
Donnybrook: Enabling Large-Scale, High-Speed,
Peer-to-Peer Games

Ashwin Bharambe∗, John R. Douceur†, Jacob R. Lorch†, Thomas Moscibroda†,
Jeffrey Pang∗, Srinivasan Seshan∗, and Xinyu Zhuang∗

∗Carnegie Mellon University, Pittsburgh, PA †Microsoft Research, Redmond, WA
{ashu,jeffpang,srini,xinyuz}@cs.cmu.edu {johndo,lorch,moscitho}@microsoft.com

ABSTRACT
Without well-provisioned dedicated servers, modern fast-paced

action games limit the number of players who can interact si-

multaneously to 16–32. This is because interacting players must

frequently exchange state updates, and high player counts would

exceed the bandwidth available to participating machines. In

this paper, we describe Donnybrook, a system that enables epic-

scale battles without dedicated server resources, even in a fast-

paced game with tight latency bounds. It achieves this scalability

through two novel components. First, it reduces bandwidth de-

mand by estimating what players are paying attention to, thereby

enabling it to reduce the frequency of sending less important state

updates. Second, it overcomes resource and interest heterogene-

ity by disseminating updates via a multicast system designed

for the special requirements of games: that they have multiple

sources, are latency-sensitive, and have frequent group member-

ship changes. We present user study results using a prototype

implementation based on Quake III that show our approach pro-

vides a desirable user experience. We also present simulation re-

sults that demonstrate Donnybrook’s efficacy in enabling battles

of up to 900 players.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-

tributed Systems

General Terms
Algorithms, Experimentation, Human Factors

Keywords
computer games, doppelgängers, interest sets

1. INTRODUCTION
Computer games are a large and growing business, with

revenues almost twice that of movies [41]. The current evo-
lution in networked games is marked by three significant
trends: large scale, as in the massively-multiplayer World
of Warcraft; high speed, as in the fast-paced Halo 3; and
peer management, as in Xbox Live’s use of player machines
instead of dedicated servers to reduce the cost of hosting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

games [26]. However, there are significant technical barri-
ers to achieving all three properties at once, and no exist-
ing game does so. In this paper, we describe Donnybrook,
our system that enables such games, with hundreds of play-
ers interacting in one area at the same time. Donnybrook
contributes solutions to three important problems in peer-
managed environments: insufficient capacity, resource het-
erogeneity, and interest heterogeneity.

Insufficient capacity. Broadband connections are gener-
ally asymmetric, so the key limitation is upload capacity.
As game scale increases, the aggregate upload capacity in-
creases linearly, but communication demands grow quadrat-
ically. Each player must receive updates about every other
player whenever state changes, e.g., at ∼12n kb/s per player
for n players in Quake III. Thus, even p2p architectures [4,
22], where each peer only sends updates for its own player,
would need 10 Mb/s per peer in a 900-player game.

A conventional approach to reducing bandwidth demand
is area-of-interest (AOI) filtering, meaning each player sends
updates only to nearby players [4, 16]. This approach works
well when the number of players in any given area is strictly
limited. However, no such limit occurs naturally, because
population density in real games follows a power law [35].
Thus, game designers must artificially discourage player
clustering, thereby precluding certain classes of interesting
game play, such as epic battles [6, 40].

In Donnybrook, we introduce the notion of a player’s in-
terest set, the set of other players to whom he is paying atten-
tion. Unlike an area of interest, which contains more players
as player density increases, an interest set always remains
small due to the limits of human attention. In Donnybrook,
a player receives updates only from the players in his interest
set, thereby enabling epic battles with hundreds of players in
close proximity. To deal with visible players outside the in-
terest set, Donnybrook represents them with low-behavioral-
fidelity doppelgängers, which require only low-rate guidance
information rather than continuous updates.

Resource heterogeneity. Each player must still send
guidance roughly once per second to each other player, to
prevent views from diverging. Donnybrook disseminates
guidance using multicast trees so that machines with spare
capacity can forward guidance for machines with insufficient
capacity. Forwarding guidance without considering total de-
lay, however, would not ensure players receive fresh guidance
before older guidance expires. The key challenge we address
is how to schedule guidance dissemination in a way that
ensures timely delivery, minimizes bandwidth use, and is
resilient to churn.

Interest heterogeneity. If one player is interesting to
many others, he may not have sufficient capacity to send
updates to them all. A player can become highly interesting
in many ways, e.g., by holding a flag in a capture-the-flag
game or by being in a prominent location. Fortunately, the
aggregate capacity required to send updates is always pro-
portional to the number of machines, since each player is
always interested in a constant number of others. Thus, we
again can leverage spare upload capacity to help forward
these updates. However, in contrast to the guidance distri-
bution problem where receiver sets change rarely, a player’s
interest set changes often, with average turnover of 68% per
second according to our user study. The key challenge we
address is how to deliver updates in the face of this substan-
tial interest flux, yet still maintain 100–150 ms latency and
be resilient to churn.

This paper describes the novel techniques Donnybrook
uses to address each of these problems, providing a complete
solution that enables peer-managed, large-scale, high-speed
games. We present user study results that show that our
approach provides a desirable user experience, and simula-
tion results that demonstrate its efficacy in enabling battles
of up to 900 players.

The rest of this paper is organized as follows. §2 provides
background. §§3–5 describe our techniques for addressing
the three challenges listed above. §6 presents a user study
that validates our use of interest sets, and §7 presents a sim-
ulation evaluation of the Donnybrook system. §8 describes
prior work, and §9 concludes and discusses future work.

2. BACKGROUND
2.1 First-person shooter (FPS) games

Our goal is to scale high-speed games involving fast-paced
interaction. We limit our discussion to the first-person
shooter genre since most fast-paced games fall into this cat-
egory. In an FPS game, each player controls an avatar who
navigates through an area, picks up objects such as weapons,
and shoots and is shot by enemy avatars. Each player’s view
is rendered using updates he receives about the other objects
in the game.

Update messages. An object’s state consists of many
fields, such as position and current weapon. Every ob-
ject changes once per 50-ms game frame. Since most fields
change rarely, updates are compressed via delta-encoding,
i.e., sending only fields that have changed since an earlier
state the receiver is known to have. Typically, this means
sending fields changed since the previous state, but it may
also include fields changed since the state two frames earlier
to cope with the loss of one update. If two or more update
packets are lost in a row, then a non-delta encoded update
is required to come up to date. Usually, only player con-
trolled objects such as avatars change frequently, so updates
about these objects dominate. In Quake III, the mean up-
date size is 32 bytes with regular delta-encoding, 36 bytes
with 2-frame delta-encoding, and 196 bytes without delta-
encoding. Packet headers add additional overhead, e.g., ∼44
bytes in Xbox Live [29]. This is more than UDP/IP header
sizes because of packet authentication for cheat prevention.

Update frequency. Players in FPS games move rapidly
and must react quickly to their surroundings. As a conse-
quence, limiting lag, the time difference between a player’s
visible state and his actual state, is crucial for a satisfactory

experience. Studies have shown that lag more than ∼100 ms
decreases user satisfaction and degrades player performance,
and lag of 200 ms is unacceptable [3]. Thus, a player receives
state updates about all objects they are interested in ev-
ery frame over UDP. In addition, many game matchmaking
services group players with others in the same geographic
region [5, 15] to reduce latency.

2.2 Peer-managed games
Peer management runs games using the resources of play-

ers’ machines. Dedicated servers still provide game-external
support such as authentication and matchmaking, but these
services use few computational and bandwidth resources.
Peer management reduces play cost, allows small publish-
ers to enter the market, and reduces the investment risk in
games of unknown popularity.

Due to the high frequency of FPS game updates, the key
limitation to scale in peer-managed games is the players’
upload capacity. A player with broadband will typically
have upload capacity equal to that of his access link (often
< 1 Mb/s), since this capacity is typically an order of mag-
nitude smaller than Internet bottlenecks [1]. Even players
with more capacity, e.g., those playing from universities, will
likely restrict their aggregate upload rate to a few Mb/s to
avoid antagonizing network administrators [28, 33]. We call
a peer’s upload limit its rate limit.

