
Chapter 7

Maximal Independent Set

In this chapter we present a highlight of this course, a fast maximal independent
set (MIS) algorithm. The algorithm is the first randomized algorithm that we
study in this class. In distributed computing, randomization is a powerful and
therefore omnipresent concept, as it allows for relatively simple yet efficient
algorithms. As such the studied algorithm is archetypal.

A MIS is a basic building block in distributed computing, some other prob-
lems pretty much follow directly from the MIS problem. At the end of this
chapter, we will give two examples: matching and vertex coloring (see Chapter
1).

7.1 MIS

Definition 7.1 (Independent Set). Given an undirected Graph G = (V,E) an
independent set is a subset of nodes U ⊆ V , such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence. An independent set of maximum cardinality is called
maximum.

2

1

2

Figure 7.1: Example graph with 1) a maximal independent set (MIS) and 2) a
maximum independent set (MaxIS).

57

58 CHAPTER 7. MAXIMAL INDEPENDENT SET

Remarks:

• Computing a maximum independent set (MaxIS) is a notoriously difficult
problem. It is equivalent to maximum clique on the complementary graph.
Both problems are NP-hard, in fact not approximable within n

1
2−ε.

• In this course we concentrate on the maximal independent set (MIS) prob-
lem. Please note that MIS and MaxIS can be quite different, indeed e.g.
on a star graph the MIS is Θ(n) smaller than the MaxIS (cf. Figure 7.1).

• Computing a MIS sequentially is trivial: Scan the nodes in arbitrary order.
If a node u does not violate independence, add u to the MIS. If u violates
independence, discard u. So the only question is how to compute a MIS
in a distributed way.

Algorithm 34 Slow MIS

Require: Node IDs
Every node v executes the following code:

1: if all neighbors of v with larger identifiers have decided not to join the MIS
then

2: v decides to join the MIS
3: end if

Remarks:

• Not surprisingly the slow algorithm is not better than the sequential algo-
rithm in the worst case, because there might be one single point of activity
at any time. Formally:

Theorem 7.2 (Analysis of Algorithm 34). Algorithm 34 features a time com-
plexity of O(n) and a message complexity of O(m).

Remarks:

• This is not very exciting.

• There is a relation between independent sets and node coloring (Chapter
1), since each color class is an independent set, however, not necessarily a
MIS. Still, starting with a coloring, one can easily derive a MIS algorithm:
We first choose all nodes of the first color. Then, for each additional color
we add “in parallel” (without conflict) as many nodes as possible. Thus
the following corollary holds:

Corollary 7.3. Given a coloring algorithm that needs C colors and runs in
time T , we can construct a MIS in time C + T .

Remarks:

• Using Theorem 1.17 and Corollary 7.3 we get a distributed determinis-
tic MIS algorithm for trees (and for bounded degree graphs) with time
complexity O(log∗ n).

7.2. FAST MIS FROM 1986 59

• With a lower bound argument one can show that this deterministic MIS
algorithm for rings is asymptotically optimal.

• There have been attempts to extend Algorithm 5 to more general graphs,
however, so far without much success. Below we present a radically dif-
ferent approach that uses randomization. Please note that the algorithm
and the analysis below is not identical with the algorithm in Peleg’s book.

7.2 Fast MIS from 1986

Algorithm 35 Fast MIS

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v marks itself with probability 1

2d(v) , where d(v) is the current

degree of v.
2) If no higher degree neighbor of v is also marked, node v joins the MIS. If
a higher degree neighbor of v is marked, node v unmarks itself again. (If the
neighbors have the same degree, ties are broken arbitrarily, e.g., by identifier).
3) Delete all nodes that joined the MIS and their neighbors, as they cannot
join the MIS anymore.

Remarks:

• Correctness in the sense that the algorithm produces an independent set
is relatively simple: Steps 1 and 2 make sure that if a node v joins the
MIS, then v’s neighbors do not join the MIS at the same time. Step 3
makes sure that v’s neighbors will never join the MIS.

