
Introduction
Countersniper System

PinPtr
Radio Interferometry

Conclusions

Localization in Sensor Networks

Rahul Jain

ETH Zürich
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Localization

Active Localization

System sends signals to localize target
eg. Radar(non-cooperative), GPS(cooperative)

Passive Localization

System deduces location from observation of signals that are
already present
eg. Signals normally emitted by the target (eg. birdcalls)
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Motivation

Many applications of WSN require the knowledge of where
the individual nodes are located

Motivating examples: Countersniper systems, Animal
Tracking and Logistics

We now look at an example of countersniper systems
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Problem and Challenges

To locate snipers in an urban environment

Challenges of an urban terrain

Multipath effects
Poor coverage due to shading effect of buildings

Limitations of existing systems

Require direct line of sight
Rely on muzzle flash that can be suppressed
Centralized, thus not robust to sensor failure

Cost effectiveness
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Solution

Use an ad-hoc wireless sensor network-based system

Utilize many cheap sensors for

good coverage of direct signal
tolerance to failures

Detect via acoustic signals like muzzle blasts and shockwaves
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Acoustic Signals

The main drawback of the current centralized systems is that if 
some of the few sensors cannot detect the signal then the system 
does not have enough data to perform the localization accurately. 
Measurement errors can easily occur if the sensors do not have 
direct line-of-sight of the shooter (no muzzle blast detection) or 
the projectile trajectory is shaded (no shockwave detection). An 
even more troublesome source of error is when the sensors pick 
up echoes resulting in poor localization accuracy.  
A straightforward solution can be the utilization of many sensors 
providing good coverage in a large area of interest. In this way 
there is a high probability that multiple sensors detect the direct 
signal. The individual sensor measurements can be less accurate, 
since the measurements are independent and come from different 
locations; thus the sensors can be less sophisticated and much 
smaller. Using large number of sensors not only enhances the 
accuracy, but it also increases the robustness of the overall 
system.  
Based upon the above idea, we developed an experimental 
countersniper system called PinPtr. The system utilizes an ad hoc 
wireless sensor network built from inexpensive sensor nodes. 
After deployment, the sensor nodes synchronize their clocks, 
perform self-localization and wait for acoustic events. The sensors 
can detect muzzle blasts and acoustic shockwaves and measure 
their time of arrival. Utilizing a message routing service, the TOA 
measurements are delivered to the base station, typically a laptop 
computer, where the sensor fusion algorithm calculates the 
shooter location estimate. The base station also acts as the primary 
user interface. Optional PDAs can act as secondary user 
interfaces. They get their data from the base station through an 
802.11 wireless network. The system was field tested multiple 
times at the US Army McKenna MOUT (Military Operations in 
Urban Terrain) facility at Fort Benning, GA. The average 
localization accuracy was around 1m, while the observed latency 
was less than 2 seconds.  
The rest of the paper is organized as follows. In the next section 
we describe the sensor network platform – both hardware and 

software – and the overall system architecture. Next the 
middleware services utilized in the application are presented. 
Then we briefly summarize the signal detection algorithm 
performed on the sensor nodes. The sensor fusion algorithm is 
also presented followed by a comprehensive analysis of the 
experimental results gathered during field trials in an urban 
environment. Finally, we present our future plans and 
conclusions. 

2. SYSTEM ARCHITECTURE 
The countersniper application utilizes the traditional layered 
architecture, as shown in Figure 2. The hardware layer is built 
upon the widely used Mica mote platform, developed by UC 
Berkeley [10]. The second generation Mica2 features a 7.3 MHz 
8-bit Atmel ATmega 128L low power microcontroller, a 
433 MHz Chipcon CC1000 multi-channel transceiver with 
38.4 kbps transfer rate and a maximum practical range of 200 feet, 
4 kB RAM and 128 kB flash memory. The motes also have an 
extension interface that can be used to connect various sensor 
boards containing photo-, temperature-, humidity-, pressure 
sensors, accelerometers, magnetometers and microphones.  
The Mica motes run a small, embedded, open source operating 
system called TinyOS by UC Berkeley [7], specifically designed 
for resource limited networked sensors [9].  Despite its small 
footprint, this event driven OS can handle task scheduling, radio 
communication, clocks and timers, ADC, I/O and EEPROM 
abstractions, and power management. These services are 
implemented as components and the application can be composed 
from them in a hierarchical manner. The system resources are 
preserved by using only those OS components that are actually 
needed by the application. 
The Mica2 motes are connected to our multi-purpose acoustic 
sensor boards (see Figure 3), designed with three independent 
acoustic channels (each with a microphone, amplifier with 
controllable gain, and ADC operating at up to 1MHz), and a Xilinx 
Spartan II FPGA. The FPGA chip implements the signal processing 
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Figure 1. Acoustic events generated by a shot. The muzzle 
blast produces a spherical wave front, traveling at the speed of 
sound (vs) from the muzzle (A) to the sensor (S). The shock 
wave is generated in every point of the trajectory of the 
supersonic projectile producing a cone-shaped wave front, 
assuming the speed of the projectile is constant vB. (In reality, 
the wave front is not a cone, rather it resembles the surface of 
a half football, since the bullet is continuously decelerating.) 
The shockwave reaching sensor S was generated in point X. 
The angle of the shockwave cone is determined by the Mach 
number (M) of the projectile.  

Figure 2. System architecture 

Figure 3. Custom sensor board and Mica2 mote. 

Figure 1: Acoustic events generated by a shot. The muzzle blast produces a spherical wave front, traveling at the
speed of sound (vS ) from the muzzle (A) to the sensor (S). The shock wave is generated in every point of the
trajectory of the supersonic projectile producing a cone-shaped wave front, assuming the speed of the projectile is
constant vB . The shockwave reaching sensor S was generated in point X . The angle of the shockwave cone is
determined by the Mach number (M) of the projectile.
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PinPtr

Ad-hoc wireless network of inexpensive sensors

Sensors can

detect muzzle blasts and acoustic shockwaves
measure their time of arrival (TOA)

Message routing service delivers TOA to a base station

User Interface through base stations or PDAs

System field tested at the US Army McKenna MOUT
(Military Operations in Urban Terrain) facility at Fort
Nenning, GA
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System Architecture