Modern peer-managed FPS games typically have one
peer send updates about all game objects, including player
avatars, to all other peers. Due to the lack of IP multicast
support between most Internet hosts, practical deployments
must send these updates in a point-to-point manner. Thus,
this bandwidth requirement scales quadratically with the
number of players. As a consequence, these games can not
allow more than ∼16–32 players at the same time.

Instead of having a single peer send updates about all
objects, each peer may manage a subset of objects, such
as its player avatar [4, 22]. In such p2p architectures, a
peer holds the authoritative copies of objects it manages,
and non-authoritative replicas of objects managed by other
peers. It sends updates of only the objects it manages to
other peers, so they can update their replicas. Donnybrook
uses such a p2p architecture so it can leverage the resources
of all peers. Unfortunately, these resources only grow lin-
early with the number of peers while bandwidth demand
grows quadratically, so we need to do more to achieve the
scale we desire.

3. INTEREST SETS
In this section, we describe how we leverage limits of hu-

man cognition to reduce bandwidth requirements. Specifi-
cally, using our techniques, bandwidth required to send up-
dates scales linearly with the number of players in the bat-
tle. Quadratic scaling is only required for messages sent
at substantially lower frequency, thereby enabling epic-scale
battles.

3.1 Overview
A human can only focus on a constant number of objects

at once [11, 37]. Consequently, a player is likely interested in
a few others and notices only rudimentary information about
everyone else. Thus, he only needs high-fidelity replicas of
those he is interested in.

We leverage this observation by having each player send
updates only to those who are interested in him. To de-

termine who these players are, we estimate each player’s
interest set, the set of players he is most interested in. The
aforementioned observation suggests this set is of constant
size; based on the results of a user study, we use a set of
five (see §6). Those who are not interested in a player re-
ceive information at a much lower frequency, roughly once
per second, which we make possible by using a low-fidelity
replica called a doppelgänger. We discuss details of these
techniques below.

3.2 Estimating interest sets
Each player’s game client estimates how much attention

he is paying to each other player. We define his interest
set to be the five players he is paying most attention to.
Specifically, let Aij be an attention value, the amount of
attention player i’s game client estimates that player i is
paying to player j. Then, player i’s interest set is the set of
players with the five highest Aij values.

Player i recomputes his interest set every frame. When
a new player j enters player i’s interest set, i sends j a
subscribe message to indicate j should send i frequent up-
dates. An unsubscribe message is sent when j leaves the
set. We find that an interest set is generally stable over
several frames, making it a useful predictor of short term
interest.

Intuition suggests that the set of players a person is pay-
ing attention to has spatial and temporal locality. As a
consequence, we compute Aij as the weighted sum of met-
rics that measure how close i and j are in space and time.

In other words, Aij =
P3

k=1 wkI
(k)
ij , where I

(1)
ij , I

(2)
ij , I

(3)
ij are

our three metrics, and wk is the weight for metric I
(k)
ij . The

three metrics we use are:

Proximity. Players are more likely to pay attention to
objects nearby, so we use the following proximity metric:

I
(1)
ij = max{(1 − dist(i, j)/Dmax)1.5 , 0},

where Dmax is the distance at which objects can not be
discerned. This metric is based on the assumption that a
player’s attention on an object is roughly proportional to the
visible size of that object, relative to others. In a 2D game
world (i.e., a plane), the number of objects potentially visible
at distance dist is inversely proportional to dist since objects
can only take up space along the horizon. In a 3D game
world (i.e., free space), the number of objects potentially
visible is inversely proportional to dist2 since objects can
take up space horizontally and vertically. Since FPS maps
are somewhere in between a flat plane and free space (e.g.,
a building with several floors), we choose a fall-off exponent
between 1 and 2.

Aim. Proximity is not the only measure of spatial locality
because players also have an orientation. They are more
likely to pay attention to objects they are aiming at. Let
the aim deviation aij from player i to player j be the angle
between i’s forward vector and the vector from i to j. Since
instantaneous aim can be erratic, our aim metric uses the
more stable âij , an exponentially weighted moving average
of aij . Our aim metric is:

I
(2)
ij = max{(1 − âij/45◦)1.5·log(dist(i,j))

, 0}.
This metric is based on the assumption that a players’ at-
tention is highest on objects in the middle of the screen and
falls off for objects are closer to the edges where it becomes

0 (the visible cone is ∼90◦). Since objects are three dimen-
sional, the fall-off rate 1.5 · log(dist(i, j)) accounts for the
amount aim can deviate and still “point at” an object. Dis-
tant objects appear smaller; thus, a player must aim more
carefully to reliably hit them.

Interaction Recency. In addition to spatial locality, there
is also temporal locality in player interaction. Players who
recently interacted are more likely to pay attention to each
other. Our metric is:

I
(3)
ij =

j
e−tij/1 sec if tij ≤ 3 sec
0 otherwise

where tij is the time since the last interaction between play-
ers i and j. We define an interaction as any instance where
one modifies the state of the other, such as when a shot
causes damage. In contrast to the spatial metrics, our play
testing suggests that temporal influences on attention fall
off much quicker due to the fast-paced nature of FPS games.
Thus, this value falls of exponentially rather than polyno-
mially and we bound the influence of interactions to a few
seconds.

Weight tuning. Since each I
(k)
ij is based on a different

unit, we use linear weights {wk} to normalize their influence
based on play testing. With only several hours of tuning on
our part, we found that weighting interaction recency 1.5
times more than proximity and aim yielded good playability
independent of game scale in Quake III (see §6). Different
metrics are more important in different situations, so we also
vary the weights based on player state. For example, a player
wielding a melee weapon will be focused on hitting nearby
players, whereas a player wielding a sniper weapon will be
more focused on shooting players at a distance. Thus, we
give the former player a higher w1; the latter a higher w2.

We believe these three metrics are sufficient for most FPS
games since player interactions are similar. Minor variants,
such as an aim metric that takes into account weapons that
fire in non-straight-line trajectories (e.g., grenades), should
be simple to devise based on game physics and the same
locality metrics. Although a different tuning of weights via
play testing will likely be required for each game, such pa-
rameter tweaking is already a large component of game de-
velopment, e.g., for balance testing. Other games might also
vary weights based on a player’s team in cooperative games,
possession of important items, and special powers such as
heightened senses or flight.

3.3 Doppelgängers
A player receives updates every frame from players in his

interest set, but receives information infrequently from ev-
eryone else. Since he is not paying attention to these players,
they can be rendered at lower fidelity. However, state-of-the-
art techniques for extrapolating from missing updates, e.g.,
dead reckoning [32], cannot handle delays longer than a few
hundred milliseconds in FPS games, because player avatars
will appear to warp between positions instead of running
smoothly between them. Since these avatars can still ap-
pear in a player’s peripheral vision, if they act in a manner
that violates game physics (e.g., sudden, jerky movement),
they are likely to draw attention when they should not.

Therefore, to extrapolate the behavior of a remote player
that sends only infrequent information, we use a special
replica called a doppelgänger. A doppelgänger is a bot, i.e.,
a computer-controlled player running on the local machine,

whose goal is to act in a manner that realistically approx-
imates the behavior of the remote player. To implement
a doppelgänger, we leverage a game’s existing AI routines,
which are designed to make bots act realistically. However,
unlike standard bots, which are free to act in any way, dop-
pelgängers must attempt to roughly emulate the behavior
of a particular remote human. For this purpose, a doppel-
gänger uses guided AI, AI that takes input from the human
player it represents.

To enable guided AI, every player sends guidance, not up-
dates, to players not interested in him. Guidance is a com-
pact summary of his predicted behavior for the period be-
tween now and the next anticipated message, such as where
he expects to go, whom he is targeting, and how often he
fires his weapon. A doppelgänger uses this information to
tailor its behavior. E.g., instead of running in a straight line
with the same velocity as before, it uses AI path-finding code
to navigate a realistic path to the predicted location. Since
guidance is received once per second, a doppelgänger’s state
is unlikely to deviate substantially from the actual player’s
state. Thus, unless a player deliberately focuses on the dop-
pelgänger, he is unlikely to notice the difference.

Since the focus of this work is on network support, we
omit further details about guided AI that were presented in
our workshop paper [31].

