CWSnT)"

d
+
i/1

pn
i

d
<

j/i`1

(1!pn
j
!qn

j
).

3.4 The advantage of monotone increasing walls

In this section we prove that walls with monotone increas-
ing row widths have the best availability among all the row
permutations.

Lemma 3.9. ¸et S"CWSs
1
,2 , s

d
T be an ND wall, and

let i be such that s
i`1

(s
i
. Consider the wall with rows i and

i#1 switched, namely, R"CWSr
1
,2 , r

d
T such that

r
i
"s

i`1
, r

i`1
"s

i
, and r

j
"s

j
for all other j ’s. If p(1

2
then

F
p
(R)(F

p
(S ).

Proof. Since S3NDC then by Proposition 3.5 s
1
"1,

therefore i91 (otherwise s
2
(1 which is impossible), and

then r
1
"1 as well. Therefore we can use Fact 3.8 and

write

F
p
(S)"

d
+
k/1

ps
k

d
<

j/k`1

(1!ps
j
!qs

j
),

and similarly forR. Consider the difference F
p
(S)!F

p
(R),

term by term according to the index k. If k'i#1
then s

j
"r

j
for all j7k, so this term contributes 0 to

the difference. If k(i then the products are of the same
values (reordered), so again this term contributes nothing.
Therefore

F
p
(S)!F

p
(R)"

<
j;i`1

(1!ps
j
!qs

j
)[ps

i
(1!ps

i
`Ç!qs

i
`Ç)#ps

i
`Ç

!pr
i
(1!pr

i
`Ç!qr

i
`Ç)!pr

i
`Ç].

Since we only care about the sign of the expression, we can
drop the product and plug r

i
to get

ps
i
(1!ps

i
`Ç!qs

i
`Ç)#ps

i
`Ç!ps

i
`Ç(1!ps

i
!qs

i
)!ps

i
"

ps
i
`Çqs

i
`Ç(qs

i
~s

i
`Ç!ps

i
~s

i
`Ç),

and when s
i`1

(s
i
and p(1

2
(q the last expression is

strictly positive. K
Remark. Lemma 3.9 holds when SNNDC as well, i.e.,
when s

1
91. However the proof becomes somewhat more

cumbersome, so for clarity it is omitted.

By applying Lemma 3.9 repeatedly to any given wall
system with non-monotone row widths we conclude:

Corollary 3.10. Out of all the walls defined by some per-
mutation of (n

1
,2, n

d
), the wall with the minimal failure

probability when 0(p(1
2

has its rows in a monotone
non-decreasing order of widths. K

3.5 The load of crumbling walls

In this section we consider the load L(CWSnT) of
a crumbling wall. We first show a lower bound on the load.
Then we classify a wall as either normal or truncated, and
describe a simple access strategy for each kind of wall. We
prove that in both cases the induced load is at most twice
the optimum.

Proposition 3.11. ¸et c"c(CWSnT) be the size of the
smallest quorum in a wall CWSnT with d rows. ¹hen

L(CWSnT)7max G
1

c
,
1

dH .
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1. The rows are º
1
,2 ,º

d
.

2. Pick a row i in the range d!t#16i6d at random with
probability 1/t.

3. Set QQH. For all j'i, pick an element u
j
3º

j
at random with

probability 1/n
j
, and add it to Q.

4. return º
i
XQ.

Fig. 2. Procedure Pick(t) to pick a quorum based on one of the
bottom t rows

Proof. The first term in the maximum is just a re-state-
ment of Proposition 2.10. For the second term, consider
some collection Mu

1
,2, u

d
N of elements, one from each

row. Since every quorum contains at least one such u
j
, any

strategy must access some u
j
with probability71/d, hence

L(CWSnT)71/d. K

Note that any quorum based on row i has size n
i
#d!i.

We are interested in the critical row, on which the smallest
quorums are based.

Definition 3.12. Let the critical row be the row r on which
min

i
Mn

i
!iN is achieved. Call a wall normal if n

r
6r, and

truncated otherwise.

