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Sample Solution to Exercise 10

1 Counting with Asynchronous Wake-up

a) Every node that wakes up starts the algorithm as if it was the only node that woke up by
itself, but includes its identifier and the current round number into all messages. Every
node that is woken up by a message will append the received identifier and the (current)
round number of the respective execution to its messages. If a node that is already awake
receives a message with (i) a larger round number or (ii) the same round number and a
smaller identifier, it “forgets” about everything that happend before and acts as if woken up
by this message. If the round number is smaller or the round number equals its own, but
the identifier is larger, it simply drops the message. If both are the same, it clearly belongs
to the execution initiated by the same node causing this node to wake up and is processed
normally.

In the end, only the execution started by the node with smallest identifier among the nodes
that woke up first will “survive” and yield the same output as if executed in an environment
where no other nodes wake up by themselves.1

b) The algorithm consists of all (awake) nodes broadcasting all identifiers they know for 2k
rounds. Then u (and only u) decides that k ≥ n if it knows at most k identifiers and k < n
otherwise.

If k ≥ n, the output is apparently correct, hence consider k < n. We claim that in round 2s,
s ∈ {0, . . . , k}, any subset of r + 1− s, r ∈ {s, . . . , n− 1 + s} awake nodes will know in total
min{r + 1, n} identifiers. This is obviously true for s = 0 and all r as well as r = n− 1 + s,
as any node knows its own identifier right from the start. Now assume the claim holds for
some s ∈ {0, . . . , k − 1} and all r ∈ {s, . . . , n− 1 + s}.
For s+ 1 and r = s+ 1 ≤ k < n we need to consider only a single node v. If this node wakes
up in round 2s + 1 or 2s + 2, it will (by induction hypothesis) receive s + 1 = r identifiers
which must be different from its own (as it did not send any messages before). Thus it knows
r + 1 values in round 2s+ 2. If it was awake already beforehand, the 2-interval connectivity
implies that there is at least one link from v to some node w that exists both in round 2s+1
and 2s + 2. If w is still asleep at the end of round 2s, it will wake up in round 2s + 1 and
broadcast its identifier in round 2s+2. Finally, if it is awake, we use the induction hypothesis
for s and r = s + 1 ≤ k ≤ n− 1, implying that v and w together know at least r + 1 values,
which they will exchange in round 2s + 1. Thus, the claim holds for s + 1 and r = s + 1.

Now assume that the statement is also established for s + 1 and r ∈ {s + 1, . . . , n− 2 + s}.
Choose any set of nodes S = {v1, . . . , vr+1−s} that is awake in round 2s + 2. If one of the
nodes has been asleep at the end of round 2s, it certainly contributes a new identifier and
thus the claim follows from the fact that it is already known for s+1 and r, as the remaining
nodes together have in total r + 1 different identifiers. If all the nodes are awake in round

1Note that any protocol needs to obtain information from all nodes, thus nodes cannot terminate too early and
“miss” the execution initiated by this node.



2s, there must be at least one edge from an (awake) node in S to some node w that exists
both in round 2s + 1 and round 2s + 2. Either w is asleep in round 2s, implying that it
wakes up and a node in S will learn its identifier which previously was unknown to all nodes
in S, or all nodes from S ∪ {w} were awake in round 2s. In the latter case, we can apply
the hypothesis for s and r + 1 ≤ k to see that in round 2s, S ∪ {w} knew r + 2 identifiers.
In round 2s + 1, a node in S will receive all identifiers known to w, hence the same is true
for the set S in round 2s + 2.

In summary, we can start from s = r = 0, go from s and all r ∈ {0, . . . , k} to s + 1 and
r = s + 1, and from there to all r ∈ {s + 1, . . . , n − 1 + s}, i.e., the statement is proved by
induction for all possible values of s and r. In particular, setting s = r = k, node u (that
is, the set containing only the element u) will know min{k + 1, n} elements. If k < n, this
equals k + 1 and thus u will correctly decide that k < n.

c) Starting from k = 1, u runs the algorithm from part b) repeatedly, in each step doubling k.
Note that in the final run, u will learn about all n ≤ k identifiers, thus it can determine n
exactly. Moreover, actually all nodes are awake and therefore aware of the fact that k ≥ n
and they know all identifiers. Hence the algorithm may terminate and output n at all nodes
without need for further intervention of u.

We conclude that the time complexity of the algorithm is the sum of the number of rounds
the individual runs of the algorithm from part b) take, i.e.,

dlogne∑
i=0

2 · 2i = 2
(

2dlogne+1 − 1
)
< 8n.

2 Token Dissemination

The schedule of u solely depends on the round number. Because there are n identifiers and only
constantly many may be packed into one message, there must be one token t which is scheduled
only n − 2 times in the next Ω(n2) rounds. The adversary separates the graph into two parts,
one which already knows t, and one which does not know t. Initially, the one part consists of v
only. Connectivity is maintained by a single link between the two parts whose one endpoint is v.
It does not matter how the parts are connected internally.

Now, in any round where v does not send t, the number of nodes which do not know t remains
the same. In the rounds in which t is sent, this number decreases by one. Thus, from the initially
n− 1 nodes not knowing t, after Ω(n2) rounds at least one node remains, i.e., the algorithm must
run for Ω(n2) rounds in order to disseminate all information to all nodes.
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