3.4 Message dissemination overview
Using interest sets, each player receives frequent updates,

at a rate of 20 per second, from only five other players in-
dependent of game size. Guidance is sent to all players,
but only once per second. Thus, while the the mean band-
width requirement per player still scales quadratically, it is
reduced by a factor of approximately 20n

20·5+n
. For a 1,000-

player game, this reduces the requirement from 12 Mb/s to
670 Kb/s, making such a game feasible. Nonetheless, two
important problems remain: First, some players may not
have enough capacity to support even this modest average
requirement. Second, player attention is not uniform: a
player in whom many others are interested needs to send
frequent updates to all of them.

Donnybrook addresses these problems by having peers
with spare bandwidth assist peers without enough. The the-
oretical average bandwidth requirement described above is
modest, so jointly optimizing update and guidance dissemi-
nation is not crucial. Furthermore, the needs of update and
guidance dissemination are different, primarily since update
receiver sets are far more dynamic. Therefore, we address
them separately by allocating a fraction of aggregate capac-
ity to each message type. Updates are most important since
they determine the fidelity of objects players are paying at-
tention to. Thus, each machine first reserves 200 Kb/s to
send updates directly to those interested in them, which is
enough in the common case for interest sets of size 5. As
mentioned above, this will not be sufficient when many oth-
ers are interested in a player, so a number of nodes with
substantial remaining capacity join a “forwarding pool” to
forward for these players. The remaining capacity in the
system is used to disseminate guidance. The next two sec-
tions describe these two dissemination mechanisms in detail.

4. DISSEMINATING UPDATES
Each peer is essentially the source of a multicast group.

Players who have that peer in their interest set are members

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

C
D

F
 %

Latency

one hop
through <10%
through <25%
through <50%

through any

Figure 1: Effect of forwarding on latency, using latency

model from §7.1.2. “Through < n%” means that mes-

sages go through a random forwarder whose average la-

tency is below the nth quantile. Note that these values

do not include queuing delay, and thus give probabilities

higher than will be seen in practice.

of this group, called the peer’s subscriber set. A subscriber
set may be large, since even though each interest set is only
five players, a particularly interesting player may be in as
many interest sets as there are players. Our main challenge
is how to allocate capacity to peers who do not have enough
capacity to send updates to their subscriber sets directly.

Traditional approaches have nodes with spare capacity
(etc.) [2, 11]. However, interest sets change rapidly, making
it difficult to amortize the cost of building and optimizing
multicast trees. Thus, Donnybrook has sources rather than
subscribers dictate the structure of multicast trees. To avoid
the need for complex coordination of forwarding resources
between different groups, we do not build long-lived trees
at all. Instead, each source independently builds a new for-
warding tree each frame in a probabilistic fashion. This is
possible because our modest bandwidth demands leave much
capacity to spare, so we do not have to maximize its utiliza-
tion. Although our approach limits scale, as it requires the
source to know all its subscribers, it suffices for groups with
hundreds of peers.

4.1 Forwarding pool
To forward updates, we use a forwarding pool, i.e., a set of

machines with good connectivity properties and total rate
limits sufficient to meet the aggregate forwarding needs of
all sources. When a machine requires more outbound band-
width within a frame than it can supply itself, it randomly
chooses a subset of the forwarding pool that in aggregate is
capable of supplying enough capacity. It then sends forward-
ing requests to those machines, each including a message and
a set of recipients.
Determining membership and capacity. A machine
considers itself part of the forwarding pool if its average
latency to other nodes is below a certain threshold Tl and its
rate limit is above a certain threshold Tr. The matchmaking
service selects values for Tl and Tr at the start of a game
as follows. It chooses Tl to exclude nodes above the 25th
quantile of average latency; Figure 1 shows how restricting
forwarding to well-connected nodes substantially increases
the probability of delivering a message on time. Given Tl,
it chooses Tr such that the total capacity in the forwarding
pool is sufficient to satisfy all forwarding demands.

Each member of the forwarding pool computes the ca-
pacity it contributes as its rate limit minus 200 Kb/s, an
amount reserved for local use.

Advertising capacity. Due to players leaving the game,
and due to changes in rate limit and latency at a node, ma-
chines may enter and leave the forwarding pool, or change

their contributed capacity. To keep sources up to date about
these changes, forwarding pool members advertise their ca-
pacity periodically. They do this by including a byte in
their guidance specifying how many KB per frame they can
forward. As guidance is distributed each second to each
player, sources quickly learn of changes to the forwarding
pool. A node can have slightly outdated information about
forwarding pool membership, but the consequences of this
are minor. Since it forwards each update through a random
forwarder each frame, it is unlikely to send many messages
to a departed forwarder before timing out its membership
in the forwarding pool.

For two reasons, pool members only advertise half their
pool capacity. First, because sources independently choose
forwarding pool subsets each frame, they sometimes collide.
Letting two sources use the same forwarder without over-
flowing decreases the likelihood a forwarding pool member
must drop forwarding requests. Second, messages forwarded
through a forwarding pool member take two hops before
reaching their destinations, and thus cannot tolerate much
queuing delay. Using all the capacity of a forwarder would
lead to ∼50 ms of queuing delay at its outbound link.

Collisions. We could prevent multiple sources simultane-
ously choosing the same forwarder by coordinating alloca-
tion of forwarders to sources. However, there are three disad-
vantages to this approach. First, it cannot deal with unpre-
dictable spikes in bandwidth demand, such as due to large
update messages or sudden increases in subscriber set size.
Second, coordination incurs protocol overhead and makes
the system subject to failure of the coordination point.
Third, we can achieve its main effect, reducing collision like-
lihood, simply by allocating more capacity than necessary to
the forwarding pool. §7.5 shows that this does not substan-
tially affect scalability since the bandwidth needed for the
forwarding pool is a small fraction of the bandwidth needed
for guidance.

Dynamic threshold selection. As nodes depart, the ag-
gregate need for the forwarding pool drops along with the
capacity of the forwarding pool. However, it may happen
that nodes with high rate limits leave preferentially, leaving
the system without sufficient capacity. Fortunately, each
node has sufficient knowledge to locally detect this condi-
tion: from guidance messages, it knows the total pool ca-
pacity and the number of players still in the game. When
a node detects too little pool capacity, it lowers its local Tr

value each frame. Thus, additional nodes will eventually
join the forwarding pool, restoring the needed balance.

4.2 Practical details
Handling message loss. When possible, we avoid ac-
knowledging messages to conserve bandwidth. For some
types of messages, loss can eventually be detected by the
sender or receiver, so we do not use acknowledgments.

Updates are delta-encoded with respect to the last two
frames to enable recovery from a missing update. If two
consecutive updates are lost, the subscriber sends a nack

indicating that the next update must not be delta-encoded.
To avoid nack implosion, i.e., the overwhelming of sender
inbound capacity when a burst loss causes all its subscribers
to send simultaneous nacks, we have each subscriber send
its nacks via the last forwarder for the corresponding source.
This forwarder aggregates nacks for one frame and transmits
them to the source.

NATs. Many player machines are behind NATs which can
make inbound communication difficult. However, since we
use UDP to deliver updates, a matchmaking service can help
establish connection mappings between each pair of hosts at
the start of a game using a protocol such as STUN [39].
Some NATs tear down these mappings after periods of inac-
tivity, but we found that the overhead of sending necessary
keep-alive traffic is minimal and impacts our performance re-
sults negligibly. Some “strict” NATs do not support STUN-
like approaches [26]. We exclude players using such NATs,
as p2p games typically do. We could support them by for-
warding traffic between them, but this is future work.

5. DISSEMINATING GUIDANCE
Disseminating guidance is less challenging than dissemi-

nating updates since group membership changes rarely: each
player always sends guidance to all others. We again use a
subset of nodes as forwarders, to assist nodes with insuffi-
cient capacity. A side benefit is that by sending all guidance
through forwarders, we can aggregate messages from many
senders, and thereby reduce bandwidth for packet headers.

The central challenge is how to schedule the forwarding of
guidance to make doppelgängers behave most realistically.
Recall that each guidance message contains a prediction of
what the player will do during the next second, such as where
they will move. Our user study suggests that predictions of
one second work well (see §6). Since a prediction is only valid
until one second after its generation, each node must ensure
that fresh guidance arrives before this time. Moreover, since
it can take ∼1 second to carry out the predicted actions,
e.g., moving to a target location, guidance must arrive with
enough time for a doppelgänger to act on it.