• Likewise the algorithm eventually produces a MIS, because the node with
the highest degree will mark itself at some point in Step 1.

• So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.

Lemma 7.4 (Joining MIS). A node v joins the MIS in step 2 with probability
p ≥ 1

4d(v) .

Proof: Let M be the set of marked nodes in step 1. Let H(v) be the set of
neighbors of v with higher degree, or same degree and higher identifier. Using
independence of the random choices of v and nodes in H(v) in Step 1 we get

P [v /∈ MIS|v ∈ M] = P [∃w ∈ H(v), w ∈ M |v ∈ M]

= P [∃w ∈ H(v), w ∈ M]

≤
∑

w∈H(v)

P [w ∈ M] =
∑

w∈H(v)

1

2d(w)

≤
∑

w∈H(v)

1

2d(v)
≤ d(v)

2d(v)
=

1

2
.

60 CHAPTER 7. MAXIMAL INDEPENDENT SET

Then

P [v ∈ MIS] = P [v ∈ MIS|v ∈ M] · P [v ∈ M] ≥ 1

2
· 1

2d(v)
.

�

Lemma 7.5 (Good Nodes). A node v is called good if

∑
w∈N(v)

1

2d(w)
≥ 1

6
.

Otherwise we call v a bad node. A good node will be removed in Step 3 with
probability p ≥ 1

36 .

Proof: Let node v be good. Intuitively, good nodes have lots of low-degree
neighbors, thus chances are high that one of them goes into the independent
set, in which case v will be removed in step 3 of the algorithm.

If there is a neighbor w ∈ N(v) with degree at most 2 we are done: With
Lemma 7.4 the probability that node w joins the MIS is at least 1

8 , and our
good node will be removed in Step 3.

So all we need to worry about is that all neighbors have at least degree 3:

For any neighbor w of v we have 1
2d(w) ≤ 1

6 . Since
∑

w∈N(v)

1

2d(w)
≥ 1

6
there is a

subset of neighbors S ⊆ N(v) such that
1

6
≤
∑
w∈S

1

2d(w)
≤ 1

3

We can now bound the probability that node v will be removed. Let therefore
R be the event of v being removed. Again, if a neighbor of v joins the MIS in
Step 2, node v will be removed in Step 3. We have

P [R] ≥ P [∃u ∈ S, u ∈ MIS]

≥
∑
u∈S

P [u ∈ MIS]−
∑

u,w∈S;u �=w

P [u ∈ MIS and w ∈ MIS] .

For the last inequality we used the inclusion-exclusion principle truncated
after the second order terms. Let M again be the set of marked nodes after
Step 1. Using P [u ∈ M] ≥ P [u ∈ MIS] we get

P [R] ≥
∑
u∈S

P [u ∈ MIS]−
∑

u,w∈S;u �=w

P [u ∈ M and w ∈ M]

≥
∑
u∈S

P [u ∈ MIS]−
∑
u∈S

∑
w∈S

P [u ∈ M] · P [w ∈ M]

≥
∑
u∈S

1

4d(u)
−
∑
u∈S

∑
w∈S

1

2d(u)

1

2d(w)

≥
∑
u∈S

1

2d(u)

(
1

2
−
∑
w∈S

1

2d(w)

)
≥ 1

6

(
1

2
− 1

3

)
=

1

36
.

�

7.2. FAST MIS FROM 1986 61

Remarks:

• We would be almost finished if we could prove that many nodes are good
in each phase. Unfortunately this is not the case: In a star-graph, for
instance, only a single node is good! We need to find a work-around.

Lemma 7.6 (Good Edges). An edge e = (u, v) is called bad if both u and v
are bad; else the edge is called good. The following holds: At any time at least
half of the edges are good.

Proof: For the proof we construct a directed auxiliary graph: Direct each edge
towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). Now we need a little helper lemma before we can
continue with the proof.

Lemma 7.7. A bad node has outdegree at least twice its indegree.