The main drawback of the current centralized systems is that if 
some of the few sensors cannot detect the signal then the system 
does not have enough data to perform the localization accurately. 
Measurement errors can easily occur if the sensors do not have 
direct line-of-sight of the shooter (no muzzle blast detection) or 
the projectile trajectory is shaded (no shockwave detection). An 
even more troublesome source of error is when the sensors pick 
up echoes resulting in poor localization accuracy.  
A straightforward solution can be the utilization of many sensors 
providing good coverage in a large area of interest. In this way 
there is a high probability that multiple sensors detect the direct 
signal. The individual sensor measurements can be less accurate, 
since the measurements are independent and come from different 
locations; thus the sensors can be less sophisticated and much 
smaller. Using large number of sensors not only enhances the 
accuracy, but it also increases the robustness of the overall 
system.  
Based upon the above idea, we developed an experimental 
countersniper system called PinPtr. The system utilizes an ad hoc 
wireless sensor network built from inexpensive sensor nodes. 
After deployment, the sensor nodes synchronize their clocks, 
perform self-localization and wait for acoustic events. The sensors 
can detect muzzle blasts and acoustic shockwaves and measure 
their time of arrival. Utilizing a message routing service, the TOA 
measurements are delivered to the base station, typically a laptop 
computer, where the sensor fusion algorithm calculates the 
shooter location estimate. The base station also acts as the primary 
user interface. Optional PDAs can act as secondary user 
interfaces. They get their data from the base station through an 
802.11 wireless network. The system was field tested multiple 
times at the US Army McKenna MOUT (Military Operations in 
Urban Terrain) facility at Fort Benning, GA. The average 
localization accuracy was around 1m, while the observed latency 
was less than 2 seconds.  
The rest of the paper is organized as follows. In the next section 
we describe the sensor network platform – both hardware and 

software – and the overall system architecture. Next the 
middleware services utilized in the application are presented. 
Then we briefly summarize the signal detection algorithm 
performed on the sensor nodes. The sensor fusion algorithm is 
also presented followed by a comprehensive analysis of the 
experimental results gathered during field trials in an urban 
environment. Finally, we present our future plans and 
conclusions. 

2. SYSTEM ARCHITECTURE 
The countersniper application utilizes the traditional layered 
architecture, as shown in Figure 2. The hardware layer is built 
upon the widely used Mica mote platform, developed by UC 
Berkeley [10]. The second generation Mica2 features a 7.3 MHz 
8-bit Atmel ATmega 128L low power microcontroller, a 
433 MHz Chipcon CC1000 multi-channel transceiver with 
38.4 kbps transfer rate and a maximum practical range of 200 feet, 
4 kB RAM and 128 kB flash memory. The motes also have an 
extension interface that can be used to connect various sensor 
boards containing photo-, temperature-, humidity-, pressure 
sensors, accelerometers, magnetometers and microphones.  
The Mica motes run a small, embedded, open source operating 
system called TinyOS by UC Berkeley [7], specifically designed 
for resource limited networked sensors [9].  Despite its small 
footprint, this event driven OS can handle task scheduling, radio 
communication, clocks and timers, ADC, I/O and EEPROM 
abstractions, and power management. These services are 
implemented as components and the application can be composed 
from them in a hierarchical manner. The system resources are 
preserved by using only those OS components that are actually 
needed by the application. 
The Mica2 motes are connected to our multi-purpose acoustic 
sensor boards (see Figure 3), designed with three independent 
acoustic channels (each with a microphone, amplifier with 
controllable gain, and ADC operating at up to 1MHz), and a Xilinx 
Spartan II FPGA. The FPGA chip implements the signal processing 
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Figure 1. Acoustic events generated by a shot. The muzzle 
blast produces a spherical wave front, traveling at the speed of 
sound (vs) from the muzzle (A) to the sensor (S). The shock 
wave is generated in every point of the trajectory of the 
supersonic projectile producing a cone-shaped wave front, 
assuming the speed of the projectile is constant vB. (In reality, 
the wave front is not a cone, rather it resembles the surface of 
a half football, since the bullet is continuously decelerating.) 
The shockwave reaching sensor S was generated in point X. 
The angle of the shockwave cone is determined by the Mach 
number (M) of the projectile.  

Figure 2. System architecture 

Figure 3. Custom sensor board and Mica2 mote. 

Figure 2: System Architecture
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Middleware Services

Time Synchronization

Flooding Time Synchronization Protocol
All nodes synchronized with a root node

Message Routing

Gradient-based best effort converge-cast protocol
All data routed to a root node

Sensor Localization

Estimate the sensor position using shots
Current implementation places sensors by hand
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Sensor Fusion

Consistency Function

Cτ (x , y , z , t) = count(| ti (x , y , z , t)− ti |≤ τ)

Search Algorithm

General Bisection method

Maximum 105 steps required
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Setup

56 nodes

20 known shooter positions

171 shots

 

 
The shooter localization error of the system is shown in Figure 6, 
where the 3D error is the total localization error, while in the 2D 
error the elevation information is omitted. The system accuracy is 
remarkably good in 2D. The average 2D error was 0.6m, 83% of 
shots had less than one meter, and 98% had less than 2 meters of 
error.  
 

 

The elevation detection was not as accurate because the sensors 
were mostly positioned on the ground, approximately in a plane. 
There were only a few sensors located on rooftops or window 
ledges. This lack of variation in sensor node elevation resulted in 
the 3D accuracy being worse than the 2D accuracy. It is expected 
that this could be significantly improved by locating a larger 
fraction of the sensor nodes in elevated positions. As Figure 6 
shows, 46% of the shots had less than 1m, and 84% of shots had 
less than 2m position error in 3D. The average 3D error was 1.3m.  

6.1 Error sources 
The sensor fusion algorithm uses TOA measurements recorded by 
different sensors at different locations. Hence, two potential 
sources of measurement error are imperfect time synchronization 
and inaccurate sensor locations. The data gathered at the field 
trials enabled us to experiment with the effect these have on the 
overall system accuracy. The effects of time synchronization error 
are summarized in Figure 7. For each simulated time 
synchronization error value of T, the detection time for each 
sensor was modified by t where –T/2 < t < T/2 using uniform 
random distribution. Then the sensor fusion algorithm estimated 
the shooter position. Each shot was used ten times; therefore, each 
data point in the diagram represents 1710 experiments.  
The results in Figure 7 clearly show that the time synchronization 
accuracy of FTSP is much better than what is needed by this 

Figure 5. 2D System Display 

Figure 6. Histogram of localization accuracy in 3D and 2D 
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Figure 3: PinPtr: Field Setup
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Shooter Localization Errors

 

 
The shooter localization error of the system is shown in Figure 6, 
where the 3D error is the total localization error, while in the 2D 
error the elevation information is omitted. The system accuracy is 
remarkably good in 2D. The average 2D error was 0.6m, 83% of 
shots had less than one meter, and 98% had less than 2 meters of 
error.  
 