5.1 Forwarder selection
Each machine can compute its fan-in, i.e., the number

of sources it can forward for, as F = �(pb − pr − hn) /ns�,
where s is guidance size, p is guidance period, b is the rate
limit, r is bandwidth set aside for non-guidance, n is player
count, and h is header size. In Donnybrook, s = 50 bytes,
p = 850 ms (see §5.2), r = 200 Kb/s (see §4), and h =
44 bytes [29]. An exception is that forwarding pool members
set F = 0: They do not forward guidance so they can devote
as much capacity as possible to the forwarding pool.

Each machine with F > 0 acts as a forwarder. It always
forwards at least for itself; if F > 1 it can forward for others
as well. If F ≤ 0, it must use as a forwarder a machine with
F > 1. At the outset of the game, the matchmaking service
assigns each source a forwarder such that no forwarder is
assigned more sources than its fan-in. If such an assignment
is not possible, the game is not feasible in Donnybrook. We
evaluate the scales at which games are feasible in §7.2.

Every second, every forwarder sends one guidance packet
to each other machine. This packet contains, for each
source using it as a forwarder, the latest guidance it has
received from that source. A forwarder determines its set of
sources simply by observing from which machines it receives
guidance-forwarding requests.

5.2 Transmit frequency
We now consider how often a source should send guid-

ance to its forwarder. Define the age of guidance to be the
time since it was generated. Figure 2(a) illustrates that the
maximum age of guidance in use is the sum of t1, the source-
to-forwarder latency, t2, how long the guidance waited at the

source

forwarder

recipient
t1 t2 t3 t4 = p

(a)

G S

(b)

source

forwarder

recipients

...

ps

max t2

Figure 2: (a) The recipient uses guidance generated at

time G until time S, so it uses guidance as old as t1 + t2 +

t3 + t4 (see text). (b) Since the forwarder spends most

of its bandwidth forwarding guidance, it is likely some

receiver will see t2 be the source’s sending period ps.

forwarder, t3, the forwarder-to-recipient latency, and t4, the
guidance period p. Figure 2(b) shows that because the for-
warder spends most of its bandwidth forwarding guidance
to many recipients, it is likely some receiver sees t2 equal to
the source’s sending period ps.

Since we want to keep age under 1 sec, and we expect
t1 + t3 ≈ 100 ms, we want t2 + t4 = 900 ms. By using the
smallest possible ps, one frame or 50 ms, we maximize the
forwarder period, which in turn minimizes forwarder band-
width and thus maximizes scale. In addition, this minimizes
t2, so receivers get guidance with as much time as possible
to realistically move doppelgängers to their predicted posi-
tions at the time of guidance expiry. This explains why we
use p = 850 ms.

5.3 Dealing with churn
As the game progresses, some machines may leave the

game, or their rate limits may change. Thus, sources need
to find new forwarders when their current forwarders can no
longer serve them.

Active probing is unnecessary for a source to detect its for-
warder’s failure, since forwarders periodically send guidance
packets to everyone. If a few periods pass with no guidance
packet from its forwarder, the source should choose a new
one; we use a timeout of 3 seconds. If a forwarder’s rate
limit drops and it can no longer accommodate a source, it
notifies the source immediately. Probing is also unnecessary
for a forwarder to detect a source’s failure. If a source stops
sending a forwarder guidance, the forwarder drops it.

To choose a new forwarder, a source needs to know which
machines have spare fan-in. To disseminate this informa-
tion, a forwarder includes a bit in each forwarded guid-
ance packet that indicates if it can support an additional
source. A source needing a new forwarder selects a random
forwarder that has recently advertised available fan-in. If
forwarders also send these advertisement bits to the match-
making service, it can admit new players when there is suf-
ficient capacity. However, we have not evaluated how often
new players may be refused.

6. EVALUATION: USER EXPERIENCE
We hypothesize that using low-fidelity replicas of play-

ers outside a player’s interest set will not reduce the fun

of game play. We validate this hypothesis with the fol-
lowing user study, that considers three scenarios: LoBW-IS,
a low-bandwidth setting using interest sets; LoBW, a low-
bandwidth setting using the standard p2p approach; and
HiBW, a high-bandwidth setting. Our hypothesis makes
two predictions: First, players will prefer LoBW-IS to LoBW,
demonstrating that the trade-off of fidelity for bandwidth
pays off. Second, players will enjoy LoBW-IS as much as
HiBW, demonstrating that they do not mind the loss of fi-
delity. To study these scenarios, we modified Quake III so
that it can run any of them. We needed under 4,000 lines
of code to implement interest sets, guidance, and doppel-
gängers, and an additional ∼6,000 lines to change Quake III
from a client-server to a p2p game.

6.1 Methodology
We approximate the following real-life scenario: When

players select a public server to play on, they typically choose
a server from a list; if they become dissatisfied with a server,
they leave and try another. By this process, players implic-
itly express a preference between versions of the same game.

Procedure. We invite pairs of volunteers to play a game
of Quake III. Each pair is told that there are two servers
with different network characteristics, but we do not say how
they differ. Some pairs are choosing between LoBW-IS and
LoBW, and some pairs are choosing between LoBW-IS and
HiBW. For each pair of players, we select a starting server
at random, and allow them to switch servers whenever both
players indicate a desire to switch. They may switch back
and forth as often as they wish, and their game scores are
preserved across each switch. After playing for a total of
15 minutes (a typical duration for such FPS games), they
play a new 5-minute game on whichever version they played
less. No switching is allowed during this follow-up game so
they can make an informed comparison of the two games.

To simulate a larger game, we use 30 standard Quake III
bots in addition to the two human players. Each bot or
player is treated as a separate peer in the virtual network.
All games are death match games, in which each player inde-
pendently tries to score points by killing others. Each game
uses the popular q3dm17 map, which includes many typical
FPS game features that impact interest sets and doppel-
gängers. For instance, it has long-range sniper weapons,
close-range combat weapons, powerups, teleporters, and
jump pads that enable players to “fly” long distances. In
this map all players are in a single AOI, so AOI filtering
would not reduce bandwidth requirements.

To highlight any perceptible inconsistencies in the game
experience, we take several steps to encourage the human
players to focus mostly on each other. For example, we make
human players easy to identify, we make killing a human
worth ten times more than killing a bot, and we encourage
players to communicate verbally, through which they can
reveal anomalies to each other.

Testbed. Each peer is executed by a virtual server on a
single machine. We emulate a network between them. In
LoBW and LoBW-IS, each peer, whether player or bot, has a
rate limit of 108 kbps; HiBW has no rate limits. We choose
108 kbps because it enables a subscriber set size of four and a
best-effort rate of one update per second in LoBW-IS, settings
that we found satisfactory during play-testing. At this rate
limit, a LoBW peer sends 5 updates to each player per second
(in contrast to the nominal 20). Each peer manages its send

0
200
400
600
800

1000

LoBW LoBW-IS LoBW-IS HiBW

S
e

co
n

d
s

LoBW vs. LoBW-IS LoBW-IS vs. HiBW

Figure 3: Total time players spend on each version. Er-

ror bars show 95% confidence intervals.

0
2
4
6
8

10

LoBW LoBW-IS LoBW-IS HiBW

S
co

re
 (1

 to
 1

0)

LoBW vs. LoBW-IS LoBW-IS vs. HiBW

Figure 4: Average response to question, “How fun was

this game on a scale of 1 (not fun) to 10 (extremely fun)?”

Error bars show 95% confidence intervals.

rate to not exceed the rate limit, so there is no packet loss.
The RTT between each peer is 20 ms.

The focus of this user study was not update distribution so
we used games where bots’ attentions are roughly uniformly
distributed. Thus, each peer could send frequent updates
directly to the four subscribers with highest interest and still
satisfy most interest sets of size four. Our simulations in §7
use a more conservative interest set size of five to further
improve user satisfaction.

