
Efficient Distributed Random Walks with Applications

Atish Das Sarma
College of Computing,

Georgia Institute of
Technology, Atlanta, GA

30332, USA
atish@cc.gatech.edu

Danupon Nanongkai
College of Computing,

Georgia Institute of
Technology, Atlanta, GA

30332, USA
danupon@cc.gatech.edu

Gopal Pandurangan∗

Division of Mathematical
Sciences, Nanyang

Technological University,
Singapore 637371

gopalpandurangan@gmail.com
Prasad Tetali†

School of Mathematics and
School of Computer Science,

Georgia Institute of
Technology, Atlanta, GA

30332, USA
tetali@math.gatech.edu

ABSTRACT
We focus on the problem of performing random walks ef-
ficiently in a distributed network. Given bandwidth con-
straints, the goal is to minimize the number of rounds re-
quired to obtain a random walk sample. We first present
a fast sublinear time distributed algorithm for performing
random walks whose time complexity is sublinear in the
length of the walk. Our algorithm performs a random walk
of length ℓ in Õ(

√
ℓD) rounds (with high probability) on an

undirected network, where D is the diameter of the network.
This improves over the previous best algorithm that ran in
Õ(ℓ2/3D1/3) rounds (Das Sarma et al., PODC 2009). We
further extend our algorithms to efficiently perform k inde-
pendent random walks in Õ(

√
kℓD + k) rounds. We then

show that there is a fundamental difficulty in improving the
dependence on ℓ any further by proving a lower bound of

Ω(
√

ℓ
log ℓ

+D) under a general model of distributed random

walk algorithms. Our random walk algorithms are useful
in speeding up distributed algorithms for a variety of appli-
cations that use random walks as a subroutine. We present
two main applications. First, we give a fast distributed algo-
rithm for computing a random spanning tree (RST) in an ar-

bitrary (undirected) network which runs in Õ(
√
mD) rounds

(with high probability; here m is the number of edges). Our
second application is a fast decentralized algorithm for es-
timating mixing time and related parameters of the under-

∗Also affiliated with Department of Computer Science,
Brown University, Providence, RI 02912, USA. Supported
in part by NSF grant CCF-0830476
†Supported in part by NSF DMS 0701023 and NSF CCR
0910584

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

lying network. Our algorithm is fully decentralized and can
serve as a building block in the design of topologically-aware
networks.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]:
Nonnumerical Algorithms and Problems—computations on
discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
Random walks, Random sampling, Decentralized computa-
tion, Distributed algorithms, Random Spanning Tree, Mix-
ing Time.

1. INTRODUCTION
Random walks play a central role in computer science,

spanning a wide range of areas in both theory and prac-
tice. The focus of this paper is random walks in networks,
in particular, decentralized algorithms for performing ran-
dom walks in arbitrary networks. Random walks are used
as an integral subroutine in a wide variety of network appli-
cations ranging from token management and load balancing
to search, routing, information propagation and gathering,
network topology construction and building random span-
ning trees (e.g., see [11] and the references therein). Random
walks are also very useful in providing uniform and efficient
solutions to distributed control of dynamic networks [8, 33].
Random walks are local and lightweight and require little
index or state maintenance which make them especially at-
tractive to self-organizing dynamic networks such as Internet
overlay and ad hoc wireless networks.

201

A key purpose of random walks in many of these network
applications is to perform node sampling. While the sam-
pling requirements in different applications vary, whenever
a true sample is required from a random walk of certain
steps, typically all applications perform the walk naively —
by simply passing a token from one node to its neighbor:
thus to perform a random walk of length ℓ takes time linear
in ℓ.
In this paper, we present a sublinear time (sublinear in ℓ)

distributed random walk sampling algorithm that is signif-
icantly faster than the previous best result. Our algorithm
runs in time Õ(

√
ℓD) rounds. We then present an almost

matching lower bound that applies to a general class of dis-
tributed algorithms (our algorithm also falls in this class).
Finally, we present two key applications of our algorithm.
The first is a fast distributed algorithm for computing a
random spanning tree, a fundamental spanning tree prob-
lem that has been studied widely in the classical setting (see
e.g., [21] and references therein). To the best of our knowl-
edge, our algorithm gives the fastest known running time
in an arbitrary network. The second is to devising efficient
decentralized algorithms for computing key global metrics
of the underlying network — mixing time, spectral gap, and
conductance. Such algorithms can be useful building blocks
in the design of topologically (self-)aware networks, i.e., net-
works that can monitor and regulate themselves in a de-
centralized fashion. For example, efficiently computing the
mixing time or the spectral gap, allows the network to mon-
itor connectivity and expansion properties of the network.