Proof: For the sake of contradiction, assume that a bad node v does not have
outdegree at least twice its indegree. In other words, at least one third of the
neighbor nodes (let’s call them S) have degree at most d(v). But then

∑
w∈N(v)

1

2d(w)
≥
∑
w∈S

1

2d(w)
≥
∑
w∈S

1

2d(v)
≥ d(v)

3

1

2d(v)
=

1

6

which means v is good, a contradiction. �

Continuing the proof of Lemma 7.6: According to Lemma 7.7 the number of
edges directed into bad nodes is at most half the number of edges directed out
of bad nodes. Thus, the number of edges directed into bad nodes is at most
half the number of edges. Thus, at least half of the edges are directed into good
nodes. Since these edges are not bad, they must be good.

Theorem 7.8 (Analysis of Algorithm 35). Algorithm 35 terminates in expected
time O(log n).

Proof: With Lemma 7.5 a good node (and therefore a good edge!) will be
deleted with constant probability. Since at least half of the edges are good
(Lemma 7.6) a constant fraction of edges will be deleted in each phase.

More formally: With Lemmas 7.5 and 7.6 we know that at least half of the
edges will be removed with probability at least 1/36. Let R be the number
of edges to be removed. Using linearity of expectation we know that E [R] ≥
m/72, m being the total number of edges at the start of a phase. Now let
p := P [R ≤ E [R] /2]. Bounding the expectation yields

E [R] =
∑
r

P [R = r] · r ≤ p · E [R] /2 + (1− p) ·m.

Solving for p we get

p ≤ m− E [R]

m− E [R] /2
<

m− E [R] /2

m
≤ 1− 1/144.

In other words, with probability at least 1/144 at least m/144 edges are removed
in a phase. After expected O(logm) phases all edges are deleted. Since m ≤ n2

and thus O(logm) = O(log n) the Theorem follows. �

62 CHAPTER 7. MAXIMAL INDEPENDENT SET

Remarks:

• With a bit of more math one can even show that Algorithm 35 terminates
in time O(log n) “with high probability”.

• The presented algorithm is a simplified version of an algorithm by Michael
Luby, published 1986 in the SIAM Journal of Computing. Around the
same time there have been a number of other papers dealing with the same
or related problems, for instance by Alon, Babai, and Itai, or by Israeli
and Itai. The analysis presented here takes elements of all these papers,
and from other papers on distributed weighted matching. The analysis in
the book by David Peleg is different, and only achieves O(log2 n) time.

• Though not as incredibly fast as the log∗-coloring algorithm for trees, this
algorithm is very general. It works on any graph, needs no identifiers, and
can easily be made asynchronous.

• Surprisingly, much later, there have been half a dozen more papers pub-
lished, with much worse results!! In 2002, for instance, there was a paper
with linear running time, improving on a 1994 paper with cubic running
time, restricted to trees!

• In 2009, Métivier, Robson, Saheb-Djahromi and Zemmari found a slightly
different (and simpler) way to compute a MIS in the same logarithmic
time:

7.3 Fast MIS from 2009

Algorithm 36 Fast MIS 2

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v chooses a random value r(v) ∈ [0, 1] and sends it to its
neighbors.
2) If r(v) < r(w) for all neighbors w ∈ N(v), node v enters the MIS and
informs its neighbors.
3) If v or a neighbor of v entered the MIS, v terminates (v and all edges
adjacent to v are removed from the graph), otherwise v enters the next phase.

Remarks:

• Correctness in the sense that the algorithm produces an independent set
is simple: Steps 1 and 2 make sure that if a node v joins the MIS, then
v’s neighbors do not join the MIS at the same time. Step 3 makes sure
that v’s neighbors will never join the MIS.

• Likewise the algorithm eventually produces a MIS, because the node with
the globally smallest value will always join the MIS, hence there is progress.

• So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.

7.3. FAST MIS FROM 2009 63

• Our proof will rest on a simple, yet powerful observation about expected
values of random variables that may not be independent :

Theorem 7.9 (Linearity of Expectation). Let Xi, i = 1, . . . , k denote random
variables, then

E

[∑
i

Xi

]
=
∑
i

E [Xi] .