Participants. We conduct 12 trials of LoBW vs. LoBW-IS

and 32 trials of LoBW-IS vs. HiBW, using a total of 88 differ-
ent participants. In general, participants are very familiar
with FPS games, with 87% reporting that they played FPS
games every week at some point in their life. Nonetheless,
we give all players 8 minutes to practice playing Quake III
in the HiBW scenario before beginning.

Limitations. Our user study has two main limitations: it
has only two human players, and it has only 32 players total.
To mitigate the first limitation, we try to keep the human
subjects focused on each other, so we can evaluate how well
interest sets estimate focus on human players, not bots. We
expect the second limitation to be minor in practice since
human cognitive limitations do not slacken when more po-
tential objects of attention are present. Although game play
may change in such scenarios, game designers can tune our
heuristics and increase the estimated interest set size so that
it is more likely to include the true interest set.

6.2 Results
Two metrics show that interest sets preserve user satis-

faction in games even in low-bandwidth environments:

Total time spent. Players are likely to play longer in
a game that they find more enjoyable. Fig. 3 shows the
average amount of time spent on each version in the two
different experiment types. Given the choice between LoBW

and LoBW-IS, players overwhelmingly choose to spend time
on LoBW-IS. Anecdotally, this is due to the contrast between
the natural movement of LoBW-IS’s doppelgängers and the
choppy and unrealistic movement caused by LoBW-IS’s 200-
ms update period. When choosing between LoBW-IS and
HiBW, players spend slightly more time on HiBW, though
this difference is statistically insignificant.

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60 70

C
D

F
 %

 o
f u

pd
at

es

Size, in bytes

Delta-encoded
Delta-encoded to last 2 frames

Figure 5: CDFs of update sizes for different levels of

delta-encoding. Without delta-encoding, an update is

196 bytes.

Self-reported score. After the experiment, players rate
their enjoyment of the two versions on a 1–10 scale. Fig. 4
shows the average scores given to each version in the two
comparisons. On average, LoBW-IS is preferred by 4.5 points
over LoBW, whereas the difference between LoBW-IS and
HiBW is statistically insignificant.

7. EVALUATION: SCALE & PERFORMANCE
This section presents simulation results that evaluate Don-

nybrook under large-scale, wide-area-network conditions.
First, we evaluate the battle scale Donnybrook allows us to
achieve, and show that even at the highest scale, we achieve
low guidance staleness and reasonable on-time update de-
livery rates (§7.2). We also show that we handle interest
heterogeneity (§7.3) and churn (§7.4). We then conduct ex-
periments to explain design decisions. We show the effec-
tiveness of the forwarding pool and explain why we reserve
50 Kb/s per player for it (§7.5). We also justify our use
of a forwarding pool by comparing to alternate approaches
(§7.6). Finally, we explore the sensitivity of Donnybrook’s
scale to parameters that may differ in different games and
environments, specifically capacity variability (§7.7) and re-
quired interest set size (§7.8).

7.1 Experimental Methodology
To evaluate the efficacy of Donnybrook for larger games,

we developed a detailed simulator, described below.

7.1.1 Game Workloads
Existing fast-paced games rarely support more than 32

players, so it is not possible for us to obtain a real work-
load with hundreds of players. Instead we use the game
workload generator developed by Bharambe et al. [4], which
is based on the observed behavior of real Quake III play-
ers. Update sizes are drawn from the empirical distribution
shown in Figure 5. To validate these workloads, we sim-
ulate a 32-player death match game like those in our user
study. Figure 6 compares the subscriber set size distribu-
tions. Both the user study and death-match simulation dis-
tributions are approximately normal, though the subscriber
sets are slightly more skewed in the user studies. Simulated
capture-the-flag games, described below, make up some of
the difference between our simulator and user study results,
as can be seen in the figure.

To evaluate Donnybrook under skewed player attention
distributions, we modify the generator to simulate capture-
the-flag (CTF) games. Our modifications are based on
Quake III’s original code controlling how bots behave in
CTF games, and on empirical CTF traces of real players.
The structure of a CTF game is that players are divided
into two teams and repeatedly attempt to capture the other

 0

 5

 10

 15

 20

 0 5 10 15 20

%
 li

ke
lih

oo
d

Subscriber set size

flag carriers

Death match simulation
CTF simulation

User studies

Figure 6: Comparison of subscriber set size distribution

seen in user studies and in simulated games

 0

 20

 40

 60

 80

 100

100 Kb/s 1 Mb/s 10 Mb/s

C
D

F
 %

 o
f m

ac
hi

ne
s

Upload capacity (log scale)

Broadband hosts
BitTorrent hosts

Lognormal approximation

Figure 7: CDFs of peer upload capacities

team’s flag. Thus, the players currently carrying the flags
tend to be the focus of attention for many players, resulting
in a highly skewed distribution of player attention. This is
exemplified in Figure 6 by the second mode between 15 and
20. Note that unlike the mode around 5, this mode increases
with the number of players in the game.

In our user studies, we observed that interest sets change
frequently: on average, the set of 5 most interesting players
changes 3.4 times per second. This corresponds to signifi-
cant interest flux, 68% turnover per second. Our simulator
captures this effect at a coarse level, producing rates of 2.6
(death match) and 2.9 (CTF) changes per second.

7.1.2 Network Model
In our games, each player is on a separate machine in a

simulated network. The simulation uses empirical models of
capacity, latency, and loss to represent what game players
generally experience on the Internet.

Bandwidth. The primary factor affecting the feasibility
of peer-managed epic battles is peers’ upload capacity (see
§2.2). To our knowledge, no upload capacity models exist
for game clients, so we use two empirical distributions that
we believe are representative: one of broadband hosts in the
U.S. that have run a test to measure their capacity [7] and
one of BitTorrent hosts [34] (Figure 7). The former is a
conservative model that includes only home users, while the
latter assumes that high bandwidth university and corpo-
rate sites can contribute as well. We impose a 4–6 Mb/s
bandwidth cap on each peer in the latter model since it is
unrealistic to expect higher rates to be acceptable, as we
discussed in §2.2. Since these capacities are almost all much
smaller than bottlenecks in the Internet’s core, we do not
model the bandwidth effects of cross traffic. In the sequel,
we will refer to the broadband-host distribution as BB, and
the BitTorrent distribution capped at n Mb/s as P2P-n.

We note that the second and third quantiles of both em-
pirical distributions are similar and are well modeled by a
log-normal distribution (with mean 1 Mb/s and a range of
256 Kb/s to 5 Mb/s), also shown in the figure. Therefore,
we scale this analytic distribution to evaluate the sensitivity
of our approaches to different distributions.

 0
 200
 400
 600
 800

 1000
 1200

BB P2P-4 P2P-6

M
ax

 #
 o

f p
la

ye
rs

Distribution

Standard
NoGF
Donnybrook

Figure 8: Maximum scale achievable by Donnybrook

with various capacity distributions, compared to ideal-

ized models: Standard (no interest sets) and NoGF (no

guidance forwarding)

Latency. For Donnybrook games, a matchmaking service
would likely partition players into games based on geograph-
ical boundaries, to reduce internode latency and to combine
players speaking the same language. To ensure large games,
the geographical areas would have to be large. Thus, we
emulate the inter-node RTT in an n-node game by drawing
n nodes from the Halo 3 player data set [23] that are in the
Western U.S., with longitude between 110◦ and 125◦ west.
The mean, median, and standard deviation of inter-node
RTT of this peer set are 81 ms, 64 ms, and 63 ms, respec-
tively. Since most node pairs did not probe each other, we
extrapolate RTT values using Vivaldi with a 3D-with-height
metric space [12]. To capture latency variation due to cross
traffic, we apply the model of Mukherjee [27].1

Loss. Finally, packet loss is important because its frequency
determines how often updates must be retransmitted or oth-
erwise recovered. Following the recommendations of Zhang
et al. [42], we model loss using a two-state Gilbert model [17],
setting loss rate to 1% and mean loss burst time to 100 ms.

