
Chapter 8

Locality Lower Bounds

In Chapter 1, we looked at distributed algorithms for coloring. In particular,
we saw that rings and rooted trees can be colored with 3 colors in log∗ n+O(1)
rounds. In this chapter, we will reconsider the distributed coloring problem. We
will look at a classic lower bound by Nathan Linial that shows that the result of
Chapter 1 is tight: Coloring rings (and rooted trees) indeed requires Ω(log∗ n)
rounds. In particular, we will prove a lower bound for coloring in the following
setting:

• We consider deterministic, synchronous algorithms.

• Message size and local computations are unbounded.

• We assume that the network is a directed ring with n nodes.

• Nodes have unique labels (identifiers) from 1 to n.

Remarks:

• A generalization of the lower bound to randomized algorithms is possible.

• Except for restricting to deterministic algorithms, all the conditions above
make a lower bound stronger: Any lower bound for synchronous algo-
rithms certainly also holds for asynchronous ones. A lower bound that is
true if message size and local computations are not restricted is clearly also
valid if we require a bound on the maximal message size or the amount
of local computations. Similarly also assuming that the ring is directed
and that node labels are from 1 to n (instead of choosing IDs from a more
general domain) strengthen the lower bound.

• Instead of directly proving that 3-coloring a ring needs Ω(log∗ n) rounds,
we will prove a slightly more general statement. We will consider deter-
ministic algorithms with time complexity r (for arbitrary r) and derive a
lower bound on the number of colors that are needed if we want to prop-
erly color an n-node ring with an r-round algorithm. A 3-coloring lower
bound can then be derived by taking the smallest r for which an r-round
algorithm needs 3 or fewer colors.

98



8.1. LOCALITY 99

Algorithm 39 Synchronous Algorithm: Canonical Form

1: In r rounds: send complete initial state to nodes at distance at most r
2: // do all the communication first
3: Compute output based on complete information about r-neighborhood
4: // do all the computation in the end

8.1 Locality

Let us for a moment look at distributed algorithms more generally (i.e., not
only at coloring and not only at rings). Assume that initially, all nodes only
know their own label (identifier) and potentially some additional input. As
information needs at least r rounds to travel r hops, after r rounds, a node v
can only learn about other nodes at distance at most r. If message size and local
computations are not restricted, it is in fact not hard to see, that in r rounds,
a node v can exactly learn all the node labels and inputs up to distance r.
As shown by the following lemma, this allows to transform every deterministic
r-round synchronous algorithm into a simple canonical form.

Lemma 8.1. If message size and local computations are not bounded, every
deterministic, synchronous r-round algorithm can be transformed into an algo-
rithm of the form given by Algorithm 39 (i.e., it is possible to first communicate
for r rounds and then do all the computations in the end).

Proof. Consider some r-round algorithm A. We want to show that A can be
brought to the canonical form given by Algorithm 39. First, we let the nodes
communicate for r rounds. Assume that in every round, every node sends its
complete state to all of its neighbors (remember that there is no restriction on
the maximal message size). By induction, after r rounds, every node knows the
initial state of all other nodes at distance at most i. Hence, after r rounds, a
node v has the combined initial knowledge of all the nodes in its r-neighborhood.
We want to show that this suffices to locally (at node v) simulate enough of
Algorithm A to compute all the messages that v receives in the r communication
rounds of a regular execution of Algorithm A.

Concretely, we prove the following statement by induction on i. For all
nodes at distance at most r − i + 1 from v, node v can compute all messages
of the first i rounds of a regular execution of A. Note that this implies that v
can compute all the messages it receives from its neighbors during all r rounds.
Because v knows the initial state of all nodes in the r-neighborhood, v can
clearly compute all messages of the first round (i.e., the statement is true for
i = 1). Let us now consider the induction step from i to i+1. By the induction
hypothesis, v can compute the messages of the first i rounds of all nodes in
its (r − i + 1)-neighborhood. It can therefore compute all messages that are
received by nodes in the (r − i)-neighborhood in the first i rounds. This is of
course exactly what is needed to compute the messages of round i+ 1 of nodes
in the (r − i)-neighborhood.



100 CHAPTER 8. LOCALITY LOWER BOUNDS

Remarks:

• It is straightforward to generalize the canonical form to randomized algo-
rithms: Every node first computes all the random bits it needs throughout
the algorithm. The random bits are then part of the initial state of a node.