1.1 Distributed Computing Model
Consider an undirected, unweighted, connected n–node

graph G = (V,E). Suppose that every node (vertex) hosts a
processor with unbounded computational power, but with
limited initial knowledge. Specifically, assume that each
node is associated with a distinct identity number from the
set {1, 2, ..., n}. At the beginning of the computation, each
node v accepts as input its own identity number and the
identity numbers of its neighbors in G. The node may also
accept some additional inputs as specified by the problem at
hand. The nodes are allowed to communicate through the
edges of the graph G. The communication is synchronous,
and occurs in discrete pulses, called rounds. In particular, all
the nodes wake up simultaneously at the beginning of round
1, and from this point on the nodes always know the number
of the current round. In each round each node v is allowed
to send an arbitrary message of size O(logn) through each
edge e = (v, u) that is adjacent to v, and the message will ar-
rive to u at the end of the current round. This is a standard
model of distributed computation known as the CONGEST
model [29] and has been attracting a lot of research atten-
tion during last two decades (e.g., see [29] and the references
therein).
There are several measures of efficiency of distributed al-

gorithms, but we will concentrate on one of them, specifi-
cally, the running time, that is, the number of rounds of dis-
tributed communication. (Note that the computation that
is performed by the nodes locally is “free”, i.e., it does not
affect the number of rounds.) Many fundamental network
problems such as minimum spanning tree, shortest paths,
etc. have been addressed in this model (e.g., see [26, 29,
28]). In particular, there has been much research into design-
ing very fast distributed approximation algorithms (that are

even faster at the cost of producing sub-optimal solutions)
for many of these problems (see e.g., [14, 13, 24, 23]). Such
algorithms can be useful for large-scale resource-constrained
and dynamic networks where running time is crucial.

1.2 Problem Statement, Motivation, and Re-
lated Work

The basic problem we address is the following. We are
given an arbitrary undirected, unweighted, and connected
n–node network G = (V,E) and a (source) node s ∈ V .
The goal is to devise a distributed algorithm such that, in
the end, s outputs the ID of a node v which is randomly
picked according to the probability that it is the destination
of a random walk of length ℓ starting at s. Throughout this
paper, we assume the standard (simple) random walk: in
each step, an edge is taken from the current node x with
probability proportional to 1/d(x) where d(x) is the degree
of x. Our goal is to output a true random sample from the
ℓ-walk distribution starting from s.

For clarity, observe that the following naive algorithm
solves the above problem in O(ℓ) rounds: The walk of length
ℓ is performed by sending a token for ℓ steps, picking a ran-
dom neighbor with each step. Then, the destination node
v of this walk sends its ID back (along the same path) to
the source for output. Our goal is to perform such sampling
with significantly less number of rounds, i.e., in time that
is sublinear in ℓ. On the other hand, we note that it can
take too much time (as much as Θ(|E| + D) time) in the
CONGEST model to collect all the topological information
at the source node (and then computing the walk locally).

This problem was proposed in [11] under the name Com-
puting One Random Walk where Source Outputs Destination
(1-RW-SoD) (for short, this problem will be simply called
Single Random Walk in this paper), wherein the first sub-
linear time distributed algorithm was provided, requiring
Õ(ℓ2/3D1/3) rounds (Õ hides polylog(n) factors); this im-
proves over the naive O(ℓ) algorithm when the walk is long
compared to the diameter (i.e., ℓ = Ω(D polylog n) where D
is the diameter of the network). This was the first result to
break past the inherent sequential nature of random walks
and beat the naive ℓ round approach, despite the fact that
random walks have been used in distributed networks for
long and in a wide variety of applications.