 

The elevation detection was not as accurate because the sensors 
were mostly positioned on the ground, approximately in a plane. 
There were only a few sensors located on rooftops or window 
ledges. This lack of variation in sensor node elevation resulted in 
the 3D accuracy being worse than the 2D accuracy. It is expected 
that this could be significantly improved by locating a larger 
fraction of the sensor nodes in elevated positions. As Figure 6 
shows, 46% of the shots had less than 1m, and 84% of shots had 
less than 2m position error in 3D. The average 3D error was 1.3m.  

6.1 Error sources 
The sensor fusion algorithm uses TOA measurements recorded by 
different sensors at different locations. Hence, two potential 
sources of measurement error are imperfect time synchronization 
and inaccurate sensor locations. The data gathered at the field 
trials enabled us to experiment with the effect these have on the 
overall system accuracy. The effects of time synchronization error 
are summarized in Figure 7. For each simulated time 
synchronization error value of T, the detection time for each 
sensor was modified by t where –T/2 < t < T/2 using uniform 
random distribution. Then the sensor fusion algorithm estimated 
the shooter position. Each shot was used ten times; therefore, each 
data point in the diagram represents 1710 experiments.  
The results in Figure 7 clearly show that the time synchronization 
accuracy of FTSP is much better than what is needed by this 

Figure 5. 2D System Display 

Figure 6. Histogram of localization accuracy in 3D and 2D 
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Error Sources

application. The added 3D localization error of 10cm in the 
presence of 0.5ms time synchronization error is insignificant. On 
the other hand, for future multiple shot detection and echo 
discrimination, well synchronized measurements are 
advantageous. 

The effects of sensor location errors are similar in that a time 
synchronization error of 1 millisecond translates to 1 foot of 
sensor location error using the speed of sound. In fact, it is in the 
worst case only, since the position error vector is usually not 
parallel with the shooter-sensor line. A uniform distribution of 
time synchronization error is a different distribution of sensor 
location error. Nevertheless, we performed similar experiments 
for sensor location error that indicated very similar results. For 
example, 3msec time synch error resulted in 1.79m average 
shooter localization error, while the same value for 1m sensor 
location error was 1.94m. 

6.2 Sensor Density 
We have also analyzed the effects of sensor density. Again, we 
used the real data gathered on the field and then removed sensors 
randomly. The results are shown in Figure 8 and Figure 9. For 
each N, where N is the number of sensors and N ≤ 56, we 
generated a random selection of the 56 available nodes, ran the 
sensor fusion for all 171 shots and repeated the procedure ten 
times. Since N was decreased by two at a time and we stopped at 
8 nodes, we tested 250 different sensor network configurations.  

We consider a shot undetected if there are less than six sensors 
detecting a muzzle blast. As the numbers of sensor decreased, so 
did the number of successfully detected shots as shown in 
Figure 8. Hence, the data in Figure 9 only uses the successfully 

detected shots. The diagram indicates that the error has an 
exponential characteristic. Close to our original setup, the error 
hardly increases. At 36 nodes the average 3D error is still less 
than 2 meters. Beyond this point, however, the accuracy starts to 
rapidly decrease. 

The raw results could lead to a premature conclusion that we 
could decrease the node density by 40% and still get very good 
accuracy. However, there are other considerations. Node failures 
decrease sensor density over time, so the planned deployment 
length needs to be considered. It is not enough to measure the 
acoustic events; the data also needs to be propagated back to the 
base station. There must be enough nodes to ensure a connected 
network with redundancy for robustness and good response time.  

6.3 Sensor Fusion 
The overall accuracy of PinPtr during the field tests in an urban 
environment indicates its tolerance to multipath effects. Of the 
171 shots used in the analysis above, the average rate of bad 
measurements, i.e. TOA data that were not consistent with the 
final shooter location estimate, was 24%. In our experience, the 
vast majority of erroneous TOA data were due to multipath.  
It is possible to solve the TDOA-based localization problem 
analytically, e.g. as in [14], where the constraints from 
measurements are converted to a linear equation system. This 
solution requires five measurements to determine the 3D position 
of a source, but it is straightforward to extend the solution in [14] 
for more sensor readings. The solution of the over-determined 
equation system provides a least-squares estimation of the shooter 
location. We used this approach to evaluate our sensor fusion 
technique. 
To compare the accuracy of the fusion algorithm to that of the 
analytical solution, field sensor measurements of 46 shots with 
known positions were used as test cases. In the first test all bad 
measurements resulting from multipath effects or sensor failure 
were removed from the data set. Each of the remaining set of 
good measurements was consistent with the known shooter 
position; the time error was less than 0.5ms for each sensor 
reading. The shooter positions were estimated using both 
methods. The accuracies of the two solutions were very close to 
each other, as the histogram of errors shows in Figure 10. The 
mean 3D localization error for the fusion algorithm and the 
analytical solution were 1.2m and 1.3m, respectively, for the 46-
shot test set. The difference is much less than the sensor and the 
reference shooter position measurement errors, thus the 

Figure 8. Detection rate vs. number of sensors used 
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Figure 7. Localization accuracy vs. time synch error 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

timesynch error (millisec)

av
ge

ra
ge

 lo
ca

liz
at

io
n 

ac
cu

ra
cy

 (m
et

er
)

2D error
3D error

Figure 5: Localization accuarcy vs. time synch error
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Sensor Density

application. The added 3D localization error of 10cm in the 
presence of 0.5ms time synchronization error is insignificant. On 
the other hand, for future multiple shot detection and echo 
discrimination, well synchronized measurements are 
advantageous. 

The effects of sensor location errors are similar in that a time 
synchronization error of 1 millisecond translates to 1 foot of 
sensor location error using the speed of sound. In fact, it is in the 
worst case only, since the position error vector is usually not 
parallel with the shooter-sensor line. A uniform distribution of 
time synchronization error is a different distribution of sensor 
location error. Nevertheless, we performed similar experiments 
for sensor location error that indicated very similar results. For 
example, 3msec time synch error resulted in 1.79m average 
shooter localization error, while the same value for 1m sensor 
location error was 1.94m. 

