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Abstract

Selection tasks generalize some well studied problems,
such as collective coin flipping and leader election. We
present new selection protocols in the full information
model, and new negative results. In particular, when there
are (1 + δ)n/2 good players, we show a protocol that
chooses a good leader with probabilityΩ(δ1.65), and show
that every leader election protocol has success probability
O(δ1−ε), for everyε > 0. Previously known protocols for
this problem have success probability that is exponentially
small in1/δ, and no nontrivial upper bounds on the success
probability were known.

1. Introduction

In the full information model there aren players and all
communication is through broadcast operations. It is as-
sumed that broadcasting is a reliable atomic act: all other
players receive the message uncorrupted together with the
identity of the player who broadcasts the message. The
players need to jointly perform some task (such as elect a
leader). Some of the players may be faulty. The good play-
ers do not know which of the other players is faulty. The
faulty players may use unlimited computational powers and
coordinate their actions so as to make the outcome of the
task favorable to them (e.g., to have a faulty player elected
as the leader). This is modeled by a computationally unlim-
ited adversary who picks the set of faulty players before the
execution of the protocol begins, and thereafter coordinates
their actions. It is assumed that players can individually
generate random bits (each player has his own private coin),
and that values of future coin tosses of nonfaulty players are
unpredictable, unbiased and independent of any other event.
(The coins of faulty players cannot be trusted.) The full in-
formation model does not support standard cryptographic
protocols (which require some assumption such as private
communication channels, or computational intractability).

The problem of designing a collective coin flipping pro-
tocol in this model was suggested by Ben-Or and Linial [4].
The task of the players is to come up with a common ran-
dom bit. A protocol for this task isresilient if the bit is
somewhat random – regardless of the behavior of the bad
players, there is some probability bounded away from 0
with which the bit receives each of its two possible values.
Naturally, the good players would need to follow a random-
ized algorithm. A case that received special attention is one
round protocols in which the value of the global coin is ob-
tained by each player supplying one bit of input to some
n-argument predetermined Boolean function. Good players
supply random bits, whereas faulty players supply arbitrary
bits that may depend on the bits of the good players. Ajtai
and Linial [2] designed a function that is resilient whenever
the number of bad players is smaller thann/ log2 n, and
Kahn, Kalai and Linial [9] showed that no function can be
resilient against more thann/ logn players.

Leader election is the task of selecting one player out of
then. A protocol for leader election is resilient if the prob-
ability of choosing a good leader is bounded away from 0.
Leader election protocols can be used as protocols for col-
lective coin flipping, by having the leader toss the coin.

Saks [14] showed that the “Baton Passing” game, in
which each player receiving the baton passes it to a random
player who did not yet have it, and the last player left with
the baton is the leader, is resilient when the number of bad
players is belown/ logn. (The bad players of course try to
always pass the baton to a good player.) The Baton Passing
game takesn− 1 rounds. Saks also observed that no leader
election protocol can be resilient if half the players are bad
(a proof appears in [6]).

The Baton Passing game was modified by Alon and
Naor [3] to a game in which in each round a player can
pass the Baton to one of two players, where these two play-
ers are determined by the complete history of the protocol.
They showed that the modified game is resilient against
(1 − ε)n/3 bad players. Boppana and Narayanan [6] im-
proved the analysis of such games and shown them to be
resilient against(1 − ε)n/2 bad players, for everyε > 0.



It is not known whether the modified baton passing game
can be implemented when the computation time of players
is polynomial inn, due to the complexity of figuring out
which are the two players to which a player is allowed to
pass the Baton.

The question of reducing the number of rounds in leader
election protocols (and hence also coin flipping protocols)
was studied in [7, 11, 16] and by Russell and Zucker-
man [13] who designed a polynomial time computable
leader election protocol resilient against(1 − ε)n/2 bad
players that takes onlylog∗ n + O(1) rounds. Russell, Saks
and Zuckerman [12] show thatΩ(log∗ n) are necessary for
resilient leader election if in every round the good players
each sends one unbiased random bit. (Neither the results
of [12] nor those of [9] apply when good players are al-
lowed to send biased bits.)

1.1. Marginal majorities

In the current paper we study the case in which there is
only a slight majority of good players. The number of good
players is represented as(1 + δ)n/2, for some smallδ > 0.
Letp(n, δ) denote the probability of choosing a good leader
in this case, under an optimal leader election protocol. Then
previous work ([6], following [3]) established:

Theorem 1 For everyδ > 0 there existsε > 0 such that
for everyn, p(n, δ) > ε.

Theorem 1 establishes thatp(n, δ) can be bounded from
below as a function ofδ, independently ofn. Hence we
shall sometimes omitn from the notation and usep(δ). We
are interested in obtaining the best possible bounds onp(δ).
The proof in [6] gives a lower bound that is a little worse
than exponentially small, namelyp(δ) ≥ c−(log 1/δ)2/δ [5],
for somec > 1. An alternative proof of Theorem 1 is im-
plicit in [13], who show a protocol that has constant prob-
ability of reducing the number of players to some constant
n0 that depends onδ, while maintaining a majority of good
players. Thereafter, it is suggested to use the protocol of [6]
on the remainingn0 players, but of course at this stage, any
other protocol with positive success probability would in-
sure thatp(n, δ) will be lower bounded in terms ofδ alone.
The question of whether there is a more favorable protocol
to use at this point was not addressed in [13].

In terms of upper bounds, triviallyp(n, δ) ≤ (1 + δ)/2,
as the faulty players can just play honestly. The author is
not aware of any other published upper bound onp(δ).

For collective coin flipping andδ as above, letr(δ) be
the minimum of the two probabilities that the coin comes
up 1 or 0, under the worst case strategy for the adversary
in the best coin flipping protocol. Letting the leader flip the
coin we obtainr(δ) ≥ p(δ)/2. An upper bound onr(δ)
follows from the following theorem of [4, 8].