There are two key motivations for obtaining sublinear time
bounds. The first is that in many algorithmic applications,
walks of length significantly greater than the network diam-
eter are needed. For example, this is necessary in both the
applications presented later in the paper, namely distributed
computation of a random spanning tree (RST) and compu-
tation of mixing time. In the RST algorithm, we need to per-
form a random walk of expected length O(mD) (where m is
the number of edges in the network). In decentralized com-
putation of mixing time, we need to perform walks of length
at least equal to the mixing time which can be significantly
larger than the diameter (e.g., in a random geometric graph
model [27], a popular model for ad hoc networks, the mixing
time can be larger than the diameter by a factor of Ω(

√
n).)

More generally, many real-world communication networks
(e.g., ad hoc networks and peer-to-peer networks) have rel-
atively small diameter, and random walks of length at least
the diameter are usually performed for many sampling appli-
cations, i.e., ℓ >> D. It should be noted that if the network
is rapidly mixing/expanding which is sometimes the case in

202

practice, then sampling from walks of length ℓ >> D is close
to sampling from the steady state (degree) distribution; this
can be done in O(D) rounds (note however, that this gives
only an approximately close sample, not the exact sample
for that length). However, such an approach fails when ℓ is
smaller than the mixing time.
The second motivation is understanding the time com-

plexity of distributed random walks. Random walk is es-
sentially a global problem which requires the algorithm to
“traverse” the entire network. Classical “global” problems
include the minimum spanning tree, shortest path etc. Net-
work diameter is an inherent lower bound for such problems.
Problems of this type raise the basic question whether n (or
ℓ as the case here) time is essential or is the network di-
ameter D, the inherent parameter. As pointed out in the
seminal work of [17], in the latter case, it would be desir-
able to design algorithms that have a better complexity for
graphs with low diameter.
The high-level idea used in the Õ(ℓ2/3D1/3)-round al-

gorithm in [11] is to “prepare” a few short walks in the
beginning (executed in parallel) and then carefully stitch
these walks together later as necessary. The same general
approach was introduced in [10] to find random walks in
data streams with the main motivation of finding PageRank.
However, the two models have very different constraints and
motivations and hence the subsequent techniques used in
[11] and [10] are very different.
Recently, Sami and Twigg [31] consider lower bounds on

the communication complexity of computing stationary dis-
tribution of random walks in a network. Although, their
problem is related to our problem, the lower bounds ob-
tained do not imply anything in our setting. Other recent
works involving multiple random walks in different settings
include Alon et. al. [3], Elsässer et. al. [16], and Cooper et
al. [9].

1.3 Our Results
• A Fast Distributed Random Walk Algorithm: We

present a sublinear, almost time-optimal, distributed al-
gorithm for the single random walk problem in arbi-
trary networks that runs in time Õ(

√
ℓD), where ℓ is

the length of the walk (cf. Section 2). This is a signif-
icant improvement over the naive ℓ-round algorithm for
ℓ = Ω(D) as well as over the previous best running time

of Õ(ℓ2/3D1/3) [11]. The dependence on ℓ is reduced

from ℓ2/3 to ℓ1/2.

Our algorithm in this paper uses an approach similar to
that of [11] but exploits certain key properties of random
walks to design an even faster sublinear time algorithm.
Our algorithm is randomized (Las Vegas type, i.e., it al-
ways outputs the correct result, but the running time
claimed is with high probability) and is conceptually

simpler compared to the Õ(ℓ2/3D1/3)-round algorithm.
While the previous (slower) algorithm [11] applies to the
more general Metropolis-Hastings walk, in this work we
focus primarily on the simple random walk for the sake
of obtaining the best possible bounds in this commonly
used setting.