Proof. It is sufficient to prove E [X + Y] = E [X]+E [Y] for two random variables
X and Y , because then the statement follows by induction. Since

P [(X,Y) = (x, y)] = P [X = x] · P [Y = y|X = x]

= P [Y = y] · P [X = x|Y = y]

we get that

E [X + Y] =
∑

(X,Y)=(x,y)

P [(X,Y) = (x, y)] · (x+ y)

=
∑
X=x

∑
Y=y

P [X = x] · P [Y = y|X = x] · x

+
∑
Y=y

∑
X=x

P [Y = y] · P [X = x|Y = y] · y

=
∑
X=x

P [X = x] · x+
∑
Y=y

P [Y = y] · y

= E [X] + E [Y] .

Remarks:

• How can we prove that the algorithm only needs O(log n) phases in expec-
tation? It would be great if this algorithm managed to remove a constant
fraction of nodes in each phase. Unfortunately, it does not.

• Instead we will prove that the number of edges decreases quickly. Again,
it would be great if any single edge was removed with constant probability
in Step 3. But again, unfortunately, this is not the case.

• Maybe we can argue about the expected number of edges to be removed
in one single phase? Let’s see: A node v enters the MIS with probability
1/(d(v) + 1), where d(v) is the degree of node v. By doing so, not only
are v’s edges removed, but indeed all the edges of v’s neighbors as well –
generally these are much more than d(v) edges. So there is hope, but we
need to be careful: If we do this the most naive way, we will count the
same edge many times.

• How can we fix this? The nice observation is that it is enough to count
just some of the removed edges. Given a new MIS node v and a neighbor
w ∈ N(v), we count the edges only if r(v) < r(x) for all x ∈ N(w). This
looks promising. In a star graph, for instance, only the smallest random
value can be accounted for removing all the edges of the star.

64 CHAPTER 7. MAXIMAL INDEPENDENT SET

Lemma 7.10 (Edge Removal). In a single phase, we remove at least half of
the edges in expectation.

Proof: To simplify the notation, at the start of our phase, the graph is simply
G = (V,E). Suppose that a node v joins the MIS in this phase, i.e., r(v) < r(w)
for all neighbors w ∈ N(v). If in addition we have r(v) < r(x) for all neighbors
x of a neighbor w of v, we call this event (v → w). The probability of event
(v → w) is at least 1/(d(v) + d(w)), since d(v) + d(w) is the maximum number
of nodes adjacent to v or w (or both). As v joins the MIS, all edges (w, x) will
be removed; there are d(w) of these edges.

In order to count the removed edges, we need to weight events properly.
Whether we remove the edges adjacent to w because of event (v → w) is a

random variable X(v→w). If event (v → w) occurs, X(v→w) has the value d(w),
if not it has the value 0. For each edge {v, w} we have two such variables, the
event X(v→w) and X(w→v). Due to Theorem 7.9, the expected value of the sum
X of all these random variables is at least

E [X] =
∑

{v,w}∈E

E[X(v→w)] + E[X(w→v)]

=
∑

{v,w}∈E

P [Event (v → w)] · d(w) + P [Event (w → v)] · d(v)

≥
∑

{v,w}∈E

d(w)

d(v) + d(w)
+

d(v)

d(w) + d(v)

=
∑

{v,w}∈E

1 = |E|.

In other words, in expectation all edges are removed in a single phase?!?
Probably not. This means that we still counted some edges more than once.
Indeed, for an edge {v, w} ∈ E our random variable X includes the edge if the
event (u → v) happens, but X also includes the edge if the event (x → w)
happens. So we may have counted the edge {v, w} twice. Fortunately however,
not more than twice, because at most one event (· → v) and at most one event
(· → w) can happen. If (u → v) happens, we know that r(u) < r(w) for all
w ∈ N(v); hence another (u′ → v) cannot happen because r(u′) > r(u) ∈ N(v).
Therefore the random variable X must be divided by 2. In other words, in
expectation at least half of the edges are removed.