Remarks

— A wall is truncated if its ‘‘top rows are missing’’.
Below we show that for such a wall the number of rows d is
smaller than the minimal quorum cardinality c. Moreover,
an ND wall is never truncated; if n

1
"1 then for the

critical row r we have n
r
!r6n

1
!1"0 so n

r
6r and

the wall is normal.
— There may be more than one row on which the

minimum is achieved. In such a case define r arbitrarily to
be one such row.

Procedure Pick(t) (given in Fig. 2) is a simple strategy
template of choosing which quorum to access, depending
on the value of the parameter t. It only picks quorums
which are based on one of the t bottom rows.

A natural way of using procedure Pick is to randomize
over all d rows, i.e., to use Pick(d). However this may
induce a high load in some cases. For instance, consider
a wall ¼ whose n/4 top rows are of width 2 and whose
bottom Jn/2 rows are of width Jn. Note that c(¼)"
Jn/2#2 but d"n/4#Jn/2. For this ¼, random-
izing over all d rows would induce a load of+1/2 on the
two elements in row n/4, instead of the O(1/Jn) we could
hope for.

The solution is to randomize only over a certain num-
ber of the bottom rows. The next proposition shows that
for normal walls, using Pick(c) where c"c(CWSnT)
achieves almost optimal load.

Proposition 3.13. ¸et r be the critical row of CWSnT and
let c"n

r
#d!r be the size of the smallest quorum. If

n
r
6r then strategy w

1
,Pick(c) induces a load of

L
wÇ

(CWSnT)6
2

c
(2L(CWSnT).

Proof. Since n
r
6r, the number of rows d satisfies

d7n
r
#d!r"c. Therefore we can speak of using Pick

on the bottom c rows (starting from row r!n
r
#1) and

strategy w
1

is well defined. An element u on row i among
the bottom c rows is used either if row i is picked to be the
full row, or if the full row is some row k(i and u is chosen
as a representative. Therefore the load that w

1
induces on

such a u is

l(u)"
1

c
#

i!(r!n
r
#1)

c
·
1

n
i

"

1

c A1#
i!1#n

r
!r

n
i

B ,

but n
r
!r6n

i
!i so

l(u)6
1

c A1#
n
i
!1

n
i
B(

2

c
.

By Proposition 3.11, w
1

induces a load which is at most
twice the optimum. Note that for normal walls the tighter
lower bound of Proposition 3.11 is 1/c. K

Remark. Most of the known wall constructions are normal,
so strategy w

1
induces the following loads: L

wÇ
(Grid)6

2

Jn
,L

wÇ
(Triang)~

J2

Jn
andL

wÇ
(Wheel)6

1

2 A1#
1

n!1B .

In truncated walls (n
r
'r) we cannot apply Pick on the

bottom c rows, since there are too few rows (d(c). How-
ever the next proposition shows that in this case using Pick
on all d rows is again almost optimal.

Proposition 3.14. ¸et r be the critical row of CWSnT. If
n
r
'r then strategy w

2
,Pick(d) induces a load of

L
wÈ

(CWSnT)6
2

d
(2L(CWSnT).

Proof. By a similar argument to the one in Proposi-
tion 3.13, the load induced by w

2
on an element u in row

i is

l(u)"
1

d A1#
i!1

n
i
B .

By the definition of r and the fact that the wall is truncated
it follows that n

i
!i7n

r
!r'0, so l (u)(2/d. By Prop-

osition 3.11, w
2

induces a load which is at most twice the
optimum. Note that for truncated walls the tighter lower
bound is 1/d. K

4 The CWlog system

4.1 The construction

In this section we focus our attention to a specific crumbl-
ing wall which we call the CWlog. The width of row i in the
CWlog is n

i
"xlg 2iy (see Fig. 3). We wish to demonstrate

that aside from the theoretic interest, the CWlog wall has
merit as a practical construction of a quorum system.