Theorem 2 Let pv be the probability that the outcome of
ann player full information protocol isv if all players play
at random. Then for every1 ≤ t ≤ n, there is a set oft
“influential” players who have a strategy under which with
probability at least(pv)1−t/n the outcome isv.

Theorem 2 gives a nontrivial upper bound for collective
coin flipping. When all players play randomly, then w.l.o.g.
we can assume thatp0, the probability that the coin comes
up 0, is at least 1/2. Hence there is a set of(1 − δ)n/2 in-
fluential players that can force the coin to 0 with probability
at least(1/2)1−(1−δ)/2. Hencer(δ) ≤ 1 − (1/2)(1+δ)/2,
which is less than 0.293 whenδ is small enough. Note
that this upper bound remains bounded away from 0 when
δ tends to 0.

Theorem 2 is not directly applicable to leader election
protocols, because there the choices of which are the bad
players and what is a bad outcome are correlated. For ex-
ample, there is a protocol that elects a good leader with
probability(n− 1)/n when at most one player is bad. See
Section C.1 in the appendix.

1.2. Our results

We present a simple protocol, based on thelightest bin
principle, that can be used to reduce the number of players
while maintaining (in a probabilistic sense) the fraction of
good players.

This protocol and simple variations on it have several
immediate consequences:

• It gives a simplified proof of Theorem 1, thatp(n, δ)
can be lower bounded by a function ofδ, independent
of n.

• It gives a simplified proof of the result of [13] that
for every fixedδ, leader election can be performed in
log∗ n + O(1) rounds.

• It gives a quasipolynomial lower bound onp(δ),
namelyp(δ) ≥ δO(log 1/δ). The protocol achieving
this depends only onn but not onδ, so this bound
can be achieved for allδ ≥ 1/n simultaneously.

• It shows that leader election and collective coin flip-
ping can be performed essentially with the same suc-
cess probability. Namely,p(δ) = Θ(r(δ)).

The main technical contribution of the paper is the proof
of the following theorem:

Theorem 3 There are universal constantsc1 ≥ c2 > 0
such that:

1. For everyδ, there is a leader election protocol (de-
pending onδ andn) achievingp(δ) ≥ Ω(δc1).



2. For every leader election protocol,p(δ) ≤ O(δc2)

The lower bound is proved by establishing a connec-
tion between leader election protocols and monotone cir-
cuits for majority.p(δ) can be lower bounded as a function
of the depth of such circuits. The upper bound is proved by
representing leader election protocols (or rather, collective
coin flipping protocols) as Markov chains, and using mar-
tingale tail inequalities. The values that our proofs give are
c1 < 1.65 andc2 > 1− ε for everyε > 0.

1.3. Selection versus sampling

Collective coin flipping can be viewed as a multiplayer
random sampling problem, in whichn players want to sam-
ple at random from{0, 1}. Leader election can also be
viewed as a sampling problem, in which then players wish
to sample at random from{1 . . . , n}, making the sampled
player the leader.

In establishing our results, we found it useful to study
leader election problems in a somewhat different frame-
work, that we call selection protocols. In these protocols,
a set of players need to jointly decide on an action (such as
selecting a leader, or flipping a coin). Some of the players
may be faulty, and some of the actions may be bad. The
goal is to design protocols that allow good players to force
the choice of a good action, provided there are sufficiently
many good players and good actions. We call such proto-
cols robust. We found this view as useful both for designing
sampling protocols (by letting the good players just play at
random in a robust protocol) and in proving negative results
(similar to the impossibility of leader election with a ma-
jority of faulty players). The more general framework is
presented in Section 2.

We note that Goldreich, Goldwasser and Linial [8] pre-
sented a different generalized framework for fault tolerant
computation in the full information model. In their frame-
work, each player has an input (unknown to other players),
and all players jointly compute the value of a knownn-
argument functionf on these inputs. The faulty players
may influence the outcome of the computation towards a
valuev that they favor, by modifying their inputs, based on
what they learn on the inputs of the good players. Goldre-
ich et.al. study the influence the bad players have when the
inputs to the good players are chosen at random. They give
protocols that in some settings limit the influence of the bad
players to be within a constant multiplicative factor of the
bounds given in Theorem 2.

1.4. Roadmap

In Section 2 we describe our general framework for se-
lection protocols. Other sections can be understood with-

out reading this section. Section 3 presents a simple pro-
tocol, perhaps even practical, for tasks such as leader elec-
tion. The success probability of this protocol is improved
in Section 4, by adding a second phase to the protocol. Our
upper bound on the success probability of collective coin
flipping protocols is presented in Section 5. The appendix
contains the technical part of the proof of the upper bound
(Section A), upper bounds for specialized problems (Sec-
tion B), and toy examples of protocols (Section C).

2. A general framework for selection protocols

There aren players, some of which are faulty. There
arem possible candidates, some of which are bad. It is not
known a-priori which are the faulty players and which are
the bad candidates. We are interested in protocols in which
the players collectively select a candidate. Our protocols
are robust in the following sense. If at least acoalition of
players is nonfaulty and aquorumof candidates is good (we
shall define coalitions and quorums shortly), then the non-
faulty players can force the outcome of the protocol to be a
good candidate. We now describe our setting formally.

There is a set{P1, . . . , Pn} of n players and a collection
S = {S1, S2, . . .} of coalitions, where each coalition is a
subset of the players. There is a set{a1, . . . am} of m possi-
ble candidates, and a collectionQ = {Q1, Q2, . . .} of quo-
rums, where each quorum is a subset of candidates. Play-
ers communicate by broadcasting messages from a fixed
alphabet. Aprotocol specifies the order in which players
speak, and the candidate selected when the protocol ends
(depending on the actual messages broadcast by the play-
ers). Astrategyfor a player tells the player which character
to broadcast as a function of the complete history of broad-
casts seen so far. Arandomized strategyis a probability
distribution over strategies.

