S
ETH

Eidgendssische Technische Hochschule Zdrich
Swriss Federal Instituke of T::hnn!omr Zurich

A DoS-Resilient Information System for
Dynamic Data Management

by Baumgart, M. and Scheideler, C. and Schmid, S. In SPAA 2009

Mahdi Asadpour
(amahdi@student.ethz.ch)

HYNY [| P '
PR S T -
rT ___.___::_:h.-.—.—-t-!'"
' Bl B r

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Outline

= Denial of Service Attacks

= Chameleon: System Description
= Chameleon: Operational Detalils
= Conclusion

S
ETH

Eidgendssische Technische Hochschule Zdrich
Swriss Federal Instituke of T::hnn!omr Zurich

Denial of Service Attacks

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

DoS attack

= (Distributed) Denial of Service (DoS) attacks are one of the
biggest problems in today’s open distributed systems.

= Botnet: A set of compromised networked computers controlled
through the attacker's program (the “bot").

Image credit: Network Security course, Thomas Diubendorfer, ETH Zrich.
Botnet

n n — T e
- =
(-
,-_*%J_ oo N

= I =T ._:;E Vietim
Agents Reflectors |

Amplifying network

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Examples

= DoS attack against the root servers of the DNS system: roots,
top-level domains, ...
= TCP SYN flood attack

Prevention: SYN cookies
Image credit: http://en.wikipedia.org/wiki/SYN _flood

SYN

Foot g

ORG [EIL EDU CH COm MET

/N /N

Root Domain Name Servers

L

SYN

/

X
&

http://en.wikipedia.org/wiki/SYN_flood�

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

DoS prevention

* Redundancy: information is replicated on multiple machines.

Storing and maintaining multiple copies have large overhead in
storage and update costs.

Full replication is not feasible in large information systems.
= |n order to preserve scalability, the burden on the servers
should be minimized.

Limited to logarithmic factor.

Challenge: how to be robust against DoS attacks?

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Therefore, a dilemma

= Scalability: replication of information
"= Robustness: resources needed by attacker

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Related work

= Many scalable information systems:

Chord, CAN, Pastry, Tapestry, ...
Not robust against flash crowds

= Caching strategies against flash crowds:
CoopNet, Backlash, PROOFS,...
Not robust against adaptive lookup attacks

] L] Lat] (]

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Related work, cont.

= Systems robust against DoS-attacks:
SOS, WebSOS, Mayday, llI,...
Basic strategy: hiding original location of data

Not work against past insiders
= Awerbuch and Scheideler (DISC 07):

DoS-resistent information system that can only handle get
requests under DoS attack

S
ETH

Eidgendssische Technische Hochschule Zdrich
Swiss Federal Institute of Technology Zurich

Chameleon: System Description

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Model

= Chameleon: a distributed information system, which is
provably robust against large-scale DoS attacks.

= N fixed nodes in the system, and all are honest and reliable.

= The system supports these operations:

Put(d): inserts/updates data item d into the system

Get(name): this returns the data item d with
Name(d)=name, if any.
= Assume that time proceeds in steps that are synchronized
among the nodes.

Eidgendssische Technische Hochschule Zdrich = Vi T — ’ p —cl :;!lﬂ'f["u e
Swiss Federal Institute of Technology Zurich - 1 - = = _" ~ 3

(RN
s

Past insider attack

= Attacker knows everything up to some phase tO that may not
be known to the system.

A fired employee, for example (Image Credit: Bio Job Blog).
= Can block any e-fraction of servers

= Can generate any set of put/get requests, one per server.

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Goals

= Scalability: every server spends at most polylog time and
work on put and get requests.

= Robustness: every get request to a data item inserted or
updated after tO is served correctly.

= Correctness: every get reguest to a data item Is served
correctly if the system is not under DoS-attack.

= The paper does not seek to prevent DoS attacks, but
rather focuses on how to maintain a good availability
and performance during the attack.

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Also, distributing the load evenly among all nodes

S

e S

R

Image credit: Internet!