Definition 8.2 (r-hop view). We call the collection of the initial states of all
nodes in the r-neighborhood of a node v, the r-hop view of v.

Remarks:

• Assume that initially, every node knows its degree, its label (identifier)
and potentially some additional input. The r-hop view of a node v then
includes the complete topology of the r-neighborhood (excluding edges
between nodes at distance r) and the labels and additional inputs of all
nodes in the r-neighborhood.

Based on the definition of an r-hop view, we can state the following corollary
of Lemma 9.1.

Corollary 8.3. A deterministic r-round algorithm A is a function that maps
every possible r-hop view to the set of possible outputs.

Proof. By Lemma 9.1, we know that we can transform Algorithm A to the
canonical form given by Algorithm 39. After r communication rounds, every
node v knows exactly its r-hop view. This information suffices to compute the
output of node v.

Remarks:

• Note that the above corollary implies that two nodes with equal r-hop
views have to compute the same output in every r-round algorithm.

• For coloring algorithms, the only input of a node v is its label. The r-hop
view of a node therefore is its labeled r-neighborhood.

• Since we only consider rings, r-hop neighborhoods are particularly simple.
The labeled r-neighborhood of a node v (and hence its r-hop view) in
a directed ring is simply a (2r + 1)-tuple (�−r, �−r+1, . . . , �0, . . . , �r) of
distinct node labels where �0 is the label of v. Assume that for i > 0, �i
is the label of the ith clockwise neighbor of v and �−i is the label of the
ith counterclockwise neighbor of v. A deterministic coloring algorithm for
directed rings therefore is a function that maps (2r + 1)-tuples of node
labels to colors.

• Consider two r-hop views Vr = (�−r, . . . , �r) and V ′
r = (�′−r, . . . , �

′
r). If

�′i = �i+1 for −r ≤ i ≤ r − 1 and if �′r �= �i for −r ≤ i ≤ r, the r-hop view
V ′
r can be the r-hop view of a clockwise neighbor of a node with r-hop view

Vr. Therefore, every algorithm A that computes a valid coloring needs to
assign different colors to Vr and V ′

r. Otherwise, there is a ring labeling for
which A assigns the same color to two adjacent nodes.



8.2. THE NEIGHBORHOOD GRAPH 101

8.2 The Neighborhood Graph

We will now make the above observations concerning colorings of rings a bit
more formal. Instead of thinking of an r-round coloring algorithm as a function
from all possible r-hop views to colors, we will use a slightly different perspective.
Interestingly, the problem of understanding distributed coloring algorithms can
itself be seen as a classical graph coloring problem.

Definition 8.4 (Neighborhood Graph). For a given family of network graphs
G, the r-neighborhood graph Nr(G) is defined as follows. The node set of Nr(G)
is the set of all possible labeled r-neighborhoods (i.e., all possible r-hop views).
There is an edge between two labeled r-neighborhoods Vr and V ′

r if Vr and V ′
r

can be the r-hop views of two adjacent nodes.

Lemma 8.5. For a given family of network graphs G, there is an r-round al-
gorithm that colors graphs of G with c colors iff the chromatic number of the
neighborhood graph is χ(Nr(G)) ≤ c.

Proof. We have seen that a coloring algorithm is a function that maps every
possible r-hop view to a color. Hence, a coloring algorithm assigns a color to
every node of the neighborhood graph Nr(G). If two r-hop views Vr and V ′

r can
be the r-hop views of two adjacent nodes u and v (for some labeled graph in
G), every correct coloring algorithm must assign different colors to Vr and V ′

r.
Thus, specifying an r-round coloring algorithm for a family of network graphs
G is equivalent to coloring the respective neighborhood graph Nr(G).

Remarks:

• If an algorithm is non-uniform, i.e., the nodes know n, we can see this as
having different neighborhood graphs for different values of n (as opposed
to a disconnected neighborhood graph).

• This does not make much of a difference for coloring algorithms on the
ring, as we are interested in neighborhoods that are much smaller than n.

Instead of directly defining the neighborhood graph for directed rings, we
define directed graphs Bk,n that are closely related to the neighborhood graph.
Let k and n be two positive integers and assume that n ≥ k. The node set of
Bk,n contains all k-tuples of increasing node labels ([n] = {1, . . . , n}):

V [Bk,n] =
{
(α1, . . . , αk) : αi ∈ [n], i < j → αi < αj

}
(8.1)

For α = (α1, . . . , αk) and β = (β1, . . . , βk) there is a directed edge from α to β
iff

∀i ∈ {1, . . . , k − 1} : βi = αi+1. (8.2)

Lemma 8.6. Viewed as an undirected graph, the graph B2r+1,n is a subgraph
of the r-neighborhood graph of directed n-node rings with node labels from [n].