Definition 1 A protocol isrobustwith respect toQ andS
if for every coalitionS ∈ S and for every quorumQ ∈
Q, the players inS have a strategy such that regardless of
the strategy of the other players, the candidatea eventually
selected satisfiesa ∈ Q.

A pair (S,Q) specifies a selection problem. We are in-
terested in characterizing the selection problems for which
a robust protocol exists.

Definition 2 Let j be a positive integer. CollectionS is j-
intersectingif there arej − 1 mutually disjoint coalitions,
but noj coalitions are mutually disjoint.

As an example of aj-intersecting collection, letS con-
tain all subsets of cardinality greater thann/j.



Definition 3 Let i be a positive integer. CollectionQ is an
i-quorum systemif everyi quorums have a common inter-
section, and there arei + 1 quorums that do not have a
common intersection.

As an example of ani-quorum system, letQ contain all
subsets of cardinality greater thanm(1− 1/i).

Theorem 4 LetS bej-intersecting andQ be ani-quorum.
Then there is a robust protocol with respect toQ andS if
and only ifi ≥ j − 1.

Proof: Assumei ≥ j − 1, and consider the follow-
ing protocol. Each player announces an arbitrary quorum
Q ∈ Q. Call a quorum popular if all players from some
coalition announced this quorum. The candidatea chosen
by the protocol is the first candidate that belongs to every
popular quorum. There must be such a candidatea, be-
cause there can be at mostj − 1 different popular quorums,
and thesej − 1 quorums have a common intersection. The
protocol is robust because all players in a coalitionS can
announce the same quorumQ. This completes theif direc-
tion.

Assumei < j − 1. There arej − 1 coalitions inS that
are mutually disjoint. W.l.o.g., let them beS1, . . . , Sj−1.
There arei + 1 quorums inQ that do not have a common
intersection. W.l.o.g., let them beQ1, . . . , Qi+1. Then it
cannot be that for everyk ≤ i + 1 ≤ j there is strategy for
the players inSk to force the candidate to be chosen from
Qk, because there is no candidate in the intersection of the
Qks. This completes theonly if direction. 2

Theorem 4 gives a complete characterization of selection
problems that have robust protocols in the full information
model. Robust protocols are characterized by an existential
statement: the coalition of good players has a strategy that
forces the candidate to be selected from the good quorum.
However, we will be interested in cases when the good play-
ers do not know which is the good coalition, and which is
the good quorum. Hence the good players might not follow
the favorable strategy. We would like a randomized strat-
egy for the good players that maximizes the probability of
choosing a good candidate, regardless of which is the good
coalition, which is the good quorum, and the strategy em-
ployed by the bad players. Here we may assume that prior
to the beginning of the execution of the protocol, an ad-
versary makes some of the players faulty and some of the
candidates bad, but leaves at least one nonfaulty coalition
and at least one good quorum. During the execution of the
protocol, the adversary has full control of the messages sent
by the faulty players.

Corollary 5 LetS bej-intersecting andQ be ani-quorum,
with i ≥ j − 1. Let |Q| denote the number of quorums, and
let S be a minimal coalition of maximum cardinality (min-
imal in the sense that it does not properly contain another

coalition). Then there protocols and randomized strategies
that have success probability at least|Q|−|S|, regardless of
the strategy of the adversary. Furthermore, ifj = 2, then
there are protocols and randomized strategies with success
probability at leastm−|S|.

Proof: For the general case, use the robust protocol
of Theorem 4, and the randomized strategy in which each
player chooses a random quorum. For the casej = 2, let
each player choose a random candidate, and select a candi-
date chosen by a coalition (if there is none, select an arbi-
trary candidate). 2

3. The lightest binprotocol

In this section we present a simple protocol for the com-
mittee election problem. In this problem, there aren play-
ers, at leastk of which are good, and they want to elect a
good committee ofc players, where a committee is good if
it contains at least one good player. This problem is solvable
if and only if k > n/(c + 1) (Theorem 4). The casec = 1
corresponds to leader election, but we shall also find the
casec = 2 very useful. The casec ' log n was suggested
by Moni Naor (private communication) as having potential
cryptographic applications.

We use the following notation and conventions:
S – Set of all players.
X – Temporary set created during the protocol.
L – Final set, outcome of the protocol.
n – Number of players.
k – Number of good players.
c – Size of the committee to be chosen.
δ – Theadvantage, δ = k(c+1)

n − 1.
p(n, k, c) – Probability ofsuccess– that of choosing a

good committee.
Our protocols return a setL ⊂ S. If |L| < c, we add

players toL arbitrarily.
As noted earlier, we needδ > 0 for the committee elec-

tion problem to be solvable, which in fact impliesδ ≥ 1/n.
We shall use the notationp(δ, c) if all we assume onn and
k is thatk(c + 1)/n ≥ 1 + δ, and omitc from the notation
whenc = 1.

Our protocols can be described as games of throwing
balls into bins. The game proceeds in rounds. There are
several bins, and each player gets to throw his ball into a
random bin. The bin that then contains the smallest num-
ber of balls is called thelightest bin. The players who have
their balls in the lightest bin continue to the next round, and
all other players are discarded. The balls are returned to the
players, and the protocol is repeated recursively. When the
lightest bin contains not more thanc players, these players
become the elected committee.



Of course, the bad players need not throw their balls into
random bins. Rather, they wait to first see where the good
player’s balls land, and then try to place as many of their
own balls as possible in the lightest bin. However, any bin
that contains many bad balls will not be light, and will not
continue to the next round. Hence even though the number
of players is reduced in each round, the proportion of good
players remains favorable.

The simplest version of our protocol works for leader
election whenk, the number of good players, is an exact
power of 2, andn = 2k − 1.

Lightest Bin Protocol (simplified version):

1. X ← S.

2. Repeat while|X | > 1:

(a) Each player inX broadcasts a random bit. Let
X0 denote the set of players who broadcast 0,
and X1 denote the set of players who broad-
cast 1.

