
116 CHAPTER 12. STABILIZATION

there can be a simple machine that can build copies of itself. In fact Life
is Turing complete, that is, as powerful as any computer.

Figure 12.1: A “glider gun”. . .

Figure 12.2: . . . in action.

Chapter 13

All-to-All Communication

In the previous chapters, we have mostly considered communication on a par-
ticular graph G = (V,E), where any two nodes u and v can only communicate
directly if {u, v} ∈ E. This is however not always the best way to model a net-
work. In the Internet, for example, every machine (node) is able to “directly”
communicate with every other machine via a series of routers. If every node in
a network can communicate directly with all other nodes, many problems can
be solved easily. For example, assume we have n servers, each hosting an ar-
bitrary number of (numeric) elements. If all servers are interested in obtaining
the maximum of all elements, all servers can simultaneously, i.e., in one com-
munication round, send their local maximum element to all other servers. Once
these maxima are received, each server knows the global maximum.

Note that we can again use graph theory to model this all-to-all commu-
nication scenario: The communication graph is simply the complete graph
Kn := (V,

(
V
2

)
). If each node can send its entire local state in a single message,

then all problems could be solved in 1 communication round in this model!
Since allowing unbounded messages is not realistic in most practical scenarios,
we restrict the message size: Assuming that all node identifiers and all other
variables in the system (such as the numeric elements in the example above)
can be described using O(log n) bits, each node can only send a message of size
O(log n) bits to all other nodes. In other words, only a constant number of
identifiers (and elements) can be packed into a single message. Thus, in this
model, the limiting factor is the amount of information that can be transmitted
in a fixed amount of time. This is fundamentally different from the model we
studied before where nodes are restricted to local information about the network
graph.

In this chapter, we study one particular problem in this model, the com-
putation of a minimum spanning tree (MST), i.e., we will again look at the
construction of a basic network structure. Let us first review the definition of a
minimum spanning tree from Chapter 3. We assume that each edge e is assigned
a weight ωe.

Definition 13.1 (MST). Given a weighted graph G = (V,E, ω). The MST
of G is a spanning tree T minimizing ω(T), where ω(H) =

∑
e∈H ωe for any

subgraph H ⊆ G.

117

118 CHAPTER 13. ALL-TO-ALL COMMUNICATION

Remarks:

• Since we have a complete communication graph, the graph has
(
n
2

)
edges

in the beginning.

• As in Chapter 3, we assume that no two edges of the graph have the same
weight. Recall that assumption ensures that the MST is unique. Recall
also that this simplification is not essential as one can always break ties
by using the IDs of adjacent vertices.

For simplicity, we assume that we have a synchronous model (as we are
only interested in the time complexity, our algorithm can be made asynchro-
nous using synchronizer α at no additional cost (cf. Chapter 11). As usual, in
every round, every node can send a (potentially different) message to each of
its neighbors. In particular, note that the message delay is 1 for every edge e
independent of the weight ωe. As mentioned before, every message can contain
a constant number of node IDs and edge weights (and O(log n) additional bits).

There is a considerable amount of work on distributed MST construction.
Table 13.1 lists the most important results for various network diameters D.
As we have a complete communication network in our model, we focus only on
D = 1.

Upper Bounds

Graph Class Time Complexity Authors

General Graphs O(D +
√
n · log∗ n) Kutten, Peleg

Diameter 2 O(log n) Lotker, Patt-Shamir,
Peleg

Diameter 1 O(log log n) Lotker, Patt-Shamir,
Pavlov, Peleg

Lower Bounds

Graph Class Time Complexity Authors

Diameter Ω(log n) Ω(D +
√
n/ log2 n) Peleg, Rubinovich

Diameter 4 Ω(n1/3/
√
logn) Lotker, Patt-Shamir,

Peleg

Diameter 3 Ω(n1/4/
√
logn) Lotker, Patt-Shamir,

Peleg

Table 13.1: Time complexity of distributed MST construction

119

Remarks:

• Note that for graphs of arbitrary diameter D, if there are no bounds on the
number of messages sent, on the message size, and on the amount of local
computations, there is a straightforward generic algorithm to compute an
MST in time D: In every round, every node sends its complete state to all
its neighbors. After D rounds, every node knows the whole graph and can
compute any graph structure locally without any further communication.

• In general, the diameter D is also an obvious lower bound for the time
needed to compute an MST. In a weighted ring, e.g., it takes time D to
find the heaviest edge. In fact, on the ring, time D is required to compute
any spanning tree.