In a CWlog with d rows, the width of the bottom row
(which in itself is the smallest quorum in the system) is
xlg 2dy . It is easy to observe that every integer k71 ap-
pears precisely 2k~1 times in the sequence n

i
"xlg 2iy . It

follows that in terms of the universe size n"+d
i/1

n
i
, the

smallest quorum is of size c(CWlog)+lg n!lg lg n. The
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Fig. 3. A CWlog with n"49 elements and d"15 rows, with one
quorum shaded

Fig. 4. Comparison between the failure probabilities of the CWlog,
Tree and Grid quorum systems as functions of the size of the
universe n

largest quorums are based on row 1, and have a size of
d+n/lg n. Clearly CWlog is a Lovász coterie, so by Prop-
osition 3.5 it follows that CWlog3NDC.

Let us point out that the CWlog wall is a very simple
construction, and is easy to implement. The elements need
to be logically arranged in rows of widths n

i
, and then

a procedure is needed to produce a quorum on demand. In
the sequel we suggest two alternative procedures to pick
a quorum, with slightly different properties.

4.2 The availability of CWlog

In [30] we analyze the asymptotic failure probability of
general crumbling walls, and show that CWlog is essen-
tially the only high-availability wall. As a part of this
analysis we obtain the following theorem, which describes
the asymptotic behavior of F

p
(CWlog).

Theorem 4.1 [30]. Consider the CWlog system on d rows,
with n

i
"xlg 2iy , let q"1!p, and let a be such that

a#lg(1/a)"2(a+0.3099). ¹hen

F
p
(CWlog)6G

C
1 A

1

dB
q
, 0(p(a,

C
2

lg d

dq
, p"a,

C
3 A

1

dB
(lg 1

p
!1)

, a(p(1
2
,

for some C
1
, C

2
, C

3
that depend only on p. ¹herefore

F
p
(CWlog) &&"

d?=
0 for all 0(p(1

2
, thus F

p
(CWlog) is

Condorcet.

Theorem 4.1 shows that the CWlog has high availability,

with F
p
(CWlog)"OAA

lg n

n B
e
B for all 0(p(1

2
, for some

e(p)'0, i.e., a Condorcet failure probability. By Proposi-
tion 2.11 we have:

Theorem 4.2. ¹he availability of CWlog is optimal up to
a constant factor for quorum systems with c(S )"O(lg n).

In particular, this means that CWlog is asymptotically
superior to the FPP [22] and the Grid [6], both of which

have failure probabilities tending to 1 (see [19, 32]). The
CWlog has asymptotic availability similar to that of the
Tree system of [1] (as analyzed in [28]).

The CWlog has worse asymptotic availability than the
constructions of [18, 19, 25] and than the Maj system
[36], which has the optimal availability [5]. However all
these construction have relatively large quorums, of size
X (Jn) or v(n#1)/2w for the Maj.

Unlike the constructions of [18, 25], the availability of
CWlog is high not only for very large n. In Fig. 4 we show
F
p
(CWlog) as a function of the universe size, in the range

16n6100, for p"0.1 and p"0.3. For comparison we
show F

p
(Tree) and F

p
(Grid) alongside. The comparison

with the Tree system is relevant because it is the only
alternative to CWlog when log-sized quorums are re-
quired. Comparison with the Grid is relevant since the
Grid is sometimes proposed (cf. [20]) as a viable choice for
small systems with reliable elements (small p), despite its
poor asymptotic availability. Note that the figure shows
the behavior of F

p
itself (for all systems), not that of the

bounds from Theorem 4.1.
Figure 4 reveals that the CWlog has excellent availabil-

ity starting from n"1. Both the CWlog and Tree systems
have similar availability on comparable universe sizes,
with a small advantage to the CWlog. For small values of
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The rows are º
1
,2,º

d
with Dº

i
D"n

i
"xlg 2iy .