(b) If |X0| ≤ |X |/2, thenX ← X0. Otherwise,
X ← X1.

3. L← X .

Proposition 6 Whenk is an exact power of2 andn < 2k,
the simplified protocol elects a good leader with probability
at leastp ' k−(log k)/4.

Proof: Let k = 2t. With probability roughly1/
√

k, the
good players will split evenly betweenX0 andX1. Then,
regardless of how the bad players split, the lightest bin will
contain a majority of good players, and this majority is an
exact power of two. Continuing this argument fort rounds,
there is probability roughlyp ' Πt−1

i=0

√
2i/k ' k−(log k)/4

that the lightest bin at roundt contains exactly one player,
and that this player is good.2

Observe that the above proposition holds whenn = 2k−
1, and thenδ = 1/n = 1/(2k − 1). For this case we have
thatp = δO(log 1/δ). We shall show that a similar protocol
achieves similar success probability for general values ofδ.

The simplified protocol does not work for general values
of k. Consider for example a case whenS contains three
good players and two bad players. If the bad players throw
their balls into different bins, then the lightest bin will con-
tain at least one bad player and at most one good player. In
the next round, the bad player can broadcast 0 and prevent
the good player from being elected.

To overcome the above difficulty, while also generalizing
the protocol to arbitrary committee sizec, we define the two
argument function Half such that Half(n, c) for n > c is
an integer approximately equal ton/2, and Half(n, c) = c
moduloc+1. Specifically, if we writen as2(c+1)i+j with

i ≥ 1 and−(c + 1) ≤ j ≤ c then Half(n) = (c + 1)i− 1.
We now describe thelightest binprotocol in full detail.

Lightest Bin (LB) Protocol:

1. X ← S.

2. Repeat while|X | > c:

(a) Each player inX broadcasts a random bit. Let
X0 denote the set of players who broadcast 0,
and X1 denote the set of players who broad-
cast 1.

(b) If |X0| ≤ Half(|X |, c), thenX ← X0. Other-
wise,X ← X1.

3. L← X .

As a concrete example of how the protocol runs, consider
again the case whenS contains three good players and two
bad players and we wish to choose a leader. Hencec = 1
and Half(5, 1) = 1. Assume that in the first round, exactly
one of the three good players broadcasts 0. This happens
with probability3/8. Then if both bad players broadcast 1,
the setX0 continues to the next round, and as it contains just
the good player, a good player is chosen as leader. If at least
one bad player broadcasts 0, then the setX1 continues to the
next round, even though it may be larger than the setX0.
The setX1 contains two good players and at most one bad
player. Thereafter, if exactly one of the two good players
broadcasts 0 (which happens with probability1/2), the bad
player cannot prevent a good player from being declared as
leader. Hence a good leader is chosen with probability at
least3/16.

If in the above example the goal would have been to
choose a committee of size 2, then we would have had
Half(5, 2) = 2. If the good players do not all broadcast
the same bit (which happens with probability3/4), then a
good committee is elected already in the first round.

3.1 Analysis of success probability

Lemma 7 If k > n/(c + 1) then the LB protocol selects a
good committee with probability(1/k)O(log k).

Proof: Observe that a committee of sizec is good if
more than a fraction of1/(c + 1) of the players are good.

We consider for each round the invariant that a frac-
tion of more than1/(c + 1) of the players passing to the
next round are good. When Half(|X |) = (c + 1)i − 1,
the invariant is preserved whenever exactlyi good play-
ers broadcast 0. As the number of good players in the
beginning of the round is at least roughly2i, and as we
may assume that their number is actually not larger than
2i (by ignoring some of the good players), then this event



happens with probabilityΩ(1/
√

i). As there are at most
1 + log(n/(c + 1)) ≤ 1 + log k rounds and noting that
i ≤ k, the lemma is proved. 2

Lemma 8 Consider electing a committee of sizec when the
good players have advantageδ. There is some universal
δ0 > 0 such that for every0 < δ < δ0 and for everyn >
c/δ4, if the LB protocol is performed only until the number
of players is reduced fromn to c/δ4, then with probability at
least1/2 the fraction of good players remains above1/(c+
1).

Proof: Recall thatk ≥ (1 + δ)n/(c + 1). Let ni (ki)
be the number of players (good players, respectively) re-
maining after roundi. Thenni+1 ≤ ni/2 + c/2. When
ki is sufficiently large (we only considerk = Ω(1/(δ0)4)),
then with probability at least1 − qi ≥ 1 − 1/ki, ki+1 ≥
ki(1/2 − (ki)−1/3) (the good players are partitioned in
two by the Binomial distribution, which is centered around
its mean). Lett be such thatnt ≤ c/δ4. Then nt ≤
n2−t + c, implying t ' log(kδ4). Hence if ki is split
in two in each round, thenkt ' 1/δ4, which is large by
our choice of smallδ0. Assuming inductively that the im-
balance in the splits is always at most(ki)2/3, with prob-
ability at least1 −

∑t−1
i=0 qi ≥ 1 −

∑t−1
i=0 1/ki > 1/2,

kt > k2−t(1 − 2(kt−1)−1/3). As kt−1 > 1/2δ4 it fol-
lows thatkt > nt

1+δ
c+1 (1−O(δ4/3)) > nt/(c+1), for small

enoughδ (forced by the choice ofδ0). 2

Theorem 9 Regardless of the number of players, if the ad-
vantage is at leastδ, then the probabilityp that the final
outcomeL of the LB protocol contains at least one good
player is at leastδO(log 1/δ).