Remarks:

• This enables us to follow a bound on the expected running time of Algo-
rithm 36 quite easily.

Theorem 7.11 (Expected running time of Algorithm 36). Algorithm 36 ter-
minates after at most 3 log4/3 m+ 1 ∈ O(log n) phases in expectation.

Proof: The probability that in a single phase at least a quarter of all edges
are removed is at least 1/3. For the sake of contradiction, assume not. Then
with probability less than 1/3 we may be lucky and many (potentially all) edges
are removed. With probability more than 2/3 less than 1/4 of the edges are
removed. Hence the expected fraction of removed edges is strictly less than
1/3 · 1 + 2/3 · 1/4 = 1/2. This contradicts Lemma 7.10.

7.3. FAST MIS FROM 2009 65

Hence, at least every third phase is “good” and removes at least a quarter
of the edges. To get rid of all but two edges we need log4/3 m good phases in
expectation. The last two edges will certainly be removed in the next phase.
Hence a total of 3 log4/3 m+ 1 phases are enough in expectation.

Remarks:

• Sometimes one expects a bit more of an algorithm: Not only should the
expected time to terminate be good, but the algorithm should always
terminate quickly. As this is impossible in randomized algorithms (after
all, the random choices may be “unlucky” all the time!), researchers often
settle for a compromise, and just demand that the probability that the
algorithm does not terminate in the specified time can be made absurdly
small. For our algorithm, this can be deduced from Lemma 7.10 and
another standard tool, namely Chernoff’s Bound.

Definition 7.12 (W.h.p.). We say that an algorithm terminates w.h.p. (with
high probability) within O(t) time if it does so with probability at least 1− 1/nc

for any choice of c ≥ 1. Here c may affect the constants in the Big-O notation
because it is considered a “tunable constant” and usually kept small.

Definition 7.13 (Chernoff’s Bound). Let X =
∑k

i=1 Xi be the sum of k inde-
pendent 0− 1 random variables. Then Chernoff’s bound states that w.h.p.

|X − E[X]| ∈ O
(
log n+

√
E[X] log n

)
.

Corollary 7.14 (Running Time of Algorithm 36). Algorithm 36 terminates
w.h.p. in O(log n) time.

Proof: In Theorem 7.11 we used that independently of everything that happened
before, in each phase we have a constant probability p that a quarter of the edges
are removed. Call such a phase good. For some constants C1 and C2, let us check
after C1 log n+C2 ∈ O(log n) phases, in how many phases at least a quarter of
the edges have been removed. In expectation, these are at least p(C1 log n+C2)

many. Now we look at the random variable X =
∑C1 logn+C2

i=1 Xi, where the Xi

are independent 0− 1 variables being one with exactly probability p. Certainly,
if X is at least x with some probability, then the probability that we have
x good phases can only be larger (if no edges are left, certainly “all” of the
remaining edges are removed). To X we can apply Chernoff’s bound. If C1

and C2 are chosen large enough, they will overcome the constants in the Big-O
from Chernoff’s bound, i.e., w.h.p. it holds that |X−E[X]| ≤ E[X]/2, implying
X ≥ E[X]/2. Choosing C1 large enough, we will have w.h.p. sufficiently many
good phases, i.e., the algorithm terminates w.h.p. in O(log n) phases.

Remarks:

• The algorithm can be improved a bit more even. Drawing random real
numbers in each phase for instance is not necessary. One can achieve
the same by sending only a total of O(log n) random (and as many non-
random) bits over each edge.

• One of the main open problems in distributed computing is whether one
can beat this logarithmic time, or at least achieve it with a deterministic
algorithm.

66 CHAPTER 7. MAXIMAL INDEPENDENT SET

• Let’s turn our attention to applications of MIS next.

7.4 Applications

Definition 7.15 (Matching). Given a graph G = (V,E) a matching is a subset
of edges M ⊆ E, such that no two edges in M are adjacent (i.e., where no node
is adjacent to two edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of maximum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.