Proof. The claim follows directly from the observations regarding r-hop views of
nodes in a directed ring from Section 9.1. The set of k-tuples of increasing node
labels is a subset of the set of k-tuples of distinct node labels. Two nodes of
B2r+1,n are connected by a directed edge iff the two corresponding r-hop views



102 CHAPTER 8. LOCALITY LOWER BOUNDS

are connected by a directed edge in the neighborhood graph. Note that if there
is an edge between α and β in Bk,n, α1 �= βk because the node labels in α and
β are increasing.

To determine a lower bound on the number of colors an r-round algorithm
needs for directed n-node rings, it therefore suffices to determine a lower bound
on the chromatic number of B2r+1,n. To obtain such a lower bound, we need
the following definition.

Definition 8.7 (Diline Graph). The directed line graph (diline graph) DL(G)
of a directed graph G = (V,E) is defined as follows. The node set of DL(G) is
V [DL(G)] = E. There is a directed edge

(
(w, x), (y, z)

)
between (w, x) ∈ E and

(y, z) ∈ E iff x = y, i.e., if the first edge ends where the second one starts.

Lemma 8.8. If n > k, the graph Bk+1,n can be defined recursively as follows:

Bk+1,n = DL(Bk,n).

Proof. The edges of Bk,n are pairs of k-tuples α = (α1, . . . , αk) and β =
(β1, . . . , βk) that satisfy Conditions (9.1) and (9.2). Because the last k − 1
labels in α are equal to the first k − 1 labels in β, the pair (α, β) can be rep-
resented by a (k + 1)-tuple γ = (γ1, . . . , γk+1) with γ1 = α1, γi = βi−1 = αi

for 2 ≤ i ≤ k, and γk+1 = βk. Because the labels in α and the labels in β
are increasing, the labels in γ are increasing as well. The two graphs Bk+1,n

and DL(Bk,n) therefore have the same node sets. There is an edge between
two nodes (α1, β1

) and (α2, β2
) of DL(Bk,n) if β

1
= α2. This is equivalent to

requiring that the two corresponding (k + 1)-tuples γ
1
and γ

2
are neighbors in

Bk+1,n, i.e., that the last k labels of γ
1
are equal to the first k labels of γ

2
.

The following lemma establishes a useful connection between the chromatic
numbers of a directed graph G and its diline graph DL(G).

Lemma 8.9. For the chromatic numbers χ(G) and χ(DL(G)) of a directed
graph G and its diline graph, it holds that

χ
(DL(G)

) ≥ log2
(
χ(G)

)
.

Proof. Given a c-coloring ofDL(G), we show how to construct a 2c coloring ofG.
The claim of the lemma then follows because this implies that χ(G) ≤ 2χ(DL(G)).

Assume that we are given a c-coloring of DL(G). A c-coloring of the diline
graph DL(G) can be seen as a coloring of the edges of G such that no two
adjacent edges have the same color. For a node v of G, let Sv be the set of
colors of its outgoing edges. Let u and v be two nodes such that G contains a
directed edge (u, v) from u to v and let x be the color of (u, v). Clearly, x ∈ Su

because (u, v) is an outgoing edge of u. Because adjacent edges have different
colors, no outgoing edge (v, w) of v can have color x. Therefore x �∈ Sv. This
implies that Su �= Sv. We can therefore use these color sets to obtain a vertex
coloring of G, i.e., the color of u is Su and the color of v is Sv. Because the
number of possible subsets of [c] is 2c, this yields a 2c-coloring of G.

Let log(i) x be the i-fold application of the base-2 logarithm to x:

log(1) x = log2 x, log(i+1) x = log2(log
(i) x).



8.2. THE NEIGHBORHOOD GRAPH 103

Remember from Chapter 1 that

log∗ x = 1 if x ≤ 2, log∗ x = 1 +min{i : log(i) x ≤ 2}.
For the chromatic number of Bk,n, we obtain

Lemma 8.10. For all n ≥ 1, χ(B1,n) = n. Further, for n ≥ k ≥ 2, χ(Bk,n) ≥
log(k−1) n.