QQH

for i"d to 1 (* bottom to top *)
if all n

i
elements in º

i
have failed then

return H (* system failure *)
else if all n

i
elements in º

i
are alive then

return º
i
XQ (* success *)

else (* element u
i
3º

i
is alive *)

QQQXMu
i
N

end-for

Fig. 5. Procedure PickSmall

p (e.g., p60.1) the failure probabilities are almost indistin-
guishable. However for p"0.3 the CWlog has a better
failure probability, especially when n720. The availabil-
ity of the Grid system is much worse. For p"0.3, the
failure probability’s increase towards 1 starts from n"2.
For p"0.1, F

p
(Grid) starts to increase beyond the range

of the figure. However even in the shown range, there is
virtually no gain in the Grid’s availability when n passes
n"16, and F

p
(CWlog) is always much better. We con-

clude that there is no reason to use the Grid system for
practical systems, since its availability is inferior to both
the CWlog and Tree systems for all n.

Note that the universe sizes required by the construc-
tions rarely match. The Tree construction requires a uni-
verse size of n"2h!1 for some h, and the Grid requires
n"d2 for some d. Therefore in the range 16n6100
there are only 6 fitting Tree sizes (and xlg ny sizes in
general) and 10 fitting Grid sizes (xJny in general). In
comparison the CWlog wall is more flexible, requiring
n"+d

i/1
xlg 2iy for some d, so there are 25 fitting sizes in

the range 16n6100 (+n/lg n universe sizes).

4.3 The load of the CWlog

In this section we show that the load is L(CWlog)+
1

lg n!lg lg n
, which is optimal for a quorum system with

such small quorums by Proposition 2.10. The upper
bound is achieved by using strategy Pick(d ) of Fig. 2
(namely, using all the rows).

Proposition 4.3.
1

xlg 2dy
6L (CWlog)(

1

xlg 2dy
#

1

d
.

Proof. The lower bound follows from Proposition 2.10
since c"c(CWlog)"xlg 2dy . For the upper bound, note
that Proposition 3.13 guarantees a bound of 2/c using the
strategy w

1
,Pick(c), since CWlog is a normal wall (the

critical row is r"d ). However we can do better, by using
strategy w

2
,Pick(d) (using all the rows). Following the

same analysis of Proposition 3.14 we get that the load on
an element u in row i is

l
u
"

1

d A1#
i!1

n
i
B .

For the CWlog this expression is maximal when i"d, and
since n

d
is the size of the smallest quorum c we obtain that

L
wÈ

(CWlog)"
1

d A1#
d!1

c B(
1

d
#

1

c
. K

Remark. The strategy used in the proof is still not the best
possible. For instance, using row 1 as a full row implies
that one element from row d will also be used, but the
reverse is not true, so the elements in row d are accessed at
a higher rate than the element in row 1. This imbalance
can be fixed using a more complicated strategy, that would
slightly increase the probability of choosing top rows and
decrease that of choosing bottom rows. Since the gap
between our bounds is 1/d it is clear that such a modifica-
tion would not change the load significantly.

4.4 Selecting a quorum in CWlog

In this section we consider the question of which CWlog
quorum to select whenever the protocol needs to access
one. Two important (and conflicting) parameters that de-
pend on the strategy we use are the size of the selected
quorums and the load that is induced on the elements.

If the elements are fail free then the question is easy. If
the quorum size is more important, then the trivial strat-
egy that only uses the last row (the smallest quorum) is the
best possible, but it induces a load of 1. If the load is more
important, then the strategy of Proposition 4.3 is almost
optimal, but it may return quorums of size X (n/log n).
A reasonable tradeoff is to use the strategy Pick(c) (of
Proposition 3.13), which induces a near optimal load of at
most 2/c"2/xlg 2dy and returns quorums of size no larger
than 2xlg 2dy!1.

In the sequel we discuss the case where elements may
fail. Then the question becomes more interesting for two
reasons. First, the smaller quorums may be hit, so our goal
becomes picking the smallest live quorum. Second, a tacit
assumption in the definition of the load is that the struc-
ture of the system is known to the strategy and its choices
are based on this structure. However when failures occur
the system structure effectively changes, and this needs to
be addressed by the strategy.