Proof: If δ ≥ δ0 of Lemma 8, then changeδ to δ0 and
the proof below then shows that there is a universal success
probabilityp0 > 0, independent of the value ofδ. If δ <
δ0, then Lemma 8 implies that with probability at least1/2
the protocol gets to a stage where there are less thanc/δ4

players left, a majority of which are good. Thereafter, the
Theorem follows from Lemma 7. 2

Recall thatp(n, k, 1) is the probability of choosing a
good leader when there arek good players. Similarly, let
r(n, k) denote the probability of the less likely outcome of
a global coin flip when there arek good players. It was
known that leader election implies collective coin flipping.
Using Theorem 9, we show a stronger connection between
the two problems.

Corollary 10 The collective coin problem and leader elec-
tion have the same success probability, up to some universal
constant. That is,p(n, k, 1) = Θ(r(n, k)).

Proof: Whenk ≤ n/2, neither leader election nor col-
lective coin flipping have robust protocols (e.g., by Theo-
rem 4). Hence we assumek > n/2.

Leader election implies collective coin flipping: The
elected leader can flip the coin. Hencer(n, k) ≥
p(n, k, 1)/2.

Collective coin flipping implies leader election: Use
the lightest bin protocol to elect a committee of size two.
Then use a global coin to select one member of the com-
mittee as the leader. Hencep(n, k, 1) ≥ p(n, k, 2)r(n, k).
Fork > n/2, we have a committee election problems with
parameterδ ≥ (n/2)(3/n)− 1 ≥ 1/2. Theorem 9 implies
that in this casep(n, k, 2) = Ω(1), implying the corollary.
2

The LB protocol is oblivious to the value ofδ, which can
be an arbitrary positive function ofn. Previous studies on
leader election focused on the case of fixedδ > 0, andn
tending to infinity.

Whenδ is known to be relatively large compared to1/n,
then it is possible to condense several rounds of the LB pro-
tocol into one round. This leads to a protocol that takes
log∗ n+O(log 1/δ) rounds, as follows. Each players broad-
casts in one round the bits fort consecutive rounds of the
LB protocol. This partitions the players intol = 2t bins,
and the players in the smallest bin are chosen to continue
the protocol. More generally, we assume that there arel
bins, wherel need not be a power of two. Each player
has its own ball which it throws into a random bin. Ifl
is small enough so that each bin is expected to have roughly
the same number of good players, then the analysis of this
variant of the protocol is similar to that of Theorem 9. Using
this approach, the number of active players can be reduced
from n to O((log n)c) for somec > 0 (e.g.,c = 4) in a
single round, with only negligible loss in the advantage and
in the success probability. Iterating this forlog∗ n rounds,
reduces the number of players toO(δ−c), after which the
normal LB protocol is resumed. (Alternatively, the protocol
can then be completed in one round, at the expense of worse
dependence ofp on δ.)

4. The monotone circuit game

As we have seen in Theorem 9, whenever there is a ma-
jority of good players, the lightest bin protocol elects a size
two committee that with constant probability has at least
one good player. We may implement other tasks by pre-
senting two player protocols for them. Specifically, we shall
be interested in having the committee of size two choose a
leader from then original players. We show that this two
phase approach gives leader election protocols with higher
success probability that the LB protocol by itself.

For the leader election task, we may assume that there
are two players, one of which is bad, andn candidates from
which the two players need to choose a leader. The majority
of the candidates are good, and we want to maximize the
probability of choosing a good leader.



The protocol we suggest is based on monotone circuits
for majority. For simplicity of the presentation, we shall
concentrate on circuits with very regular structure. A mono-
tone circuit of depthd is a full binary tree of depthd. The
leaves of the tree are labeled by variables and by the con-
stants 0 and 1. Several leaves may have the same label. The
internal nodes of the tree are labeled byand if they are in
an even layer and byor if they are in an odd layer. When
variables get Boolean values, the circuit computes a mono-
tone function in a natural way, and the output is obtained
at the root of the tree. We say that the circuit computes
the majority function if the output agrees with the value of
the majority of the variables (assume for simplicity that the
number of variables is odd). The sorting network of [1] im-
plicitly gives a construction of a majority circuit of depth
O(log n), with a rather large constant hidden by theO no-
tation. Valiant [15] shows that for a circuit of depth roughly
5.3 logn, there is a way of labeling its leaves so that it com-
putes the majority function onn variables. His proof is non-
constructive in the sense that it does not describe an explicit
labeling of the leaves.

Theorem 11 If there are circuits for majority of depthd,
then there are leader election protocols with success prob-
ability at leastp(1/2, 2)2−(d+1)/2.

Proof: First choose a committee of size two. As the
majority of players are good, Theorem 9 implies that the
probabilityp(1/2, 2) of having at least one good commit-
tee member is bounded below by some universal constant.
Now call then candidatesx1 to xn. Treat them as inputs
to a depthd majority circuit. Now the two players play the
following game on the circuit. One of the players is theand
player and the other is theor player. The game proceeds
in rounds. Starting from the root of the tree, the players
trace a path to one of the leaves, by having the players al-
ternate in choosing the next edge on the path. Atandgates,
theandplayer chooses one of the two incoming edges, and
at or gates theor player makes this choice. When a leaf
is reached, its label is examined. If the label is a variable,
then the respective candidate is selected leader. If the label
is 0 (or 1) then theand player (or player, respectively) is
elected leader. (In the more general case where the players
themselves are not candidates, then this elected leader can
choose a leader at random from the set of candidates.)

We now show that when at least one of the two com-
mittee members is good, then the strategy of choosing the
next edge at random selects a good candidate with proba-
bility at least2−(d+1)/2. Assume that theor player is good.
Treat each of the variables of the good candidates as if it has
value 1. Then the output of the majority circuit is 1. When
tracing a path from root to leaf, we want to maintain the in-
variant that the value of the gate at the current location is
always 1. If this holds at a leaf, then a good candidate (or

theor player itself) is selected. Consider now an arbitrary
internal node on the path, and assume inductively that it has
value 1 (which is true for the root). If it is anandnode then
necessarily the value of the next node is also 1, as both in-
puts to the node have value 1. If it is anor node then maybe
only one of its inputs has value 1. But a random choice by
theor player has probability1/2 of maintaining the invari-
ant. As there are at most(d + 1)/2 or nodes on the path,
the invariant is maintained throughout the execution of the
protocol with probability at least2−(d+1)/2.