Proof. For k = 1, Bk,n is the complete graph on n nodes with a directed edge
from node i to node j iff i < j. Therefore, χ(B1,n) = n. For k > 2, the claim
follows by induction and Lemmas 9.8 and 9.9.

This finally allows us to state a lower bound on the number of rounds needed
to color a directed ring with 3 colors.

Theorem 8.11. Every deterministic, distributed algorithm to color a directed
ring with 3 or less colors needs at least (log∗ n)/2− 1 rounds.

Proof. Using the connection between Bk,n and the neighborhood graph for di-
rected rings, it suffices to show that χ(B2r+1,n) > 3 for all r < (log∗ n)/2 − 1.

From Lemma 9.10, we know that χ(B2r+1,n) ≥ log(2r) n. To obtain log(2r) n ≤ 2,

we need r ≥ (log∗ n)/2− 1. Because log2 3 < 2, we therefore have log(2r) n > 3
if r < log∗ n/2− 1.

Corollary 8.12. Every deterministic, distributed algorithm to compute an MIS
of a directed ring needs at least log∗ n/2−O(1) rounds.

Remarks:

• It is straightforward to see that also for a constant c > 3, the number of
rounds needed to color a ring with c or less colors is log∗ n/2−O(1).

• There basically (up to additive constants) is a gap of a factor of 2 between
the log∗ n+O(1) upper bound of Chapter 1 and the log∗ n/2−O(1) lower
bound of this chapter. It is possible to show that the lower bound is
tight, even for undirected rings (for directed rings, this will be part of the
exercises).

• The presented lower bound is due to Nathan Linial. The lower bound is
also true for randomized algorithms. The generalization for randomized
algorithms was done by Moni Naor.

• Alternatively, the lower bound can also be presented as an application of
Ramsey’s theory. Ramsey’s theory is best introduced with an example:
Assume you host a party, and you want to invite people such that there
are no three people who mutually know each other, and no three people
which are mutual strangers. How many people can you invite? This is
an example of Ramsey’s theorem, which says that for any given integer c,
and any given integers n1, . . . , nc, there is a Ramsey number R(n1, . . . , nc),
such that if the edges of a complete graph with R(n1, . . . , nc) nodes are
colored with c different colors, then for some color i the graph contains
some complete subgraph of color i of size ni. The special case in the party
example is looking for R(3, 3).



104 CHAPTER 8. LOCALITY LOWER BOUNDS

• Ramsey theory is more general, as it deals with hyperedges. A normal
edge is essentially a subset of two nodes; a hyperedge is a subset of k
nodes. The party example can be explained in this context: We have
(hyper)edges of the form {i, j}, with 1 ≤ i, j ≤ n. Choosing n sufficiently
large, coloring the edges with two colors must exhibit a set S of 3 edges
{i, j} ⊂ {v1, v2, v3}, such that all edges in S have the same color. To prove
our coloring lower bound using Ramsey theory, we form all hyperedges of
size k = 2r+1, and color them with 3 colors. Choosing n sufficiently large,
there must be a set S = {v1, . . . , vk+1} of k + 1 identifiers, such that all
k + 1 hyperedges consisting of k nodes from S have the same color. Note
that both {v1, . . . , vk} and {v2, . . . , vk+1} are in the set S, hence there will
be two neighboring views with the same color. Ramsey theory shows that
in this case n will grow as a power tower (tetration) in k. Thus, if n is so
large that k is smaller than some function growing like log∗ n, the coloring
algorithm cannot be correct.

• The neighborhood graph concept can be used more generally to study
distributed graph coloring. It can for instance be used to show that with
a single round (every node sends its identifier to all neighbors) it is possible
to color a graph with (1 + o(1))Δ2 lnn colors, and that every one-round
algorithm needs at least Ω(Δ2/ log2 Δ+ log log n) colors.

• One may also extend the proof to other problems, for instance one may
show that a constant approximation of the minimum dominating set prob-
lem on unit disk graphs costs at least log-star time.

• Using r-hop views and the fact that nodes with equal r-hop views have to
make the same decisions is the basic principle behind almost all locality
lower bounds (in fact, we are not aware of a locality lower bound that does
not use this principle). Using this basic technique (but a completely dif-
ferent proof otherwise), it is for instance possible to show that computing
an MIS (and many other problems) in a general graph requires at least
Ω(

√
log n) and Ω(logΔ) rounds.