In this chapter, we are not concerned with lower bounds, we want to give an
algorithm that computes the MST as quickly as possible instead! We again use
the following lemma that is proven in Chapter 3.

Lemma 13.2. For a given graph G let T be an MST, and let T ′ ⊆ T be a
subgraph (also known as a fragment) of the MST. Edge e = (u, v) is an outgoing
edge of T ′ if u ∈ T ′ and v �∈ T ′ (or vice versa). Let the minimum weight outgoing
edge of the fragment T ′ be the so-called blue edge b(T ′). Then T ′ ∪ b(T ′) ⊆ T .

Lemma 13.2 leads to a straightforward distributed MST algorithm. We start
with an empty graph, i.e., every node is a fragment of the MST. The algorithm
consists of phases. In every phase, we add the blue edge b(T ′) of every existing
fragment T ′ to the MST. Algorithm 46 shows how the described simple MST
construction can be carried out in a network of diameter 1.

Algorithm 46 Simple MST Construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: while v has neighbor u in different fragment do
3: find lowest-weight edge e between v and a node u in a different fragment
4: send e to all nodes
5: determine blue edges of all fragments
6: add blue edges of all fragments to MST, update fragments
7: end while

Theorem 13.3. On a complete graph, Algorithm 46 computes an MST in time
O(log n).

Proof. The algorithm is correct because of Lemma 13.2. Every node only needs
to send a single message to all its neighbors in every phase (line 4). All other
computations can be done locally without sending other messages. In particular,
the blue edge of a given fragment is the lightest edge sent by any node of that
fragment. Because every node always knows the current MST (and all current
fragments), lines 5 and 6 can be performed locally.

In every phase, every fragment connects to at least one other fragment. The
minimum fragment size therefore at least doubles in every phase. Thus, the
number of phases is at most log2 n.

120 CHAPTER 13. ALL-TO-ALL COMMUNICATION

Remarks:

• Algorithm 46 does essentially the same thing as the GHS algorithm (Algo-
rithm 15) discussed in Chapter 3. Because we now have a complete graph
and thus every node can communicate with every other node, things be-
come simpler (and also much faster).

• Algorithm 46 does not make use of the fact that a node can send different
messages to different nodes. Making use of this possibility will allow us to
significantly reduce the running time of the algorithm.

Our goal is now to improve Algorithm 46. We assume that every node has
a unique identifier. By sending its own identifier to all other nodes, every node
knows the identifiers of all other nodes after one round. Let �(F) be the node
with the smallest identifier in fragment F . We call �(F) the leader of fragment
F . In order to improve the running time of Algorithm 46, we need to be able
to connect every fragment to more than one other fragment in a single phase.
Algorithm 47 shows how the nodes can learn about the k = |F | lightest outgoing
edges of each fragment F (in constant time!).

Algorithm 47 Fast MST construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: repeat
3: F := fragment of v;
4: ∀F ′ �= F , compute min-weight edge eF ′ connecting v to F ′

5: ∀F ′ �= F , send eF ′ to �(F ′)
6: if v = �(F) then
7: ∀F ′ �= F , determine min-weight edge eF,F ′ between F and F ′

8: k := |F |
9: E(F) := k lightest edges among eF,F ′ for F

′ �= F
10: send send each edge in E(F) to a different node in F

// for simplicity assume that v also sends an edge to itself
11: end if
12: send edge received from �(F) to all nodes
13: // the following operations are performed locally by each node
14: E′ := edges received by other nodes
15: AddEdges(E′)
16: until all nodes are in the same fragment

Given this set E′ of edges, each node can locally decide which edges can
safely be added to the constructed tree by calling the subroutine AddEdges
(Algorithm 48). Note that the set of received edges E′ in line 14 is the same for
all nodes. Since all nodes know all current fragments, all nodes add the same
set of edges!

Algorithm 48 uses the lightest outgoing edge that connects two fragments (to
a larger super-fragment) as long as it is safe to add this edge, i.e., as long as it is
clear that this edge is a blue edge. A (super-)fragment that has outgoing edges
in E′ that are surely blue edges is called safe. As we will see, a super-fragment
F is safe if all the original fragments that make up F are still incident to at least
one edge in E′ that has not yet been considered. In order to determine whether

121

all lightest outgoing edges in E′ that are incident to a certain fragment F have
been processed, a counter c(F) is maintained (see line 2). If an edge incident
to two (distinct) fragments Fi and Fj is processed, both c(Fi) and c(Fj) are
decremented by 1 (see Line 8).