If theandplayer is good, treat each of the variables of the
good candidates as if it has value 0, and proceed as above,
using duality of0/1 and ofand/or. 2

Using Valiant’s monotone circuits for majority, Theo-
rem 11 implies thatp(n) ≥ Ω(n−2.65). The monotone cir-
cuit approach can be modified so as to obtain the following
improvements:

• Higher success probability.

• The protocol can be made explicit.

• The success probability can be expressed as a func-
tion of δ.

One needs to observe that Valiant in his proof [15] shows
the following amplification result:

Theorem 12 Let T be a full binary alternatingand/or tree
with or gates at the level closest to the leaves, letα = 1 −
2(3−

√
5)n/(n−1) ' 0.24, and letδ be sufficiently small in

absolute value, in particular satisfying−1 ≤ δ ≤ 1. Label
the leaves independently at random with 0 with probability
α+(1−α)(1−δ)/2 and with 1 with probability(1−α)(1+
δ)/2. Then if the depth ofT is 3.3 log(1/δ) + 2t then with
probability1− 2−2t

the circuits outputs 1 ifδ > 0 and 0 if
δ < 0.

Theorem 12 has the following implication for two player
selection protocols. Given a leader election problem with
advantageδ, if the two players could agree on a truly ran-
dom labeling for the leaves of a circuit of depth(1 +
o(1))3.3 log(1/δ), where a leaf is labeled 0 with probability
α and by a random candidate otherwise, this circuit could be
used in the proof of Theorem 11. The truly random labeling
can be relaxed to agreeing on a somewhat random labeling,
provided that the probability of hitting a set of labelings of
measure2−2t

is low (e.g., below one half). Using some
encoding mechanism for labelings, the problem of gener-
ating a somewhat random labeling can be formulated as a
problem of generating a somewhat random binary string of
lengthl, where there is a set of strings of small measure that
needs to be avoided. Two player sampling protocols for this
problem were studied in [8], and the following simple pro-
tocol (which we present for completeness) suffices for our
purpose (see proof in [8]).



The protocol proceeds in rounds, with the players
switching roles in each round. In a single round, a player
uniformly selects anl-dimensional binary vectorvi linearly
independent of the vectors used in previous rounds and the
other player then selects a random bitσi. After l rounds, the
string selected is the uniquel-bit string whose inner product
with everyvi is σi.

Corollary 13 There is an explicit protocol for leader elec-
tion with success probabilityp(δ) = Ω(δ1.65).

5. Upper bounds

Theorem 14 The success probability of collective coin flip-
ping protocols tends to 0 as the fraction of faulty players
tends to1/2. Quantitatively, for everyβ > 0, r(δ) =
O((1/δ)1−β).

Proof: In order to prove Theorem 14 we use the con-
ventions below. It is not hard to see that they may adopted
without loss of generality. The players are numbered from 1
to n. The protocol proceeds in steps where in each step a
single processor broadcasts a single character from a fixed
alphabet. The total number of stepsT is fixed in advance,
and so is the order in which processors broadcast (e.g., in
round robinfashion). Arandom strategyspecifies for each
player a probability distribution over the next character to
be broadcast, based on all previous characters that were
broadcast. (This is known as abehavioral strategy, which in
games of full information is the most general kind of strat-
egy.) Good players follow the strategy. Bad players do not
necessarily follow the strategy, but they do follow the pro-
tocol (broadcast a single character when it is their turn to
do so). The bad players are chosen by an adversary before
the protocol begins, and thereafter their messages are cho-
sen by the adversary. A 0-adversary (1-adversary) is one
that tries to force the outcomez of the coin to 0 (1, respec-
tively). We assume that the number of good players isk
and that the total number of players isn = 2k − 1, im-
plying δ = 1/n. (For the sake of negative results, for any
value ofδ that is the inverse of an odd integer, the most dif-
ficult case is whenn = 1/δ. The case in whichn = c/δ
for some integerc > 1 can be simulated by having each of
1/δ players play the role ofc players.) We shall fix an ar-
bitrary (supposedly optimal) coin flipping protocol and let
r = min[Pr[z = 0], P r[z = 1]], taken over the worst ad-
versary.

Consider a set of playersB = {k+1, k+2, . . . , 2k−1}.
In our proof, these players are controlled by a 1-adversary.
To define its strategy, consider the collection of setsT =
{T1, . . . , Tk}, whereTi = {i}

⋃
B. For 1 ≤ i ≤ k and

1 ≤ t ≤ T , let pt
i denote the conditional probability that

z = 1, where probability is taken conditioned on the firstt

messages actually broadcast in the protocol, and under the
assumption that in future messages, all players inTi follow
the random strategy and the other players are controlled by
a 0-adversary. We note thatp0

i ≥ r, because|Ti| = k. Let
vt be the vector(pt

1, . . . , p
t
k), and let|vt| denote itsρ-norm

(i.e., |vt|ρ =
∑k

i=1(p
t
i)

ρ), where the value of1 < ρ ≤ 2
will be optimized later in the proof. Lett + 1 be a step in
which a player fromB is to broadcast. The strategy of the
1-adversary is to broadcast a character that maximizes the
resulting|vt+1| (breaking ties arbitrarily).

We now give a lower bound forPr[z = 1] when the
1-adversary controlsB and follows the adversarial strategy
above. We make the following observations:

1. p0
i ≥ r. Hence|v0| ≥ rk1/ρ.

2. After stepT , either allpT
i = 1 or all pT

i = 0. z = 1
implies|vT | = k1/ρ whereasz = 0 implies|vT | = 0.

3. If a player i ≤ k broadcasts at timet + 1, then
E[pt+1

i ] = pt
i (a martingale property).