7.1.3 Performance metric
As discussed in §2.1, lag is the most important network

factor that affects player enjoyment and performance. Thus,
the primary performance metric we measure is percentage
of required updates that are received on time. An update is
required if the player that generated it has been in the re-
ceiver’s interest set for at least one frame, i.e., we estimate
the receiver is interested in the player. Since round-trip
times under 150 ms are generally recommended, and FPS
games can cope with loss rates of 5–10% as long as updates
are delivered within 100–150 ms [3, 23], we evaluate update
delivery rates using 150-ms deadlines. Generally, delivery
time distributions are shaped similarly to the latency distri-
butions in Figure 1, so when 96% of updates arrive within
150 ms, over 90% of updates arrive within 100 ms and per-
formance should be acceptable.

7.2 Scalability
We start by evaluating the effect of Donnybrook’s tech-

niques on battle scalability. We consider a scale n to be
achievable if a randomly selected set of n machines has prob-
ability ≥ 99.5% of satisfying the initial feasibility test per-
formed by the matchmaking service. For Donnybrook, this
feasibility test checks whether sufficient capacity exists for

1
The instantaneous one-way delay for each pairwise connection is

drawn from an offset gamma distribution, whose mean is set to half
of the mean RTT obtained from the above procedure. Based on mea-
surements and regression analyses of our own, we set the distribution
such that 75% of the mean delay comes from the constant offset and
25% comes from the gamma distribution. The order, i.e., shape pa-
rameter, of the gamma distribution is 0.1.

 94
 95
 96
 97
 98
 99

 100

 100 200 300 400 500 600 700 800 900 1000%
 u

pd
at

es
 o

n
tim

e

Number of players

BB P2P-4 P2P-6

Figure 9: Updates delivered within 150 ms at various

scales with various capacity distributions. No results

shown for scales where no run passed the initial feasi-

bility test (500+ for BB, 900+ for P2P-4). Error bars

show 95% confidence intervals.

 98

 99

 100

 0 5 10 15

C
D

F
 %

Staleness, in frames, beyond one second

BB, 400 players
P2P-4, 700 players
P2P-6, 900 players

Figure 10: How often a player is operating on stale

guidance from another player.

forwarding guidance after setting aside capacity for the for-
warding pool.

Figure 8 shows the results: Donnybrook’s maximum scale
is 425 for BB, 765 for P2P-4, and 969 for P2P-6. For compar-
ison, we also show scale for optimistic models of simpler ap-
proaches. The Standard model represents architectures like
Colyseus [4], where each player sends updates to each other
player in the battle every frame. Architectures that rely on
AOI filtering to limit bandwidth requirements [19, 21, 22,
38] degenerate to the Standard model when all players are in
the same AOI. The NoGF model represents the use of inter-
est sets but not guidance forwarding. NoGF achieves 13–16
times more scale than Standard, since it sends 20 times less
data to most but not all peers. Donnybrook achieves 2–3
times yet more scale by allowing high-capacity machines to
forward for low-capacity ones. This makes scale constrained
by the mean capacity rather than the minimum capacity.

Of course, the initial feasibility test is insufficient proof
that Donnybrook can achieve a certain scale. Its perfor-
mance must also be reasonable. To test this, we run 30-
minute CTF games of Donnybrook at various scales and
evaluate performance. Since these simulations are time-
intensive, we evaluate only scales that are multiples of 100
players, and run 11 games each. Figure 9 shows the results,
which demonstrate that these scales are indeed achievable.
Performance is acceptable at all scales, with deadline miss
rates of only ∼3–4%. Indeed, we can tell that performance is
even reasonable when we exceed the 99.5%-likely achievable
scale, since many of our runs beyond this scale were feasible.
11/11 of the P2P-4 runs with 800 players, and 9/11 of the
P2P-6 runs with 1000 players, were feasible.

We also need to show that guidance is generally delivered
before the previous guidance has expired. Figure 10 shows
a graph of guidance staleness for the three distributions at
maximum scale. The primary causes of stale guidance are
high latency and packet loss. We see that a doppelgänger
operates on guidance that is at least one frame too stale only
about 1.5% of the time. Furthermore, used guidance is more
than 1 sec stale only about 0.25% of the time. Hence, Don-
nybrook’s guidance dissemination strategy effectively meets
latency bounds, despite its use of two-hop forwarding.

 90

 92

 94

 96

 98

 100

5 6 7 8 9 10 11 12 13 14 15 16 half+

%
 u

pd
at

es
 o

n
tim

e

Subscriber set size

BB, 400 players
P2P-4, 700 players
P2P-6, 900 players

Figure 11: Updates delivered within 150 ms, as a func-

tion of the subscriber set size of the source. Error bars

show 95% confidence intervals.

 0
 20
 40
 60
 80

 100

 0 5 10 15 20

C
D

F
 %

Per-frame forwarder pool use, in Kb/s per player

BB, 400 players
P2P-4, 700 players
P2P-6, 900 players

Figure 12: How often various amounts of bandwidth

were requested from the forwarding pool

We conclude that Donnybrook can support at least 400
players with BB, 700 with P2P-4, and 900 with P2P-6.

7.3 Effect of subscriber set size
One of our goals is to quickly deliver updates even from

players with high subscriber set sizes, despite those players’
capacity limitations. Figure 11 shows how many updates
are delivered within 150 ms for different subscriber set sizes.
We observe that even when subscriber set sizes are massive,
constituting at least half the players, sources can still deliver
well over 90% of their updates within 150 ms. Slightly more
updates take over 150 ms as subscriber set size increases due
to increased queuing delay and the fact that more messages
are sent via multi-hop paths.

7.4 Churn
To simulate churn, we assume each node uses an expo-

nential distribution to independently decide when to leave.
We simulated various churn rates, corresponding to prob-
abilities of 10–50% of leaving during the 30-minute game.
In all our results (not shown), performance with churn is
never less than performance without churn by more than
the width of the 95% confidence interval, indicating our
techniques for handling churn are effective. Indeed, often
results with churn are slightly better than without it. This
is because during periods with fewer players in the game,
guidance bandwidth demand is lower and thus queuing de-
lay is slightly reduced.

7.5 Forwarding pool
A key question about the forwarding pool is how much

bandwidth to set aside for it. To answer this, we evaluate
(1) how much bandwidth is generally needed in a frame, and
(2) how forwarding pool size affects scalability.

To address the first issue, we simulate several large-scale
games and record the aggregate bandwidth requested from
the forwarding pool each frame. Figure 12 shows the re-
sults. The requested amount varies but is rarely more than

 0
 200
 400
 600
 800

 1000
 1200

 0 20 40 60 80 100

M
ax

 #
 o

f p
la

ye
rs

Forwarding pool capacity, in Kb/s per player

BB P2P-4 P2P-6

Figure 13: Achievable scale as a function of total for-

warding pool capacity, expressed as Kb/s per player

 0
 20
 40
 60
 80

 100

BB P2P-4 P2P-6 BB P2P-4 P2P-6

%
 u

pd
at

es
 o

n
tim

e

 Overall Flag carriers only

Static
Coordinated dynamic

Donnybrook

Figure 14: Comparison of Donnybrook’s forwarding

pool to alternative approaches. Player count is 400 for

the BB distribution, 700 for P2P-4, and 900 for P2P-6.

20 Kb/s per player. The maximum ever requested is 49 Kb/s
per player. These values are low because the forwarding pool
is mainly used by players with high subscriber set sizes, and
in our CTF games there are only two such players, the flag-
carriers. Even if every player in the game is interested in
both flag carriers, and both send full updates to every player,
their aggregate requirement is only 38 Kb/s per player.

To address the second issue, Figure 13 shows how the max-
imum scale varies according to the per-player bandwidth set
aside for the forwarding pool. We compute maximum scale,
as before, as the value that allows ≥ 99.5% of player groups
to satisfy the initial feasibility test. We see that the more
capacity we set aside for the forwarding pool, the less ca-
pacity is available for guidance dissemination, which in turn
reduces scale. However, we also see that this effect is minor.
Since scale is relatively insensitive to the bandwidth reserved
for forwarding pool use, we conclude we can comfortably al-
locate a generous amount. Thus, we set aside 50 Kb/s per
player in the forwarding pool, providing ample bandwidth
and thus keeping down the probability that sources’ random
forwarder selections will overload any given forwarder.

To verify the necessity of having any bandwidth at all in
the forwarding pool, we conducted simulations without any
forwarding pool. We found, as expected, that this rendered
performance unacceptable, often with fewer than 80% of up-
dates being delivered on time.