An edge connecting two distinct super-fragments F ′ and F ′′ is added if at
least one of the two super-fragments is safe. In this case, the two super-fragments
are merged into one (new) super-fragment. The new super-fragment is safe if
and only if both original super-fragements are safe and the processed edge e is
not the last edge in E′ incident to any of the two fragments Fi and Fj that are
incident to e, i.e., both counters c(Fi) and c(Fj) are still positive (see line 12).

The considered edge e may not be added for one of two reasons. It is possible
that both F ′ and F ′′ are not safe. Since a super-fragment cannot become safe
again, nothing has to be done in this case. The second reason is that F ′ = F ′′.
In this case, this single fragment may become unsafe if e reduced either c(Fi)
or c(Fj) to zero (see line 18).

Algorithm 48 AddEdges(E′): Given the set of edges E′, determine which
edges are added to the MST

1: Let F1, . . . , Fr be the initial fragments
2: ∀Fi ∈ {F1, . . . , Fr}, c(Fi) := # incident edges in E′

3: Let F1 := F1, . . . ,Fr := Fr be the initial super-fragments
4: ∀Fi ∈ {F1, . . . ,Fr}, safe(Fi) := true
5: while E′ �= ∅ do
6: e := lightest edge in E′ between the original fragments Fi and Fj

7: E′ := E′ \ {e}
8: c(Fi) := c(Fi)− 1, c(Fj) := c(Fj)− 1
9: if e connects super-fragments F ′ �= F ′′ and (safe(F ′) or safe(F ′′)) then

10: add e to MST
11: merge F ′ and F ′′ into one super-fragment Fnew

12: if safe(F ′) and safe(F ′′) and c(Fi) > 0 and c(Fj) > 0 then
13: safe(Fnew) := true
14: else
15: safe(Fnew) := false
16: end if
17: else if F ′ = F ′′ and (c(Fi) = 0 or c(Fj) = 0) then
18: safe(F ′) := false
19: end if
20: end while

Lemma 13.4. The algorithm only adds MST edges.

Proof. We have to prove that at the time we add an edge e in line 9 of Al-
gorithm 48, e is the blue edge of some (super-)fragment. By definition, e is
the lightest edge that has not been considered and that connects two distinct
super-fragments F ′ and F ′′. Since e is added, we know that either safe(F ′)
or safe(F ′′) is true. Without loss of generality, assume that F ′ is safe. Ac-
cording to the definition of safe, this means that from each fragment F in the
super-fragment F ′ we know at least the lightest outgoing edge, which implies
that we also know the lightest outgoing edge, i.e., the blue edge, of F ′. Since e

122 CHAPTER 13. ALL-TO-ALL COMMUNICATION

is the lightest edge that connects any two super-fragments, it must hold that e
is exactly the blue edge of F ′. Thus, whenever an edge is added, it is an MST
edge.

Theorem 13.5. Algorithm 47 computes an MST in time O(log log n).

Proof. Let βk denote the size of the smallest fragment after phase k of Algo-
rithm 47. We first show that every fragment merges with at least βk other
fragments in each phase. Since the size of each fragment after phase k is at
least βk by definition, we get that the size of each fragment after phase k+1 is
at least βk(βk + 1). Assume that a fragment F , consisting of at least βk nodes,
does not merge with βk other fragments in phase k + 1 for any k ≥ 0. Note
that F cannot be safe because being safe implies that there is at least one edge
in E′ that has not been considered yet and that is the blue edge of F . Hence,
the phase cannot be completed in this case. On the other hand, if F is not
safe, then at least one of its sub-fragments has used up all its βk edges to other
fragments. However, such an edge is either used to merge two fragments or it
must have been dropped because the two fragments already belong to the same
fragment because another edge connected them (in the same phase). In either
case, we get that any fragment, and in particular F , must merge with at least
βk other fragments.

Given that the minimum fragment size grows (quickly) in each phase and
that only edges belonging to the MST are added according to Lemma 13.4, we
conclude that the algorithm correctly computes the MST. The fact that

βk+1 ≥ βk(βk + 1)

implies that βk ≥ 22
k−1

for any k ≥ 1. Therefore after 1+log2 log2 n phases, the
minimum fragment size is n and thus all nodes are in the same fragment.

Remarks:

• It is not known whether the O(log log n) time complexity of Algorithm 47
is optimal. In fact, no lower bounds are known for the MST construction
on graphs of diameter 1 and 2.

• Algorithm 47 makes use of the fact that it is possible to send different
messages to different nodes. If we assume that every node always has to
send the same message to all other nodes, Algorithm 46 is the best that
is known. Also for this simpler case, no lower bound is known.