4.4.1 Minimizing the quorum size under failures

Procedure PickSmall (given in Fig. 5) is designed to min-
imize the quorum size. It is an algorithmic version of the
argument used in the calculation of the failure probability
in Sect. 3.3.

Lemma 4.4. Procedure PickSmall returns a valid quorum iff
one exists in the current configuration.

Proof. The procedure considers row i!1 only if row i has
both a failed element and a live one. It collects a live
representative of each row into the set Q until either all the
rows were examined, or a fully live row was found. Note
that since row 1 has a single element, the procedure will
surely stop when i"1; a row containing a single element
must fall into one of the stopping cases. K

The following claim shows that the procedure manifests
graceful degradation.

Proposition 4.5. Procedure PickSmall returns a minimal
sized quorum which is alive in the current configuration.
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1. The rows are º
1
,2 ,º

d
with Dº

i
D"n

i
"xlg 2iy .

2. Find i
f
, the largest i such that all the elements in º

i
have failed (set

i
f
Q0 if no such º

i
exists).

3. Find i
1
,2, i

t
such that i

f
(i

j
6d and all the elements of º

i
j

are
alive for j"1,2, t. If no such º

i
j

exists, then return H (system
failure).

4. Choose r uniformly at random in the range M1,2 , tN.

5. Set QQH. For i"i
r
#1 to d, pick an element at random from

the live elements of º
i
and add it to Q.

6. Return º
i
r

XQ.

Fig. 6. Procedure PickBalanced

Fig. 7. The expected load induced by procedure PickBalanced on the
wall S"CWS1, 2, 2, 3, 3, 3, 3T with 17 elements and 7 rows, as
a function of the element failure probability p

Proof. In any configuration in which a live quorum exists,
the size of the quorum is only dependent on the index of
the full row. A quorum based on row i has a size of
n
i
#(d!i )"xlg 2iy#d!i. This is clearly decreasing

with i, therefore the smallest live quorums are based on the
full row with largest index, which is precisely the choice
made by PickSmall. K

Remark. PickSmall always accesses the elements of the
bottom row, so if all the elements are alive then the
induced load is 1.

4.4.2 Minimizing the load under failures

Procedure PickBalanced (given in Fig. 6) chooses quo-
rums in a random fashion, so that the elements will be
accessed at roughly the same rate. The procedure follows
the proof of Proposition 4.3, taking failures into account.

Lemma 4.6 Procedure PickBalanced returns a valid quo-
rum iff one exists in the current configuration.

Proof. A row i containing only failed elements disables the
use of any quorum with a full row j(i. Therefore row i

f
of

step 2 in the procedure is the ‘‘roof ’’ of the interesting rows
of the current configuration. Thus the rows i

1
,2, i

t
of

step 3 are the only candidates to be a full row in a quorum.
Clearly, in a failure configuration the procedure will find
no full rows i

j
'i

f
(either i

f
"d and there are no rows to

consider under the roof, or all the rows under the roof are
hit). Hence the condition recognizing a system failure is
correct. The actual choice of the quorum in steps 4 and 5 is
trivially correct. K

The expected load induced by PickBalanced is shown
in Fig. 7. When all the elements are alive, PickBalanced
identifies with the strategy described in Proposition 4.3 so
it induces an almost optimal load of 1/d#(d!1)/dxlg 2dy
(which is approximately 0.428 for the wall of Fig. 7). When
p'1

2
then with high probability there is no live quorum,

since the CWlog has a Condorcet failure probability (The-
orem 4.1 and Theorem 2.6). This is manifested by the load
being+1 in this range. In Proposition 4.7 we show that
the load is O(1/log n) as long as p(0.432, and this beha-
vior is achieved by a procedure that is essentially equiva-
lent to PickBalanced.