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Basic strategy

= Choose suitable hash functions hy,..,h.:D—V
(D: name space of data, V: set of servers)

= Store copy of item d for every i and | randomly in a set of
servers of size 2! that contains h,(d)

hy(d)
RARAARRARRARARARRRARAARAAR
S EB

difficult to |cult to easy to sy to
find lock find lock

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Put and Get Requests

= Most get requests can access close-by copies, only a few
get requests have to find distant copies.
= Work for each server altogether just polylog(n) for any set of

n get requests, one per server.
= All areas must have up-to-date copies, so put requests may

fail under DoS attack. h(d)

ARARR33ARARR33R33333434
S 5B

Eldgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Distributed Hash Table (DHT)

= Chameleon employs the idea of DHT.
= Decentralized distributed systems that provide a lookup service

of (key, value) pairs: any participating node can efficiently
retrieve the value associated with a given key.

= Image credit: http://en.wikipedia.org/wiki/Distributed hash_table

Data Key Distributed
" Hash Network
Hak ' - function _"'[DFCD3454
ﬁmﬂlmnlfm Hash
thg.i:.:“ . function —’{ S2EDB79E

The red fox

v . Hash i
sS
%:#-ﬂ — finction [IEBOIRSEY

http://en.wikipedia.org/wiki/Distributed_hash_table�

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Data stores

= Data management of Chameleon relies on two stores:

p-store: a static DHT, in which the positions of the data items are
fixed unless they are updated.

t-store: a classic dynamic DHT that constantly refreshes its
topology and positions of items (not known to a past insider).

< t-store

>
<l p-store >
RAAXAXARARARAARL

Internet

I Lt
h.__.A
I Lt
(s
[
ol

N
(T~
(T
[y

‘!..I
'*1‘1'4'31141

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

P-store

= Nodes are completely interconnected and mapped to [0,1).

= A node i is responsible for the interval [i/n, (i+1)/n). Itis
represented by log n bits, i.e. > x/2

= The data items are also mapped to [0, 1), based on fixed hash
functions h,,...,h. : U — [0, 1) (known by everybody).

= For each data item d, the lowest level | = O gives fixed storage
locations h,(d), ..., h.(d) for d of which O(log n) are picked at
random to store up-to-date copies of d.

= Replicas are along prefix paths in the p-store.

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

P-store, prefix path

/ hi(d) ha(d)
JECEONONONCEONONO
1 @ (oo @ (o oT
, (@ e ;).\H @. : K'\ o I

3 (® ¢ o & o o 0

® Blocked node ® Non-blocked node

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

T-store

= |n order to correctly store the copies of a data item d, Q(log n)
roots should be reached, which may not always be possible
due to a past-insider attack. T-store is used to temporarily
store data.

= [ts topology is a de Bruijn-like network with logarithmic node
degree, is constructed from scratch in every phase.

= de Bruijn graphs are useful as they have a logarithmic
diameter and a high expansion.

< t-store >

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

T-store, de Bruijn graph

= [0, 1)-space is partitioned into intervals of size 3log n/n.

= |n every phase, every non-blocked node chooses a random
position X in the interval.

* Then tries to establish connections to all other nodes that
selected the positions X, x-, X+, X/2, (x+1)/2

= |mage credit: http://en.wikipedia.org/wiki/De Bruijn_graph

-

| |:'j:'__;[50@](1m] [:Jlf:) (1 1@ |
\) - & . '.

http://en.wikipedia.org/wiki/De_Bruijn_graph�

Eldgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

New T-store

= Once the t-store has been established, the nodes at position 0
select a random hash function h : U — [0, 1) (by leader
election) and broadcast that to all nodes in the t-store.

= Not known to a past insider after tO.
= h determines the locations of the data items in the new t-store.

- d in the old t-store is stored in the cluster responsible for h(d).

< - _t-store

S
ETH

Eidgendssische Technische Hochschule Zdrich
Swiss Federal Institute of Technology Zurich

Chameleon: Operational Details

Image credit: Internet!

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Overall procedure in a phase

1. Adversary blocks servers and initiates put & get requests
2. build new t-store, transfer data from old to new t-store

3. process all put requests in t-store

4. process all get requests in t-store and p-store

O. try to transfer data items from t-store to p-store

< t-store
B B pstore 5 B >

&%g é i Internet ; ; ;{‘EZ&

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Stages

= Stage 1: Building a New t-Store

= Stage 2: Put Requests in t-Store

= Stage 3: Processing Get Requests
= Stage 4: Transferring Iltems

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stage 1: Building a New t-Store

= Join protocol: To form a de Bruijn network.