4. If i, j ≤ k, i 6= j and playerj broadcasts at stept+1,
thenpt+1

i ≥ pt
i (because thepi are defined relative to

worst case behavior of playerj).

5. If t + 1 is a step in which a player inB broadcasts,
then |vt+1| ≥ |vt| (asvt is the weighted average of
the possible vectorsvt+1, and the adversary’s strategy
maximizes|vt+1|).

The most crucial observation we make is the effect of a
message by playeri ≤ k on |vt|. On every coordinatej
other thani, pt+1

j ≥ pt
j , making nonnegative contribution

towards|vt+1|. For coordinatei, we haveE[pt+1
i ] = pt

i,
and w.l.o.g., with nonzero variance (otherwise, ignore this
step). Now consider|vt|ρ. For ρ > 1, convexity implies
thatE[|vt+1|ρ] > |vt|ρ. Moreover, the increase in expecta-
tion can be quantified as a function of the variance ofpt+1

i .
Hence as the protocol progresses,|vt|ρ is expected to drift
to larger and larger values, making it unlikely to ever reach
a value of 0, implying that the 1-adversary almost surely
causesz = 1.

The above sketch of proof is formalized by modeling|vt|
as a submartingale. See Section A in the appendix.2
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A. Proof of new upper bound for collective coin
flipping

In this section we complete the proof of Theorem 14.
Recall that we are following the evolution in timet of a
k-dimensional vectorvt = (pt

1, . . . , p
t
k), where each of its

entries is bounded between 0 and 1. We consider itsρ-norm
|vt|, where|vt|ρ =

∑k
i=1(p

t
i)

ρ. We shall chooseρ to be a
number slightly larger than 1. In every time step, we either
have an adversarial move, which produces an arbitrary new
vt+1 with |vt+1| ≥ |vt|, or a random move, which for some
coordinatei satisfiesE[pt+1

i ] = pt
i, and for every other co-

ordinatej satisfiespt+1
j ≥ pt

j . Initially, p0
i ≥ r for everyi,

and we wish to upper bound the probabilityq that at timeT
|vT | = 0, whereT may be arbitrarily large.

A.1. Submartingales

We shall use known results about submartingales
(see [10], for example). Letyt be the message broadcast
by a player at stept, and consider the quantityxt = |vt|ρ.
It satisfies:

1. E[xt] ≤ ∞.

2. E[xt+1|y1, . . . , yt] ≥ xt (becausexρ is a convex
function whenρ ≥ 1).

3. xt is a function of(y1, . . . , yt).

Hencext is a submartingale.

A.2. Some simplifications

As we are interested in upper bounding the probability
that|vT | = 0 and the entries ofvT are nonnegative, we can
w.l.o.g. make the following simplifying assumptions:

• Adversarial moves may changevt but leave|vt| un-
changed.

• Random moves at coordinatei leave the other coor-
dinates unchanged.



We then make the following additional assumption:

• For some fixedε (that may depend ofk), random
moves have the following effect:pt+1

i = pt
i + ε with

probability1/2, andpt+1
i = pt

i − ε with probability
1/2.

To justify this last assumption, consider an arbitrary coin
flipping protocolP . At each step, a good player would
choose its next broadcast according to some probability dis-
tribution. Approximate this distribution (which may involve
irrational probabilities) by a distribution with rational coef-
ficients. Now every event in the protocol has a probability
whose denominator is a product of all denominators of all
coefficients. Letε be the inverse of this product.

Now we simulate the behavior of protocolP by using
only±ε steps. If at stept + 1 playeri makespt+1

i = pt
i + a

with probabilityb/(a+b) andpt+1
i = pt

i−b with probability
a/(a+ b), then instead take a random walk frompt

i with±ε
step size until eitherpt

i + a or pt
i − b is hit. This gives the

same distribution. If at stept + 1 player i can givept+1
i

more than two different values, partition these values into
two groups (those abovept

i and those not above), and take
a random walk with±ε step size until the expectation of
one of these groups is hit. Continue recursively within the
group.

A.3. Drift versus variance

Based on the simplifications above, and as we shall be
considering only the values|vt|ρ, we can ignore adversarial
moves. For other moves, considerXt = xt − xt−1. Let
Mt = E[Xt|X2, . . . Xt−1]. Assume the random move at
stept is at coordinatei, and leta = pt−1

i . Then

Mt =
(a + ε)ρ + (a− ε)ρ

2
− aρ

Mt is a decreasing function ofa when1 < δ < 2 and
a ≥ ε (the derivative is negative by concavity ofxρ−1), so
we can boundMt from below by assuminga = 1 − ε. As
we can assume thatε is arbitrarily small, we use the the first
terms of the Taylor expansion to obtain

(a± ε)ρ ' aρ ± ρaρ−1ε +
ρ(ρ− 1)

2
aρ−2ε2

with arbitrarily high precision. Substitutinga = 1 we get
Mt ≥ ρ(ρ− 1)ε2/2.

Let Vt = E[(Xt − Mt)2|X2, . . . , Xt−1]. Then simple
manipulations show that with notation as above

Vt =
(

(a + ε)ρ − (a− ε)ρ

2

)2

This expression increases witha and hence can be
bounded from above (using the Taylor expansion) byVt ≤
ρ2ε2.

Let α = (ρ− 1)/2ρ, which is a positive constant when-
everρ > 1. From the above we obtain for every step of our
protocolMt ≥ αVt.

A.4. An inequality for partial sums

For Xi and α as above we use the following lemma
(equation (4.14) in [10]):

Lemma 15 The probability that the sum of theXi’s ever
drops below−l is at most1/(1 + αl).

In our special case, where the values ofXi are bounded
(and in fact, arbitrarily small by a small enough choice ofε)
we have the following corollary:

Corollary 16 For integer c > 1, the probability that the
sum of theXi’s ever drops below−cl is at most1/(1+αl)c.

