Principles of Distributed Computing Unanswered Questions from Question Session

Q: 3rd remark p17: How would Leader Election work if "synchronous start and the nonuniformity assumptions are dropped"?

A: This was shown in the lecture. A node would be waken up at latest, when receiving a message from a neighbor. One possible, very slow algorithm would be that nodes send messages around the ring with their id as long as they didn't see any lower id. Nodes forward messages if the contained id is a leader candidate, i.e., it is smaller than any id seen so far. However, they do not forward them immediately, but messages from a node with id i wait at every hop for 2^{i} rounds. Thus, the message from node with lowest id will be at least twice as fast as the message from the node with the second smallest id and so forth. This yields a message complexity in $O(n)$.

Q: Proof lemma 9.8: Why is the probability that the long-range contact of w points to x in $\Omega\left(1 / 2^{2 j+4} \log n\right)$?

A: From Lemma 9.6 we know that for $\alpha=2$, the probability that w points to x is in $\Theta\left(1 /\left(d(w, x)^{2} \log n\right)\right)$. As $d(w, x)<2^{j+2}$ we immediately get a probability in $\Omega\left(1 / 2^{2 j+4} \log n\right)$.

Q: Proof Lemma 9.8: Why is the number of nodes in B_{j} at least $2^{2 j-1}$?
A: B_{j} is the set of all nodes with distance at most 2^{j} to the target t. In the worst case, t is in a corner. Ignoring long range contacts, B_{j} then looks like a square with side length 2^{j} cut in half along the diagonal. The entire square would contain $\left(2^{j}\right)^{2}$ nodes. We have only half the square. Hence $\left(2^{j}\right)^{2} / 2=2^{2 j-1}$.

Q: Ex 9.1b): For the sentence " The linearity of the expectation value gives us $E[X] \ldots . .$. . Here, is the meaning of X the same with that of a)?

A: Not exactly. X is the random variable indicating the number of "good" links out of S. A link is good if it exclusively contributes 5 new nodes to the set we are looking at, i.e., if the link ends in x neither x nor its 4 grid neighbors should be in S, nor should x and its neighbors overlap with any of the 5 nodes contributed by any other link out of S.

Q: Ex 91.b): The sample solution proves that $\operatorname{Pr}[X<=(1-\delta) E[X]] \leq 1 / n^{c}$ and concludes that the number of good choice will be in $(1-o(1))|S|$ w.h.p. But w.h.p. means some event occurs with probability $p>=1-1 / n^{c}$. Thus I think only the format such as $\operatorname{Pr}[\ldots]>.=1-1 / n^{c}$ can get the conclusion. In addition, what does "good" choice mean?

A: If we show that $\operatorname{Pr}[X \leq k] \leq p$ then we automatically show that $\operatorname{Pr}[X>k]>1-p$. For the second part, see answer above.

Q: Reading Assignment, p21, Lemma 7: "...since the nodes of cluster C_{0} are not necessary to obtain a feasible vertex cover...". Why are these nodes not necessary?

A: The construction of the lower bound graph is such that the optimal solution would add all nodes in the neighboring clusters of C_{0} to the vertex set. Thus all edges into C_{0} are already covered.

Q: Reading Assignment, p21 Lemma 7: Is this δ_{i} the same δ_{i} as on the labels of the arcs of the Cluster tree? What do the δ_{i} mean? What is the relationship between δ_{i} and δ_{i+1} ?

A: Yes, the δ_{i} correspond to the arc labels. If you read the caption of Fig. 2 on page 15 you'll see the function of δ_{i}. They count the number of links. On page 21, equation (7), the δ_{i} are explicitly defined based on a single parameter δ. The relation of δ_{i+1} to δ_{i} is stated immediately after: $\delta_{i+1}=2^{i} \delta \cdot \delta_{i}$.