= Every non-blocked node chooses new random location in de
Bruijn network.

= Searches for neighbors in p-store using join(x) operation.

= Nodes in graph agree on a set of log n random hash functions
9, - -+, 00:[0,1)— [0, 1) via randomized leader election.

= Randomized leader election: each node guesses a random
bit string and the one with lowest bit string wins and proposes
the hash functions, in O(log n) round/time.

. R —pstore T~

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stage 1: Building a New t-Store, cont.

Insert protocol: to transfer data items from the old t-store to
the new t-store.

For every cluster in the old t-store with currently non-blocked
nodes, one of its nodes issues an insert(d) request for each
of the data items d stored In it.

Each of these requests is sent to the nodes owning g,(x), . . .,

J.(X) in the p-store, where x = [h(d)[(] log n)/n.

Each non-blocked node collects all data items d to point x and
forwards them to those contacted it in the join protocol.

O(n) items w.h.p.

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stage 2: Put Requests In t-Store

New put requests are served in the t-store: for a put(d)
requests, a t-put(d) request is executed.

Each t-put(d) request aims at storing d in the cluster
responsible for h(d) passing.

The t-put requests are sent to their destination clusters using

de Bruijn paths,e.g. X — Y

(X1’ e Xlogn) — (ylogn’ Xli e Xlogn —1) T e T (y1’ "t ylogn)
Filtering mechanism:

Only one of the same t-put requests survives.
Routing rule:

Just p log? n to pass a node
O(logn) time, O(log? n) congestion. d

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stage 3: Processing Get Requests

= First: in the t-store using the t-get protocol
de Bruijn routing with combining to lookup data in t-store
O(log n) time and O(log? n) congestion
= Second: If cannot be served Iin the t-store, then store In
the p-store using the p-get protocol.

Three stages: preprocessing, contraction and expansion

= Filtering: almost similar to t-put.
name d
me ame
name d

30

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stage 3: Processing p-Get Requests, Preprocessing

= P-get Preprocessing: Determines blocked areas via sampling.

Every non-blocked node v checks the state of a log n random
nodes in T,(v) for every 0 <i < log n.

If >= 1/4 of the nodes are blocked, v declares T,(v) as blocked.
= 0O(1) time: Since the checking can be done in parallel.

= O(log? n) congestion

14
0

1

2

ha(d)

ha (d)
IORONOMONSOMONO
xb\

®

s

i I

o @ h @

N
5, | \

j.\ ‘“tj /@ u \\ .DTS{

7 e \
/. P N

(® g o d§ o e 9

&

(®

® Blocked node ® Non-blocked node

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stage 3: Processing p-Get Requests, Contraction

= Each p-get(d) request issued by some node v selects a
random node out of all nodes and aims at reaching the node
responsible for h;(d), iin {1, ..., c} in at most ¢ log n hops.

= Stop: T,(h(id)) is blocked or hops > ¢ log n => deactivate i

= O(log n) time, w.h.p

hi(x)

ogn HHMHKHKHKHKHKH HHH j— HHHH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stage 3: Processing p-Get Requests, Expansion

= Looks for copies at successively wider areas.
= Every not-finished p-get(d) request sends (d, r, i,=) to a non-
blocked node v that was successfully contacted before.
= V maintains a copy b ofdin (d, r, I, b) and executes O(log n) :
Sends (d, r, i, b) to a random node in the same level.
Replace b with most current copy of d, if any. h(X)

2
O(log? N) 1ogn HHHHHHKHKH HHHHHH H H

inactive | | | | | | | |

2 | | | |

Stage 4: Transferring ltems

= Transfers all items stored in the t-store to the p-store using
the p-put protocol.

= After, the corresponding data item in the t-store is removed.
= p-put protocol has three stages: Preprocessing,
Contraction, Permanent storage

t-store
/ \

p-put(d2)

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Stage 4: Transferring Items, p-Put preprocessing

= p-Put preprocessing is like in the p-get protocol

= Determines blocked areas and average load in p-store via
sampling.