Proof: When the sum drops below−l, we may assume
that it is in fact−l, because individual changes to the sum
are arbitrarily small. Hence to drop below−cl, we need
c successive drops of magnitudel, and the probability of
each new drop is upper bounded independently of previous
drops. 2

We can now complete the proof of Theorem 14. Assume
that r > (1/k)1−β for someβ > 0. Then for some1 <
ρ < 1/(1 − β) we havex0 = |v0|ρ ≥ k(1/k)(1−β)ρ >
(log k)/α, whereα = (ρ − 1)/2ρ as above. Observe that
xT = 0 only if

∑
Xi drops below−(log k)/α, which has

probability at most2− log k = 1/k, by Corollary 16. Hence
we exhibited a strategy for the adversary that causes the coin
to come up 1 with probability1 − 1/k, contradicting the
assumed value ofr.

B. Some specialized upper bounds

B.1. One round coin flipping

One round protocols are of special interest. There we
assume that the good players broadcast simultaneously, and
then the bad players broadcast their messages. We make no
restrictions on the length of a message. Letr(2k − 1, k)
denote the probability of the less likely outcome of a global
coin flip z when there arek good players andk − 1 bad
players. The protocol in which each player sends a random
bit and the value ofz is the majority of the bits hasr(2k −
1, k) = 2−k. This is best possible for one round protocols.

Theorem 17 For every one round protocolr(2k − 1, k) ≤
2−k.



Proof: For setS with |S| = k and playeri ∈ S, call a
messagem by i deadlyfor S if broadcastingm leavesS in
a situation where regardless of the messages broadcast by
the other members ofS, the players outside ofS can force
z = 0. Let q(i, S) denote the probability thati broadcasts a
deadly message forS.

We now distinguish between two cases.
Case 1:The expectation overi, S satisfies,E[q(i, S)] ≥

1/2. In this case there is some setS with |S| = k such
that the expectation over its playersi, E[q(i, S)] ≥ 1/2.
Then (by comparing geometric and arithmetic mean) with
probability at least1 − 2−k some player inS broadcasts a
deadly message forS. When this happens, the complement
of S (which is of sizek − 1) can forcez = 0, and hence
Pr[z = 1] ≤ 2−k.

Case 2:The expectation overi, S satisfies,E[q(i, S)] ≤
1/2. In this case there is some setS with |S| = k − 1
such that the expectation over thek playersi outside ofS,
E[q(i, S

⋃
{i})] ≤ 1/2. Then with probability at least1 −

2−k some playeri outsideS broadcasts a message that is
not deadly for the respectiveS

⋃
{i}. When this happens,

S (which is of size less thank − 1) can forcez = 1. Hence
Pr[z = 0] ≤ 2−k. 2

For one round leader election protocols, see Section C.3.
An interesting open question regarding collective coin

flipping protocols is whether there are one round protocols
with success probability lower bounded as a function of the
advantageδ, independent of the number of playersn.

B.2. Two player selection games

We used two player games as a subroutine for leader
election protocols.

Proposition 18 For every two player protocol of selecting
one out of2k−1 candidates of whichk candidates are good,
one of the players has a strategy by which the probability of
choosing a good candidate is at most1/k.

Proof: We assume for simplicity that the protocol is
sure to end. Playera has a strategy of forcing the se-
lected candidate to be between1 andk, as these may be
the good candidates. When playerb plays randomly against
this strategy, one candidate1 ≤ i ≤ k has probability at
most1/k of being chosen. Now ifb is the good player and
{i, k + 1, k + 2, . . . , 2k − 1} are the good candidates, then
playera has a strategy underwhich the probability of choos-
ing a good candidate is at most1/k. 2

C. Some toy examples

In this section we present selection protocols for several
toy examples. This may help in avoiding making unfounded
conjectures regarding what cannot be done.

C.1. Leader election with one faulty player

The following protocol elects a good leader with proba-
bility 1 − 1/n when there is just one faulty player. Hence
Theorem 2 is not applicable in this setting.

StartBaton Passingat player 1. The penultimate player
to receive the Baton then chooses player 1 as the leader with
probability1/n, and the player never receiving the baton as
the leader with probability1− 1/n.

C.2. Leader election with five players

The following leader election protocol chooses a good
leader with probability at least4/9 when the number of
good players is three and the number of bad players is two.
The question of determining the best value ofp(5, 3, 1) is
open.

Player 1 removes a player chosen uniformly at random.
The removed player then removes one player: player 1 with
probability1/2, any other player with probability1/6. Ob-
serve that regardless of whether player 1 is good or bad,
with probability2/3 one of the two removed players is bad.
On the remaining three players, select a leader using a pro-
tocol that succeeds with probability 2/3 when two players
are honest, as discussed above. The overall success proba-
bility is (2/3)2 = 4/9.

Note that for the corresponding selection problem (five
players, at least three of which are good, need to select one
of five candidates, at least three of which are good), there
are always two players who can cause a bad candidate to
be chosen with probability(2/5)1−2/5 ' 0.577 > 5/9 (by
Theorem 2).

C.3. One round leader election

Finding the best one round protocol for leader election is
open even in the simplest case of two good players and one
bad one. The lightest bin protocol chooses a good leader
with probability 1/2 (when the good players go into dif-
ferent bins), but is not optimal. Letp = (

√
5 − 1)/2,

q = (3 −
√

5)/2, so thatp + q = 1 and q = p2. The
following protocol elects a good leader with probability
p ' 0.618.

Players A and B each send 0 with probabilityq, and 1
with probability p. Player C does not speak. If player A
sent 0, then player B is leader. If players A and B sent 1,
then player C is leader. If player A sent 1 and B sent 0, then
player A is leader.

If all players are honest, then A, B and C each have prob-
ability pq, q andp2 = q of being leader, respectively. Nei-
ther B nor C can increase their own probability of being
leaders by cheating. If player A cheats and deterministi-
cally sends 1, then A’s probability of being leader increases
to q.