6.2 Sensor Density 
We have also analyzed the effects of sensor density. Again, we 
used the real data gathered on the field and then removed sensors 
randomly. The results are shown in Figure 8 and Figure 9. For 
each N, where N is the number of sensors and N ≤ 56, we 
generated a random selection of the 56 available nodes, ran the 
sensor fusion for all 171 shots and repeated the procedure ten 
times. Since N was decreased by two at a time and we stopped at 
8 nodes, we tested 250 different sensor network configurations.  

We consider a shot undetected if there are less than six sensors 
detecting a muzzle blast. As the numbers of sensor decreased, so 
did the number of successfully detected shots as shown in 
Figure 8. Hence, the data in Figure 9 only uses the successfully 

detected shots. The diagram indicates that the error has an 
exponential characteristic. Close to our original setup, the error 
hardly increases. At 36 nodes the average 3D error is still less 
than 2 meters. Beyond this point, however, the accuracy starts to 
rapidly decrease. 

The raw results could lead to a premature conclusion that we 
could decrease the node density by 40% and still get very good 
accuracy. However, there are other considerations. Node failures 
decrease sensor density over time, so the planned deployment 
length needs to be considered. It is not enough to measure the 
acoustic events; the data also needs to be propagated back to the 
base station. There must be enough nodes to ensure a connected 
network with redundancy for robustness and good response time.  

6.3 Sensor Fusion 
The overall accuracy of PinPtr during the field tests in an urban 
environment indicates its tolerance to multipath effects. Of the 
171 shots used in the analysis above, the average rate of bad 
measurements, i.e. TOA data that were not consistent with the 
final shooter location estimate, was 24%. In our experience, the 
vast majority of erroneous TOA data were due to multipath.  
It is possible to solve the TDOA-based localization problem 
analytically, e.g. as in [14], where the constraints from 
measurements are converted to a linear equation system. This 
solution requires five measurements to determine the 3D position 
of a source, but it is straightforward to extend the solution in [14] 
for more sensor readings. The solution of the over-determined 
equation system provides a least-squares estimation of the shooter 
location. We used this approach to evaluate our sensor fusion 
technique. 
To compare the accuracy of the fusion algorithm to that of the 
analytical solution, field sensor measurements of 46 shots with 
known positions were used as test cases. In the first test all bad 
measurements resulting from multipath effects or sensor failure 
were removed from the data set. Each of the remaining set of 
good measurements was consistent with the known shooter 
position; the time error was less than 0.5ms for each sensor 
reading. The shooter positions were estimated using both 
methods. The accuracies of the two solutions were very close to 
each other, as the histogram of errors shows in Figure 10. The 
mean 3D localization error for the fusion algorithm and the 
analytical solution were 1.2m and 1.3m, respectively, for the 46-
shot test set. The difference is much less than the sensor and the 
reference shooter position measurement errors, thus the 

Figure 8. Detection rate vs. number of sensors used 
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Figure 7. Localization accuracy vs. time synch error 
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Figure 6: Detection rate vs. number of sensors used

application. The added 3D localization error of 10cm in the 
presence of 0.5ms time synchronization error is insignificant. On 
the other hand, for future multiple shot detection and echo 
discrimination, well synchronized measurements are 
advantageous. 

The effects of sensor location errors are similar in that a time 
synchronization error of 1 millisecond translates to 1 foot of 
sensor location error using the speed of sound. In fact, it is in the 
worst case only, since the position error vector is usually not 
parallel with the shooter-sensor line. A uniform distribution of 
time synchronization error is a different distribution of sensor 
location error. Nevertheless, we performed similar experiments 
for sensor location error that indicated very similar results. For 
example, 3msec time synch error resulted in 1.79m average 
shooter localization error, while the same value for 1m sensor 
location error was 1.94m. 

6.2 Sensor Density 
We have also analyzed the effects of sensor density. Again, we 
used the real data gathered on the field and then removed sensors 
randomly. The results are shown in Figure 8 and Figure 9. For 
each N, where N is the number of sensors and N ≤ 56, we 
generated a random selection of the 56 available nodes, ran the 
sensor fusion for all 171 shots and repeated the procedure ten 
times. Since N was decreased by two at a time and we stopped at 
8 nodes, we tested 250 different sensor network configurations.  

We consider a shot undetected if there are less than six sensors 
detecting a muzzle blast. As the numbers of sensor decreased, so 
did the number of successfully detected shots as shown in 
Figure 8. Hence, the data in Figure 9 only uses the successfully 

detected shots. The diagram indicates that the error has an 
exponential characteristic. Close to our original setup, the error 
hardly increases. At 36 nodes the average 3D error is still less 
than 2 meters. Beyond this point, however, the accuracy starts to 
rapidly decrease. 

The raw results could lead to a premature conclusion that we 
could decrease the node density by 40% and still get very good 
accuracy. However, there are other considerations. Node failures 
decrease sensor density over time, so the planned deployment 
length needs to be considered. It is not enough to measure the 
acoustic events; the data also needs to be propagated back to the 
base station. There must be enough nodes to ensure a connected 
network with redundancy for robustness and good response time.  

6.3 Sensor Fusion 
The overall accuracy of PinPtr during the field tests in an urban 
environment indicates its tolerance to multipath effects. Of the 
171 shots used in the analysis above, the average rate of bad 
measurements, i.e. TOA data that were not consistent with the 
final shooter location estimate, was 24%. In our experience, the 
vast majority of erroneous TOA data were due to multipath.  
It is possible to solve the TDOA-based localization problem 
analytically, e.g. as in [14], where the constraints from 
measurements are converted to a linear equation system. This 
solution requires five measurements to determine the 3D position 
of a source, but it is straightforward to extend the solution in [14] 
for more sensor readings. The solution of the over-determined 
equation system provides a least-squares estimation of the shooter 
location. We used this approach to evaluate our sensor fusion 
technique. 
To compare the accuracy of the fusion algorithm to that of the 
analytical solution, field sensor measurements of 46 shots with 
known positions were used as test cases. In the first test all bad 
measurements resulting from multipath effects or sensor failure 
were removed from the data set. Each of the remaining set of 
good measurements was consistent with the known shooter 
position; the time error was less than 0.5ms for each sensor 
reading. The shooter positions were estimated using both 
methods. The accuracies of the two solutions were very close to 
each other, as the histogram of errors shows in Figure 10. The 
mean 3D localization error for the fusion algorithm and the 
analytical solution were 1.2m and 1.3m, respectively, for the 46-
shot test set. The difference is much less than the sensor and the 
reference shooter position measurement errors, thus the 

Figure 8. Detection rate vs. number of sensors used 
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Sensor Fusion Accuracy

performance of the two solutions can be considered to be equally 
good in this test scenario.  