= O(1) time

= O(log? n) congestion

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stage 4: Transferring Iltems, p-put Contraction

= p-put Contraction is identical to the contraction stage of the
p-get protocol.

= Tries to get to sufficiently many hash-based positions in p-
store.

* O(log n) time.

hi(X)
|
ogn HHHHHHHH |—||—||—|2|—||—||—||—|

2 | i | i | i | |

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stage 4. Transferring ltems, p-put Permanent storage

1. p-put Permanent storage: For each successful data item,
store new copies and delete as many old ones as possible.

2. In the node responsible for h;(d) (d’s root node) information
about the nodes storing a copy of d is stored.

3. This information is used to remove all out-of-date copies of d.
fry (d) ha(d)

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stage 4. Transferring ltems, p-put Permanent storage

4. If it is not possible (blocking), references to these out-of-date
copies are left in the roots (be deleted later on).

5. Select a random non-blocked node in each T€(h;(d)) with £ in
{0, ..., log n}.

6. Store an up-to-date copy of d in these nodes, and store
references to these nodes in h;(d).

7. O(log n) time. The number of copies of d remains O(l0g~? n).

S
ETH

Eidgendssische Technische Hochschule Zdrich
Swriss Federal Instituke of T::hnn!omr Zurich

Conclusion

e

LT T T

o e e N e

' Bl B

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Main theorem

= Theorem: Under any s-bounded past-insider attack (for some
constant £>0), the Chameleon system can serve any set of
requests (one per server) in O(log? n) time s.t. every get

request to a data item inserted or updated after t, is served
correctly, w.h.p.

= No degradation over time:

O(log? n) copies per data item

Fair distribution of data among servers

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Summary

= This paper shows how to build a scalable dynamic information
system that is robust against a past insider.

= Two distributed hash tables for data managements: temporary
and permanent, respectively t-store and p-store.

= The authors defined many constants ¢, 3, p, ... but did not
optimize them, e.g. the replication factors.

= As also authors proposed, it would be interesting to study
whether the runtime of a phase can be reduced to O(log n).

= No experimental evaluation.

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

References

= Some of the slides are taken from the authors, with
permission.
= Main references:

B. Awerbuch and C. Scheideler. A Denial-of-Service Resistant
DHT. DISC 2007.

B. Awerbuch and C. Scheideler. Towards a Scalable and
Robust DHT. SPAA 2006.

D. Karger, et al. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on
the World Wide Web. STOC 1997.

S
ETH

Eidgendssische Technische Hochschule Zdrich
Swriss Federal Instituke of T::hnn!omr Zurich

Thanks for your attention.

Any question?

e

HYNY [| P '
il e
[l I..';.'.._ —.__-q._"'_'l_""! .

	A DoS-Resilient Information System for Dynamic Data Management�by Baumgart, M. and Scheideler, C. and Schmid, S. In SPAA 2009
	Outline
	Denial of Service Attacks
	DoS attack
	Examples
	DoS prevention
	Therefore, a dilemma
	Related work
	Related work, cont.
	Chameleon: System Description
	Model
	Past insider attack
	Goals
	Also, distributing the load evenly among all nodes
	Basic strategy
	Put and Get Requests
	Distributed Hash Table (DHT)
	Data stores
	P-store
	P-store, prefix path
	T-store
	T-store, de Bruijn graph
	New T-store
	Chameleon: Operational Details
	Overall procedure in a phase
	Stages
	Stage 1: Building a New t-Store
	Stage 1: Building a New t-Store, cont.
	Stage 2: Put Requests in t-Store
	Stage 3: Processing Get Requests
	Stage 3: Processing p-Get Requests, Preprocessing
	Stage 3: Processing p-Get Requests, Contraction
	Stage 3: Processing p-Get Requests, Expansion
	Stage 4: Transferring Items
	Stage 4: Transferring Items, p-Put preprocessing
	Stage 4: Transferring Items, p-put Contraction
	Stage 4: Transferring Items, p-put Permanent storage
	Stage 4: Transferring Items, p-put Permanent storage
	Conclusion
	Main theorem
	Summary
	References
	�Thanks for your attention.