Finally, an important goal of the forwarding pool is to
ensure fairness among players, in particular not to discrim-
inate against players with low rate limits. We find that
the correlation coefficient between rate limit and fraction of
updates delivered on time is, on average very low, 0.0002,
which indicates a high degree of fairness.

7.6 Alternate update forwarding strategies
In this section, we evaluate the forwarding pool against

two alternate approaches. One, static assignment, allo-
cates forwarders to sources at the outset of the game, sim-
ilarly to how supernodes are chosen in other p2p systems.
The second, coordinated dynamic assignment, uses a leader

 0
 200
 400
 600
 800

 1000
 1200

 5 6 7 8 9 10

M
ax

 #
 o

f p
la

ye
rs

Interest set size

BB P2P-4 P2P-6

Figure 15: Maximum scale as a function of interest set

size for various capacity distributions

node to allocate forwarders to sources based on dynamically-
changing subscriber set size [14].

Figure 14 shows the results. We observe that the static
assignment approach produces unacceptable update delivery
performance at high scales, especially for players with high
subscriber set sizes. A single machine acting as a forwarder,
even if it has as much as 6 Mb/s, has difficulty serving as
a forwarder for a set of sources when one or more of them
attracts a large number of subscribers.

We also observe that the coordinated dynamic approach
produces worse performance than Donnybrook. This result
is surprising since coordinating forwarding capacity assign-
ment should reduce contention for the forwarding pool How-
ever, in practice, three effects lead to the coordinated ap-
proach suffering. First, and foremost, the coordinated ap-
proach seeks unused capacity anywhere it is present, and
thus often uses forwarders with lower capacity or higher av-
erage latency than machines in the forwarding pool. Lower
capacity means it takes longer for packets to drain from their
outbound queues, causing increased queuing delay. Second,
the coordinated approach requires overhead to maintain co-
ordinated information about where capacity is available and
needed. Finally, forwarding pool contention is rare, making
the advantage of coordination of minor value.

7.7 Capacity variation
To determine the effect of inter-player capacity variabil-

ity, we conducted evaluations using the log-normal approx-
imation of our capacity distributions. That approximation
varies from 256 Kb/s to 5.1 Mb/s and has a mean of 1 Mb/s.
By changing the variance in our model but keeping the mean
the same, we generated two other distributions, one varying
less, from 384 Kb/s to 3.6 Mb/s, and one varying more, from
128 Kb/s to 8.0 Mb/s. We find that as variance increases,
the maximum scale achievable goes from 646 to 683 to 765.
Greater variation enables greater scale, even with the same
mean, because using high-bandwidth nodes provides more
opportunity for packet coalescing. Performance results (not
shown) indicate that we achieve acceptable performance on
all three distributions.

7.8 Interest set size variation
Some games may place less cognitive burden on players

and allow them to focus on more than five other players at
a time. Also, limitations of our user study prevent us from
definitively concluding that a set of five is sufficient for all
games. Therefore, it is useful to understand what happens
when interest set sizes are larger than five. To evaluate
this, we consider interest set sizes ranging from five to ten.
For each increase of one in interest set size, we reserve an
additional 12 Kb/s on each machine for distributing updates,
reducing the amount available for forwarding guidance or the
forwarding pool.

 94
 95
 96
 97
 98
 99

 100

 5 6 7 8 9 10

%
 u

pd
at

es
 o

n
tim

e

Interest set size

BB, 400 players
P2P-4, 700 players
P2P-6, 900 players

Figure 16: Performance as a function of interest set

size for various capacity distributions and player counts.

Error bars show 95% confidence intervals.

Figure 15 shows the effect on scale of increasing interest
set size, largely due to the additional reserved capacity. We
see that interest set sizes of up to ten do not substantially
reduce scale. Furthermore, simulation results, shown in Fig-
ure 16, indicate that with the additional capacity reserva-
tion, performance does not change significantly even with
interest set size up to 10. We conclude that Donnybrook
can still achieve nearly the same high scale.

8. RELATED WORK
8.1 Interest filtering

Efforts to improve the quadratic scaling of traditional
game designs usually leverage the fact that each player has
a limited area of interest (AOI), i.e., he is interested in only
a subset of the entire game state, typically his local area or
field of view. Most p2p AOI designs perform interest filter-
ing by partitioning the game world into disjoint regions [16,
21, 22, 38]. Colyseus [4] and VON [19] allow peers to specify
arbitrary AOIs.

AOI filtering reduces bandwidth demand to the extent
that players have limited proximity to each other. In an
epic battle, however, everyone will be in the same AOI, and
AOI filtering will not reduce bandwidth demands. For in-
stance, despite Colyseus’s scalable object discovery, it will
still require a player to send updates every frame to every
other player who is near his objects. Hence, bandwidth re-
quirements remain quadratic in the number of players in the
battle. Our interest set design goes beyond AOI filtering by
allowing clients to specify their degree of interest in nearby
objects, and by maintaining object replicas with different
fidelity based on interest level.

8.2 Variable object fidelity
Two techniques that reduce the required frequency of

object state updates are predictive contract mechanisms
(PCM) [20] and multi-resolution simulation [18]. In a PCM,
the sender and receiver use a shared model to predict the
object’s state, and the sender only sends a state update
when the predictor’s error exceeds a threshold. The most
common PCM uses dead reckoning, extrapolating an ob-
ject’s position based on past position, velocity, and some-
times other moments [32]. Other predictors include a hy-
brid dead-reckoning/shortest-path predictor [24] and a neu-
ral network [25]. Like PCMs, Donnybrook also predicts fu-
ture behavior and uses this to reduce bandwidth demand.

Multi-resolution simulation schemes, when used in the
context of distributed interactive simulation [13], provide
multiple implementations for each object, with varying de-
grees of resolution and simulation cost. This resembles Don-
nybrook’s two representations of a remote player: the stan-
dard representation and the doppelgänger.

The most important difference between these techniques
and Donnybrook is that while the former strictly bound er-
ror and produce unpredictable and modest bandwidth re-
ductions, Donnybrook reduces bandwidth by a large, pre-
dictable factor while allowing unbounded error. This is tol-
erable because we only reduce fidelity for objects the receiver
is not paying attention to. Our techniques can cause incon-
sistent views across players, but we comfortably ignore this
divergence because our user studies confirm that the game
remains enjoyable.

8.3 Overlay multicast
Update delivery requires four properties from a multicast

scheme: (1) a strict bound on end-to-end latency, (2) sup-
port for very frequent group membership changes, (3) sup-
port for heterogeneity in client capacity, and (4) scalability
with the number of groups and total membership.

Structured (DHT-based) multicast designs [8, 9] allow
nodes to join quickly and minimizes control overhead. Thus,
such schemes handle (2) and (4) well. However, it is very dif-
ficult to optimize latency or handle node heterogeneity effec-
tively [36]. At the other end, unstructured approaches [2, 10,
30] allow clients to join anywhere and try to optimize the tree
structure. As a result, they are better at supporting (1) and
(3) but worse at (2) and (4) due to control overhead. Our
approach is unstructured, but, in contrast to most schemes,
has the source rather than the clients control tree struc-
ture. This minimizes control overheads and can still scale to
900-player games. CoopNet [30] also uses source-controlled
trees, but requires Multiple Description Coding to encode
video frames over multiple trees to handle churn and packet
loss. However, game updates are too small relative to packet
headers to be efficiently encoded in this way and CoopNet
does not address issues in scaling large numbers of partially
overlapping groups.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we presented Donnybrook, a system that

enables peer-managed, large-scale, high-speed games by sup-
porting epic battles involving hundreds of players. Donny-
brook supports such battles with three essential elements:
First, it leverages human cognitive limitations to preferen-
tially spend bandwidth capacity on information most im-
portant to players using interest sets. As a consequence,
the volume of frequent updates scales only linearly with the
number of players rather than quadratically, making large
scales feasible. Second, Donnybrook uses a delay-sensitive
forwarding mechanism to disseminate the remaining neces-
sary all-to-all information, so that scale is not limited by the
node with the smallest capacity. Third, Donnybrook uses a
latency-sensitive, uncoordinated dynamic allocation system
to forward frequent updates, allowing it to support extreme
heterogeneity in player popularity and capacity.