In the previous test the input contained only correct 
measurements. In practical cases, however, inconsistent 
measurements are present primarily due to multipath effects, even 
after careful pre-filtering of the sensor readings. To illustrate the 
sensitivity of the methods to measurement errors, bad sensor 
readings were added back to the input data set from the previously 
removed bad data set. For each shot, 2B test sets were generated 
by combining the good measurement set with all possible 
combinations of the bad sensor readings containing B 
measurements. The number of good and bad sensor readings 
varied between 8 and 29, and between 1 and 10, respectively. 
Using all the 46 shots 325 experiments were generated as test 
cases. Figure 11 shows the performances of the two methods, as a 
function of the ratio of the bad and good measurements.  
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Figure 11 The average localization error vs. the ratio of bad 
and good measurements 

It is clearly visible that the precision of the analytical solution was 
severely degraded when bad measurements were present. Our 
fusion algorithm, however, was able to successfully eliminate the 
bad measurements, and its performance was the same as in the 
first test, independently of the ratio of the bad and good 
measurements. 

6.4 Time synchronization 
PinPtr should be able to operate over several weeks or even 
months. It is not required to be continuously active, and should be 
powered down most of the time to save energy. The question 
arising naturally is whether continuous time synchronization is 
really necessary.  
As it is pointed out in [5], post facto synchronization is enough in 
many cases, no continuous synchronization is required. Systems 
collecting data or reacting to rare events, but requiring exact time 
measurements belong to this class of applications. A post facto 
synchronization approach described in [5] utilizes explicit pair-
wise synchronization after message passing. We propose an 
alternative method embedded into the message routing protocol 
which does not require any additional message exchange apart 
from the routing messages. The proposed solution requires precise 
message time-stamping on both the transmitter and receiver, e.g. 
the method described in [15]. 
The basic problem is the following: a sensor detects an event and 
time stamps it using its local clock. However, the target node 
needs to know the time of the event in its own local time. The 
sensor and the target nodes may be several hops apart from each 
other. Still, it is possible to solve the problem without any explicit 
time synchronization in the network. An implicit synchronization 
may be performed during the routing process. 
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Figure 12. Estimation of detection time TEVENT can be 
iteratively determined along a routing path A, B, C, S. 

Along with the sensor reading, a radio message includes an age 
field, which contains the elapsed time since the occurrence of the 
event. This additional information adds only a very small 
overhead to the message. Each intermediate mote measures the 
offset, which is the elapsed time from the reception of a sensor 
reading till its retransmission. The age field is updated upon 
transmission using a precise time stamping method described in 
[15]. When the sensor reading arrives at the destination, the age 
field contains the sum of the offsets measured by each of the 
motes along the path. The destination node can determine the time 
of the event by subtracting age from the time of arrival of the 
message. The concept is illustrated in Figure 12. An event is 
detected at node A at time instant TEVENT, then a notification 
message is sent to destination node S through nodes B and C. The 
message delays at the nodes are offsetA, offsetB, and offsetC, 
respectively. The message arrives at S at time instant TrcvS 
containing an age field of offsetA+offsetB+offsetC. The time of the 
event can be calculated as TEVENT = TrcvS- age. 

Figure 10. Histogram of the localization errors using the  
fusion algorithm and the analytical solution.  
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Figure 8: Error comparison with filtered readings

performance of the two solutions can be considered to be equally 
good in this test scenario.  

In the previous test the input contained only correct 
measurements. In practical cases, however, inconsistent 
measurements are present primarily due to multipath effects, even 
after careful pre-filtering of the sensor readings. To illustrate the 
sensitivity of the methods to measurement errors, bad sensor 
readings were added back to the input data set from the previously 
removed bad data set. For each shot, 2B test sets were generated 
by combining the good measurement set with all possible 
combinations of the bad sensor readings containing B 
measurements. The number of good and bad sensor readings 
varied between 8 and 29, and between 1 and 10, respectively. 
Using all the 46 shots 325 experiments were generated as test 
cases. Figure 11 shows the performances of the two methods, as a 
function of the ratio of the bad and good measurements.  
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Figure 11 The average localization error vs. the ratio of bad 
and good measurements 

It is clearly visible that the precision of the analytical solution was 
severely degraded when bad measurements were present. Our 
fusion algorithm, however, was able to successfully eliminate the 
bad measurements, and its performance was the same as in the 
first test, independently of the ratio of the bad and good 
measurements. 

6.4 Time synchronization 
PinPtr should be able to operate over several weeks or even 
months. It is not required to be continuously active, and should be 
powered down most of the time to save energy. The question 
arising naturally is whether continuous time synchronization is 
really necessary.  
As it is pointed out in [5], post facto synchronization is enough in 
many cases, no continuous synchronization is required. Systems 
collecting data or reacting to rare events, but requiring exact time 
measurements belong to this class of applications. A post facto 
synchronization approach described in [5] utilizes explicit pair-
wise synchronization after message passing. We propose an 
alternative method embedded into the message routing protocol 
which does not require any additional message exchange apart 
from the routing messages. The proposed solution requires precise 
message time-stamping on both the transmitter and receiver, e.g. 
the method described in [15]. 
The basic problem is the following: a sensor detects an event and 
time stamps it using its local clock. However, the target node 
needs to know the time of the event in its own local time. The 
sensor and the target nodes may be several hops apart from each 
other. Still, it is possible to solve the problem without any explicit 
time synchronization in the network. An implicit synchronization 
may be performed during the routing process. 
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iteratively determined along a routing path A, B, C, S. 