Remarks:

• In contrast to MaxIS, a maximum matching can be found in polynomial
time (Blossom algorithm by Jack Edmonds), and is also easy to approxi-
mate (in fact, already any maximal matching is a 2-approximation).

• An independent set algorithm is also a matching algorithm: Let G =
(V,E) be the graph for which we want to construct the matching. The
auxiliary graph G′ is defined as follows: for every edge in G there is a node
in G′; two nodes in G′ are connected by an edge if their respective edges
in G are adjacent. A (maximal) independent set in G′ is a (maximal)
matching in G, and vice versa. Using Algorithm 36 directly produces a
O(log n) bound for maximal matching.

• More importantly, our MIS algorithm can also be used for vertex coloring
(Problem 1.1):

Algorithm 37 General Graph Coloring

1: Given a graph G = (V,E) we virtually build a graph G′ = (V ′, E′) as
follows:

2: Every node v ∈ V clones itself d(v)+1 times (v0, . . . , vd(v) ∈ V ′), d(v) being
the degree of v in G.

3: The edge set E′ of G′ is as follows:
4: First all clones are in a clique: (vi, vj) ∈ E′, for all v ∈ V and all 0 ≤ i <

j ≤ d(v)
5: Second all ith clones of neighbors in the original graph G are connected:

(ui, vi) ∈ E′, for all (u, v) ∈ E and all 0 ≤ i ≤ min(d(u), d(v)).
6: Now we simply run (simulate) the fast MIS Algorithm 36 on G′.
7: If node vi is in the MIS in G′, then node v gets color i.

Theorem 7.16 (Analysis of Algorithm 37). Algorithm 37 (Δ + 1)-colors an
arbitrary graph in O(log n) time, with high probability, Δ being the largest degree
in the graph.

Proof: Thanks to the clique among the clones at most one clone is in the MIS.
And because of the d(v)+1 clones of node v every node will get a free color! The
running time remains logarithmic since G′ has O

(
n2
)
nodes and the exponent

becomes a constant factor when applying the logarithm.

7.4. APPLICATIONS 67

Remarks:

• This solves our open problem from Chapter 1.1!

• Together with Corollary 7.3 we get quite close ties between (Δ+1)-coloring
and the MIS problem.

• However, in general Algorithm 37 is not the best distributed algorithm for
O(Δ)-coloring. For fast distributed vertex coloring please check Kotha-
palli, Onus, Scheideler, Schindelhauer, IPDPS 2006. This algorithm is
based on a O(log log n) time edge coloring algorithm by Grable and Pan-
conesi, 1997.

• Computing a MIS also solves another graph problem on graphs of bounded
independence.

Definition 7.17 (Bounded Independence). G = (V,E) is of bounded indepen-
dence, if each neighborhood contains at most a constant number of independent
(i.e., mutually non-adjacent) nodes.

Definition 7.18 ((Minimum) Dominating Sets). A dominating set is a subset
of the nodes such that each node is in the set or adjacent to a node in the set.
A minimum dominating set is a dominating set containing the least possible
number of nodes.

Remarks:

• In general, finding a dominating set less than factor log n larger than an
minimum dominating set is NP-hard.

• Any MIS is a dominating set: if a node was not covered, it could join the
independent set.

• In general a MIS and a minimum dominating sets have not much in com-
mon (think of a star). For graphs of bounded independence, this is differ-
ent.

Corollary 7.19. On graphs of bounded independence, a constant-factor approx-
imation to a minimum dominating set can be found in time O(log n) w.h.p.

Proof: Denote by M a minimum dominating set and by I a MIS. Since M is a
dominating set, each node from I is in M or adjacent to a node in M . Since
the graph is of bounded independence, no node in M is adjacent to more than
constantly many nodes from I. Thus, |I| ∈ O(|M |). Therefore, we can compute
a MIS with Algorithm 36 and output it as the dominating set, which takes
O(log n) rounds w.h.p.