Although this paper discussed the use of interest sets and
doppelgängers in the context of p2p games, these techniques
should also be useful in client/server games. The bandwidth
a server requires also scales quadratically with the number
of players in an AOI, so our techniques can reduce the cost
of running such a game by reducing this requirement. Eval-
uating this approach is future work.

We are currently working on an Internet deployment of
a large-scale game using Donnybrook, to learn more about
the benefits and limitations of our approach. While our user
study allowed us to evaluate the effectiveness of interest sets

in a controlled, experimental setting, it may have missed
factors that will only manifest in a true large-scale game.
For instance, large scale may reveal properties of interest
sets we were unable to observe in smaller-scale games, ne-
cessitating more sophisticated heuristics or larger interest
set sizes. Also, we may discover how players try to gain un-
fair advantage from Donnybrook’s new techniques and what
is necessary to defend against such cheating. Furthermore,
an Internet deployment will more accurately reflect the net-
working characteristics of game-player communities.

10. ACKNOWLEDGMENTS
The authors wish to thank Frank Uyeda for his work in

implementing guidable AI in our Quake III prototype. He
also tested early prototypes and helped manage the user
study. We also thank the anonymous reviewers.

11. REFERENCES
[1] Akella, A., Seshan, S., and Shaikh, A. An empirical

evaluation of wide-area Internet bottlenecks. In SIGCOMM
(Oct. 2003), pp. 316–317.

[2] Banerjee, S., Lee, S., Bhattacharjee, B., Srinivasan,

A., and Braud, R. Scalable resilient media streaming. In
NOSSDAV (June 2004).

[3] Beigbeder, T., Coughlan, R., Lusher, C., Plunkett,

J., Agu, E., and Claypool, M. The effects of loss and
latency on user performance in Unreal Tournament 2003.
In NetGames (Aug. 2004), pp. 144–151.

[4] Bharambe, A., Pang, J., and Seshan, S. Colyseus: A
distributed architecture for interactive multiplayer games.
In NSDI (May 2006).

[5] Blizzard Entertainment. Battle.net info.
http://www.battle.net/info/faq.shtml, 2007.

[6] Blizzard Entertainment. WoW PvP battlegrounds.
http://www.worldofwarcraft.com/pvp/battlegrounds, 2008.

[7] Broadband Reports. Broadband reports speed test
statistics. http://www.dslreports.com/archive, Sept. 2007.

[8] Castro, M., Druschel, P., Kermarrec, A.-M., Nandi,

A., Rowstron, A., and Singh, A. Splitstream:
High-bandwidth multicast in a cooperative environment. In
SOSP (2003).

[9] Castro, M., Druschel, P., Kermarrec, A.-M., and

Rowstron, A. Scribe: A large-scale and decentralized
application-level multicast infrastructure. IEEE JSAC 20,
8 (Oct. 2002).

[10] Chu, Y.-H., Rao, S. G., Seshan, S., and Zhang, H. A
case for end system multicast. IEEE JSAC 20, 8 (2002).

[11] Cowan, N. The magical number 4 in short-term memory:
A reconsideration of mental storage capacity. Behavioral
and Brain Sciences 24, 1 (2001).

[12] Dabek, F., Cox, R., Kaashoek, F., and Morris, R.

Vivaldi: A decentralized network coordinate system. In
SIGCOMM (Aug. 2004), pp. 15–26.

[13] DIS Steering Committee. The DIS vision: A map to the
future of distributed simulation, ver. 1. IST-SP-94-01, 1994.

[14] Douceur, J., Lorch, J., and Moscibroda, T.

Maximizing total upload in latency-sensitive P2P
applications. In SPAA (June 2007), pp. 270–279.

[15] GameZone. Blizzard Entertainment Announces World of
Warcraft Release Plans for Europe.
http://pc.gamezone.com/news/11 24 04 09 39AM.htm,
2004.

[16] Gautier, L., and Diot, C. Design and evaluation of
MiMaze, a multi-player game on the Internet. In IEEE
Multimedia Systems Conference (July 1998).

[17] Gilbert, E. N. Capacity of a burst-noise channel. The Bell
System Technical Journal 39 (1960).

[18] Hamilton, J. A., Nash, D. A., and Pooch, U. W.

Distributed Simulation. CRC Press, 1997.

[19] Hu, S.-Y., Chen J.-F., and Chen, T.-H. VON: a scalable
peer-to-peer network for virtual environments. IEEE
Network 20, 4 (July/Aug. 2006).

[20] IEEE. IEEE standard for distributed interactive
simulation—application protocols, Sept. 1995. IEEE
Standard 1278.1-1995.

[21] IEEE. IEEE standard for modeling and simulation high
level architecture (HLA), Sept. 2000. IEEE Standard
1516-2000.

[22] Knutsson, B. et al. Peer-to-peer support for massively
multiplayer games. In INFOCOM (July 2004).

[23] Lee, Y., Agarwal, S., Butcher, C., , and Padhye, J.

Measurement and estimation of network QoS among peer
Xbox 360 game players. In PAM (Apr. 2008).

[24] McCoy, A., McLoone, S., Ward, T., and Delaney, D.

Dynamic hybrid strategy models for networked multiplayer
games. In ECMS (June 2005), pp. 727–732.

[25] McCoy, A., Ward, T., McLoone, S., and Delaney, D.

Multistep-ahead neural-network predictors for network
traffic reduction in distributed interactive applications.
TOMACS 17, 4 (Sept. 2007).

[26] Microsoft Corporation. Xbox LIVE website.
http://www.xbox.com/en-US/live/, 2007.

[27] Mukherjee, A. On the dynamics and significance of low
frequency components of Internet load. Internetworking:
Research and Experience 5 (1994).

[28] Ohio University. Ohio University announces changes in
file-sharing policies.
http://www.ohio.edu/students/filesharing.cfm, 2007.

[29] O’Neill, V. Adding creamy nougat and a crisp candy
coating to the network: XRNM and QNet. XNA GameFest
(Aug. 2007).

[30] Padmanabhan, V., and Sripanidkulchai, K. The case for
cooperative networking. In IPTPS (Mar. 2002).

[31] Pang, J., Uyeda, F., and Lorch, J. Scaling peer-to-peer
games in low-bandwidth environments. In IPTPS (Feb.
2007).

[32] Pantel, L., and Wolf, L. C. On the suitability of dead
reckoning schemes for games. In NetGames (Apr. 2002),
pp. 79–84.

[33] Paul, R. More universities banning Skype. http://
arstechnica.com/news.ars/post/20060924-7814.html, 2006.

[34] Piatek, M., Isdal, T., Anderson, T., Krishnamurthy,

A., and Venkataramani, A. Do incentives build
robustness in BitTorrent? In NSDI (Apr. 2007), pp. 1–14.

[35] Pittman, D., and Dickey, C. G. A measurement study of
virtual populations in massively multiplayer online games.
In NetGames (Sept. 2007).

[36] Rao, S., Bharambe, A., Padmanabhan, V., Seshan, S.,

and Zhang, H. The impact of heterogeneous bandwidth
constraints on DHT-based multicast protocols. In IPTPS
(Feb. 2005).

[37] Robson, J. G., and Graham, N. Probability summation
and regional variation in contrast sensitivity across the
visual field. Vision Research 21, 3 (1981).

[38] Rosedale, P., and Ondrejka, C. Enabling player-created
online worlds with grid computing and streaming.
Gamasutra (Sept. 2003).

[39] Rosenberg, J., Weinberger, J., Huitema, C., and

Mahy, R. STUN - Simple Traversal of User Datagram
Protocol (UDP) Through Network Address Translators
(NATs). RFC 3489 (Proposed Standard), Mar. 2003.

[40] Sony Online Entertainment. PlanetSide FAQ.
http://planetside.station.sony.com/faq.vm, 2008.

[41] YVG Staff. Video game sales break records. http://
us.i1.yimg.com/videogames.yahoo.com/feature/
video-game-sales-break-records/1181404, Jan. 2008.

[42] Zhang, Y., Duffield, N., Paxson, V., and Shenker, S.

On the constancy of Internet path properties. In IMC
(Nov. 2001).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