Along with the sensor reading, a radio message includes an age 
field, which contains the elapsed time since the occurrence of the 
event. This additional information adds only a very small 
overhead to the message. Each intermediate mote measures the 
offset, which is the elapsed time from the reception of a sensor 
reading till its retransmission. The age field is updated upon 
transmission using a precise time stamping method described in 
[15]. When the sensor reading arrives at the destination, the age 
field contains the sum of the offsets measured by each of the 
motes along the path. The destination node can determine the time 
of the event by subtracting age from the time of arrival of the 
message. The concept is illustrated in Figure 12. An event is 
detected at node A at time instant TEVENT, then a notification 
message is sent to destination node S through nodes B and C. The 
message delays at the nodes are offsetA, offsetB, and offsetC, 
respectively. The message arrives at S at time instant TrcvS 
containing an age field of offsetA+offsetB+offsetC. The time of the 
event can be calculated as TEVENT = TrcvS- age. 
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Remarks

Deployment of sensors in an urban environment is not trivial

No power management

Can not detect multiple shots

Silencers?
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Radio Interferometry

Pair of nodes emitting radio waves simultaneously at slightly
different frequencies

Carrier frequency of the composite signal is between the two
frequencies

Neighbouring nodes can measure the energy of the envelope
signal as the signal strength
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Model

The novel idea behind the proposed Radio Interferometric
Positioning System (RIPS) is to utilize two transmitters to
create the interference signal directly. If the frequencies of
the two emitters are almost the same then the composite sig-
nal will have a low frequency envelope that can be measured
by cheap and simple hardware readily available on a WSN
node. Trying to use this signal to deduce information on the
positions of the two transmitters and the receiver directly
would require tight synchronization of the nodes involved
mandating hardware support. Instead, we use the relative
phase offset of the signal at two receivers which is a func-
tion of the relative positions of the four nodes involved and
the carrier frequency. By making multiple measurements in
an at least 8-node network, it is possible to reconstruct the
relative location of the nodes in 3D.

The key attribute of this method is that the phase offset
of a low frequency signal is measured, yet it corresponds to
the wavelength of the high-frequency carrier signal. Hence,
we can use low precision techniques that are feasible on the
highly resource constrained WSN nodes, yet we still achieve
high accuracy.

The rest of the paper is organized as follows. In the next
section we provide the theoretical background behind ra-
dio interferometric positioning. The subsequent section an-
alyzes the different sources of error affecting the overall ac-
curacy. Then we describe our prototype implementation on
the MICA2 platform. It is followed by a discussion of the
technique used to get a distance metric out of noisy phase
offset measurements. In the subsequent section we present a
centralized localization algorithm that determines the node
locations from the ranging data. We conclude the paper
with an analysis of the data we gathered at field experi-
ments.

D
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dBD
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Figure 1: Radio interferometric ranging technique.

2. INTERFEROMETRIC POSITIONING
Radio interferometric positioning exploits interfering ra-

dio waves emitted from two locations at slightly different
frequencies to obtain the necessary ranging information for
localization. The composite radio signal has a low beat fre-
quency and its envelope signal can be measured with low
precision RF chips using the received signal strength indica-
tor (RSSI) signal. The phase offset of this signal depends on
many factors, including the time instances when the trans-
missions were started. However, the relative phase offset
between two receivers depends only on the four distances
between the two transmitters and two receivers and on the
wavelength of the carrier frequency. By measuring this rel-
ative phase offset at different carrier frequencies, one can
calculate a linear combination of the distances between the
nodes, and ultimately infer their relative position. First we
will prove these claims and then study the minimum number
of measurements necessary in order to be able to resolve the
phase ambiguities and localize the participating nodes.
We model the radio RSSI circuitry in the following way.

The RSSI signal is the power of the incoming signal mea-
sured in dBm after it is mixed down to an intermediate fre-
quency fIF. It is then low pass filtered with cutoff frequency
fcut (fcut � fIF). Let r(t) denote this filtered signal.

Theorem 1. Let f2 < f1 be two close carrier frequencies
with δ = (f1 − f2)/2, δ � f2, and 2δ < fcut. Furthermore,
assume that a node receives the radio signal

s(t) = a1 cos(2πf1t+ ϕ1) + a2 cos(2πf2t+ ϕ2) + n(t),

where n(t) is Gaussian noise. Then the filtered RSSI sig-
nal r(t) is periodic with fundamental frequency f1 − f2 and
absolute phase offset ϕ1 − ϕ2.

Proof. If the noise is temporarily neglected then the
mixed down intermediate frequency signal is

sIF(t) = a1 cos
�
2π(fIF + δ)t+ ϕ1

�
+ a2 cos

�
2π(fIF − δ)t+ ϕ2

�
. (1)

To obtain the signal power:

s2IF(t) = a2
1 cos

2 �2π(fIF + δ)t+ ϕ1

�
(2)

+ a2
2 cos

2 �2π(fIF − δ)t+ ϕ2

�
+ 2a1a2 cos

�
2π(fIF + δ)t+ ϕ1

�
cos

�
2π(fIF − δ)t+ ϕ2

�
.

Using the following trigonometric identities

cos2(x) =
1

2
+

cos(2x)

2

cos(x) cos(y) =
cos(x+ y)

2
+

cos(x− y)

2

we obtain

s2IF(t) = (a2
1 + a2

2)/2 (3)

+
a2
1

2
cos

�
4π(fIF + δ)t+ 2ϕ1

�
+

a2
2

2
cos

�
4π(fIF − δ)t+ 2ϕ2

�
+ a1a2 cos

�
4πfIFt+ ϕ1 + ϕ2

�
+ a1a2 cos

�
4πδt+ ϕ1 − ϕ2

�
where (a2

1 + a2
2)/2 is the DC component.

2

Figure 10: Radio Interferometric Ranging Technique
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Filtered RSSI Signal

Theorem 1: Let f2 < f1 be two close carrier frequencies with
δ = (f1 − f2)/2, δ << f2, and 2δ < fcut . Furthermore, assume that
a node receives the radio signal

s(t) = a1cos(2πf1t + ϕ1) + a2cos(2πf2t + ϕ2) + n(t),

where n(t) is the Gaussian noise.Then the filtered RSSI signal r(t)
is periodic with fundamental frequency f1 − f2 and absolute phase
offset ϕ1 − ϕ2.
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Relative Phase Offset

Theorem 2: Assume that the two nodes A and B transmit pure
sine waves at two close frequncies fA > fB such that fA − fB < fcut ,
and two other nodes C and D measure the filtered RSSI signal.
Then the relative phase offset of rC (t) and rD(t) is

2π(dAD − dAC
c/fA

+ dBC − dBD
c/fB

) (mod2π)
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Relative Phase Offset