Note that the procedure requires knowledge of the
global configuration before deciding which quorum to
return. Therefore this approach is more useful in distrib-
uted systems in which the configuration of failed elements
is known to the processor that is requesting the quorum.
This knowledge means that all the computation described
in the procedure can take place locally, without sending
exploration messages to test the status of each element.
Thus PickBalanced is appropriate in systems with broad-
cast communication capabilities in which the current con-
figuration is available to the processors (e.g., the Transis
system [2]), or in point-to-point systems in which the
configuration changes are infrequent, where we can
assume that the configuration is known for long periods
of time.

Remark. The average quorum size that PickBalanced
returns is+d/2#lg d"O (n/lg n).

4.5 The load of CWlog in the presence of failures

In this section we consider the load in the presence of
failures. The following proposition shows that asymp-

totically, with high probability the load is still O A
1

log nB as

long as the failure probability is 06p(0.432. The strat-
egy that achieves this performance is essentially procedure
PickBalanced of Section 4.4.2, with minor modifications
that simplify the analysis. Therefore CWlog can provably
tolerate up to 43% failures, without degrading the load
significantly. We believe that the true behavior is even
better than proved, since in the proof we make several
large over-estimates.

Proposition 4.7. if 06p(0.432 then the load of CWlog is

O A
1

log nB with probability71!A
lg n

n B
e
for some e'0.
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Proof. Let k denote the width of the bottom row, and
assume that the last block of rows is full, i.e., the bottom
2k~1 rows all have width k. Let a'2 be some constant (to
be determined later).

Consider a row of width k and let dgood count the
number of live elements in it. Then E[dgood]"kq'k/2
when q'1

2
. Using the strong type of Chernoff bound for

the binomial distribution (see [13]),

P Adgood*
k

aB71!A
kq

k/aB
k@a

ek@a~kq"1![(qa)1@ae1@a~q]k.

Let b"(qa)1@ae1@a~q. Then P Adgood7
k

aB71!bk.

Let 1(r(
1

b
. Let E

1
be the event that the bottom xrky

rows have at least
k

a
live elements in each. Then

P(E
1
)7(1!bk)xrky71!(br)k. (1)

Now let dfull count the number of fully live rows among
the bottom xrky ones. Then E[dfull]"xrky qk. Let E

2
be

the event that dfull7k. If q'1/r then E[dfull] is ex-
ponential in k so there certainly exists c'0 such that
P(E

2
)71!ck. Combining with (1) we get

P(E
1
'E

2
)71!(br)k!ck71!A

lg n

n B
e

for some e'0, since k7lg A
n

lg nB .

So with high probability we have a configuration in

which all xrky bottom rows have at least
k

a
live elements,

and at least k of these rows have all their elements alive. In
such a configuration, we can use the following strategy w:
pick one of the available full rows with uniform probabil-

ity of 6

1

k
, and in each row below the full one pick

a representative with uniform probability among its live
elements. The maximal load is induced on the elements of
the bottom row, when it is one of the partial rows. Let u be

an element of the last row, then l
w
(u)6

a

k
. We are finished,

as long as there exist values q, a and r that fill the require-
ments that

1

q
(r(

1

b
"(qa)~1@ae~1@a`q.

Taking q'0.568 and r"1.762 ensures the existence of
a valid constant a. For example, if we consider only q70.7
and take r"1.429, then a"8 is valid. K

5 Conclusion

In the previous sections and in [30] we have analyzed the
availability and load of general crumbling walls. We have
also identified what we consider to be the best system
within this class of quorum systems, the CWlog system,

and analyzed it in detail. The CWlog system enjoys the
following properties:

— Small (logarithmic) quorum size.
— High availability both for practical universe size and

asymptotically.
— Flexible, fits many universe sizes.
— Provably optimal load and availability among

systems with log-sized quorums.
— Both the returned quorum size and expected load

degrade gracefully as failures occur.

Therefore we believe that the CWlog is a good candidate
to be the system of choice when designing a distributed
protocol which requires quorum systems.

Acknowledgement. We are grateful to Moni Naor for his contribu-
tions to our analysis of the load. We thank the anonymous referees
for their remarks, which improved the presentation of the paper.
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