Theorem 3: Assume that the two nodes A and B trasmit pure sine
waves at two close frequencies fA > fB , and two other nodes C and
D measure the filtered RSSI signal. If fA − fB < 2kHz, and
dAC , dAD , dBC , dBD ≤ 1km, then the relative phase offset of rC (t)
and rD(t) is

2π(dAD − dBD + dBC − dAC
c/f ) (mod2π)

where f = (fA + fB)/2.
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Scheduling

At most n(n − 3)/2 choices for the independent interference
measurements

In the current implementation, the base station selects all
possible pairs of transmitters while all other nodes within their
range act as receivers
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Tuning

f1(i) = f1 + i .325Hz , i = −15,−14, ..., 15

f2 constant

Receiver analyzes | f1(i)− f2 | which is the interference
frequency

Determine i for which the interference frequency is 0
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Time Synchronization

Nodes need to synchronize and measure absolute phase offsets
relative to a common time instant for calculating the relative
phase offset

The master broadcasts a radio message identifying the other
sensor node, type of measurement, transmit power and the
time to start the measurement.
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Frequency and Phase Estimation

Peak detection performed on
line in the ADC

Post processing works
exlusively on the obtained
peak indexes

Phase of the RSSI signal is
estimated by the average
phase of the filtered peaks

online part is executed upon each A/D converter interrupt
for 256 consecutive samples. Afterwards, more extensive
post-processing is performed on the data computed in the
online phase.

Hardware limitations on the mote make computationally
expensive signal processing techniques prohibitive. The ADC
sampling rate (9 kHz) and the clock frequency of the 8 bit
microcontroller (7.4 MHz), allows roughly 820 CPU cycles
per sample for online processing. Post processing is lim-
ited by a somewhat less strict deadline: several measure-
ments are made between time synchronization points, leav-
ing around 10,000 cycles per measurement for post-process-
ing. The lack of floating point hardware support and mem-
ory space limitations further restrict the domain of feasible
algorithms. The use of standard, but computationally ex-
pensive solutions, such as Fourier analysis or autocorrela-
tion, is not feasible.

Figure 4 shows a representative RSSI signal recorded by
a mote. Peak detection is performed on-line in the ADC in-
terrupt routine eliminating the need for large sample buffers
and shortening the post-processing time. First, the raw sam-
ples are filtered by a moving average component in order to
enhance the SNR. Next the minimum and maximum signal
values—essential parameters to our adaptive peak detection
algorithm—are acquired from the leading 24 samples. This
first part of the data series is long enough to contain at least
one full period. The acquired amplitude value serves as a
quality indicator of the measurement. Later on, samples
above (below) a threshold currently set at 20% of the am-
plitude from the maximum (minimum) value are identified
as high (low) amplitudes in the filtered signal. Peaks are de-
fined as center points of two consecutive high level threshold
crossings (non-high → high, followed by a high → non-high
step). Peaks are discarded in this phase if the signal has not
crossed the low threshold since the last peak, minimizing
the risk of false positive detections.
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Figure 4: Peak detection and filtering.

The post-processing phase works exclusively on peak in-
dexes, identified and stored by the online algorithm. After
it determines the shortest period between subsequent peaks,
it accumulates the sum of the periods that are not longer
than 130% of the shortest one (to compensate for the very
rare false positive detections in the first phase). Peaks on
both ends of an outlier period are marked as false peaks and
discarded. This simple and draconian rule might throw out

good peaks, a small price to pay for rejecting false peaks,
which could significantly impair the phase calculation. Fre-
quency is calculated as the reciprocate of the average period
length.

The phase of the RSSI signal is estimated by the av-
erage phase of the filtered peaks. Since small errors in
the frequency estimation can result in a significant error
in the phase calculation, we compute the phases relative to
the center of the sample buffer, thereby reducing the ac-
cumulated phase error due to an inaccurate frequency es-
timate [13]. The algorithm also employs a basic phase un-
wrapping method to average values near 0 and 2π properly.

Since floating point calculations are prohibitive on the
mote, hand optimized fixed point arithmetic is used through-
out the frequency and phase computations. The estimated
frequency, phase and amplitude tuple is finally sent back to
the base station.

4.5 Scheduling
There are two levels of scheduling involved in the inter-

ference measurement process:

A) High level scheduling is responsible for selecting the
pair of transmitters and should minimize the number
of interference measurements while producing enough
independent measurements to localize nodes uniquely
in 3-dimensions. As given at the end of Section 2, for
a group of n nodes that form a single hop network, we
have at most n(n − 3)/2 choices for the independent
interference measurements. The number of unknowns
is 3n−6 in 3-dimensional localization, so for groups of
nodes larger than 8 we get an over-determined system
of equations. In our current implementation, the base
station selects all possible pairs of transmitters while
all other nodes within their range act as receivers.

B) Low level scheduling coordinates the activities of the
two transmitters and multiple receivers. The frequency
tuning algorithm and the phase offset estimation proc-
ess described earlier in this section both involve mul-
tiple steps that require proper frequency calibration
and timing. Currently, 13 different frequency chan-
nels 5 MHz apart are used between 400 and 460 MHz.
Furthermore, the scheduler executes the phase offset
measurement with the same pair of transmitters, but
different radio power settings to compensate for the
effect of one transmitter being much closer to a re-
ceiver than the other. Currently, three combinations
are used: full power/full power or the two combina-
tions of full power/half power.

5. RANGE CALCULATION
From a set of phase measurements for the frequencies

f1, . . . , fk the following Diophantine equations can be for-
mulated

dABCD = λini + γi = λjnj + γj , (15)

where λi = c/fi is the wave length, γi = λi
ϑi
2π

is the phase
offset relative to the wave length, ϑi is the measured phase
offset, and ni is an integer. We need a set of λi’s so that their
least common multiple is larger than the possible domain of
dABCD. In case of the 433 MHz band, having 5 MHz sepa-
ration means that three different measurements are enough

7

Figure 11: Peak detection and filtering
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Localization

Generate an initial population of populationSize random
solutions

Select subpopulationSize solutions randomly from the
population

Evaluate each solution in the selected subset using the error
function

Sort the subset according to error

Remove the worst 20% of the individuals in the sub-set, then
generate new individuals by selecting random parents from the
best 20% and applying genetic operators on the parents

Go to step (2)
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Error Sources

Carrier frequency inaccuracy

Carrier frequency drift and phase noise

Multipath effects

Time synchronization error
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Effective Range

Interferometric Radio Range (r) is twice the range of digital
communication

−2r ≤ dABCD ≤ 2r
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Range Accuracy

The algorithm measuring the interference signal frequency
and phase also determines the average amplitude of the sig-
nal. The amplitude shows strong correlation with the error
of the range estimate. Currently, we use a constant am-
plitude threshold (12% of maximum A/D range) to discard
measurements with low SNR. This filtering can be carried
out locally on each mote acting as receiver, but currently it
is done on the base station.

The interference signal is measured by all the nodes in
radio range. Due to measurement errors, the frequency es-
timates will vary at different motes. Nodes that measure
the frequency with a large error will likely have a bad phase
estimate also. Therefore, these measurements need to be fil-
tered out as well. The filtering is carried out by identifying
a narrow frequency window that has the maximum number
of frequency estimates in it. All the measurements outside
of this window are discarded. This process can also be car-
ried out on the motes, but it would require communication
among the active receivers. Currently it is done on the base
station.

Finally, we calculate the range for a given pair of trans-
mitter receiver pairs only if the number of frequency chan-
nels with good phase offset measurements is higher than a
threshold. Currently this limit is set to 10.

After these three filtering stages, the ratio of the measure-
ments with less then one quarter wavelength error can be
improved by approximately 50% as illustrated on Figure 9.
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Figure 8: Error distribution of all the ranges.
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Figure 9: Error distribution of the filtered ranges.

Figure 10 shows the central portion of the error distribu-
tion after filtering. The accuracy of these over 2000 measure-
ments clearly demonstrates the potentially extreme high-
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Figure 10: Central portion of the error distribution
of the filtered ranges.

precision of overall localization using RIPS if one can elimi-
nate the “side lobes” of the distribution. We can either de-
velop more advanced filtering methods to discard measure-
ments with full wavelength errors, increase the accuracy of
the phase measurements, or increase the frequency band be-
yond the [400, 460] MHz range. Even a small improvement
in phase estimation accuracy could potentially dramatically
increase the ratio of good to bad measurements. Intuitively
there is a threshold in the phase measurement error where
it is not large enough to cause the range estimator to miss
by a full wavelength. An analytical evaluation is needed to
quantify this relationship.

7.5 Localization accuracy
We ran a localization experiment using the setup described

above utilizing the filtered ranging data shown in Figure 9.
The genetic optimization procedure ran for 2 minutes. The
error distribution of the resulting localization is shown in
Figure 11. The average accuracy was 3 cm, while the largest
error was approximately 6 cm. The results are shown in Fig-
ure 12 with the three anchor nodes depicted by large circles.
At this resolution and localization accuracy the small circles
showing the actual and estimated positions overlap.
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Figure 11: Error distribution of localization.

To test the scalability of the approach we reran the lo-
calization utilizing only 20% of the raw ranging data. We
selected 48 transmitter pairs out of the possible

�
16
2

�
= 240

randomly. After filtering, approximately 1000 measurements
remained with 28% of them shifted by integer multiples of

10

Figure 12: Central portion of the error distribution of the filtered ranges
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Localization Accuracy

The algorithm measuring the interference signal frequency
and phase also determines the average amplitude of the sig-
nal. The amplitude shows strong correlation with the error
of the range estimate. Currently, we use a constant am-
plitude threshold (12% of maximum A/D range) to discard
measurements with low SNR. This filtering can be carried
out locally on each mote acting as receiver, but currently it
is done on the base station.

The interference signal is measured by all the nodes in
radio range. Due to measurement errors, the frequency es-
timates will vary at different motes. Nodes that measure
the frequency with a large error will likely have a bad phase
estimate also. Therefore, these measurements need to be fil-
tered out as well. The filtering is carried out by identifying
a narrow frequency window that has the maximum number
of frequency estimates in it. All the measurements outside
of this window are discarded. This process can also be car-
ried out on the motes, but it would require communication
among the active receivers. Currently it is done on the base
station.

Finally, we calculate the range for a given pair of trans-
mitter receiver pairs only if the number of frequency chan-
nels with good phase offset measurements is higher than a
threshold. Currently this limit is set to 10.

After these three filtering stages, the ratio of the measure-
ments with less then one quarter wavelength error can be
improved by approximately 50% as illustrated on Figure 9.
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Figure 9: Error distribution of the filtered ranges.

Figure 10 shows the central portion of the error distribu-
tion after filtering. The accuracy of these over 2000 measure-
ments clearly demonstrates the potentially extreme high-
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Figure 10: Central portion of the error distribution
of the filtered ranges.

precision of overall localization using RIPS if one can elimi-
nate the “side lobes” of the distribution. We can either de-
velop more advanced filtering methods to discard measure-
ments with full wavelength errors, increase the accuracy of
the phase measurements, or increase the frequency band be-
yond the [400, 460] MHz range. Even a small improvement
in phase estimation accuracy could potentially dramatically
increase the ratio of good to bad measurements. Intuitively
there is a threshold in the phase measurement error where
it is not large enough to cause the range estimator to miss
by a full wavelength. An analytical evaluation is needed to
quantify this relationship.

7.5 Localization accuracy
We ran a localization experiment using the setup described

above utilizing the filtered ranging data shown in Figure 9.
The genetic optimization procedure ran for 2 minutes. The
error distribution of the resulting localization is shown in
Figure 11. The average accuracy was 3 cm, while the largest
error was approximately 6 cm. The results are shown in Fig-
ure 12 with the three anchor nodes depicted by large circles.
At this resolution and localization accuracy the small circles
showing the actual and estimated positions overlap.
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Figure 11: Error distribution of localization.

To test the scalability of the approach we reran the lo-
calization utilizing only 20% of the raw ranging data. We
selected 48 transmitter pairs out of the possible

�
16
2

�
= 240

randomly. After filtering, approximately 1000 measurements
remained with 28% of them shifted by integer multiples of

10

Figure 13: Error distribution of localization
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Latency

In a 16 node network, there are approx. 32000 measurements
carried out

This entire process takes about 80 minutes.

If we use one-fifth of the transmitter pairs, we reduce the time
to 20 minutes.

For small scale networks, the entire process can be completed
in under 5 minutes.
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Remarks

High accuracy and long range

Supports 3D localization

Does not require extra hardware or calibration

High Latency

Applications?
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