One of the key ingredients in the improved algorithm is
proving a bound on the number of times any node is
visited in an ℓ-length walk, for any length ℓ = O(m2).
We show that w.h.p. any node x is visited at most

Õ(d(x)
√
ℓ) times, in an ℓ-length walk from any starting

node (d(x) is the degree of x). We then show that if only
certain ℓ/λ special points of the walk (called as connec-
tor points) are observed, then any node is observed only

Õ(d(x)
√
ℓ/λ) times. The algorithm starts with all nodes

performing short walks (of length uniformly random in
the range λ to 2λ for appropriately chosen λ) efficiently
simultaneously; here the randomly chosen lengths play
a crucial role in arguing about a suitable spread of the
connector points. Subsequently, the algorithm begins at
the source and carefully stitches these walks together till
ℓ steps are completed.

We also extend to give algorithms for computing k ran-
dom walks (from any k sources —not necessarily dis-

tinct) in Õ
(
min(

√
kℓD + k, k + ℓ)

)
rounds. Computing

k random walks is useful in many applications such as
the one we present below on decentralized computation
of mixing time and related parameters. While the main
requirement of our algorithms is to just obtain the ran-
dom walk samples (i.e. the end point of the ℓ step walk),
our algorithms can regenerate the entire walks such that
each node knows its position(s) among the ℓ steps. Our
algorithm can be extended to do this in the same number
of rounds.

• A Lower Bound: We establish an almost matching
lower bound on the running time of distributed random
walk that applies to a general class of distributed ran-
dom walk algorithms. We show that any algorithm be-

longing to the class needs at least Ω(
√

ℓ
log ℓ

+D) rounds

to perform a random walk of length ℓ; notice that this
lower bound is nontrivial even in graphs of small (D =
O(log n)) diameter (cf. Section 3). Broadly speaking,
we consider a class of token forwarding-type algorithms
where nodes can only store and (selectively) forward to-
kens (here tokens are O(log n)-sized messages consist-
ing of two node ids identifying the beginning and end of
a segment — we make this more precise in Section 3).
Selective forwarding (more general than just store and
forwarding) means that nodes can omit to forward cer-
tain segments (to reduce number of messages), but they
cannot alter tokens in any way (e.g., resort to data com-
pression techniques). This class includes many natural
algorithms, including the algorithm in this paper.

Our technique involves showing the same non-trivial lower
bound for a problem that we call path verification. This
simpler problem appears quite basic and can have other
applications. Informally, given a graph G and a sequence
of ℓ vertices in the graph, the problem is for some (source)
node in the graph to verify that the sequence forms a
path. One main idea in this proof is to show that inde-
pendent nodes may be able to verify short local paths;
however, to be able to merge these together and verify an
ℓ-length path would require exchanging several messages.
The trade-off is between the lengths of the local paths
that are verified and the number of such local paths that
need to be combined. Locally verified paths can be ex-
changed in one round, and messages can be exchanged
at all nodes. Despite this, we show that the bandwidth
restriction necessitates a large number of rounds even if
the diameter is small. We then show a reduction to the
random walk problem, where we require that each node

203

in the walk should know its (correct) position(s) in the
walk.

Similar non-trivial matching lower bounds on running
time are known only for a few important problems in
distributed computing, notably the minimum spanning
tree problem (e.g., see [30, 15]). Peleg and Rabinovich

[30] showed that Ω̃(
√
n) time is required for constructing

an MST even on graphs of small diameter (for any D =
Ω(log n)) and [25] showed an essentially matching upper
bound.

• Applications: Our faster distributed random walk al-
gorithm can be used in speeding up distributed appli-
cations where random walks arise as a subroutine. Such
applications include distributed construction of expander
graphs, checking whether a graph is an expander, con-
struction of random spanning trees, and random-walk
based search (we refer to [11] for details). Here, we
present two key applications:

(1) A Fast Distributed Algorithm for Random Spanning

Trees (RST): We give a Õ(
√
mD) time distributed algo-

rithm (cf. Section 4.1) for uniformly sampling a random
spanning tree in an arbitrary undirected (unweighted)
graph (i.e., each spanning tree in the underlying net-
work has the same probability of being selected). (m de-
notes the number of edges in the graph.) Spanning trees
are fundamental network primitives and distributed al-
gorithms for various types of spanning trees such as min-
imum spanning tree (MST), breadth-first spanning tree
(BFS), shortest path tree, shallow-light trees etc., have
been studied extensively in the literature [29]. However,
not much is known about the distributed complexity of
the random spanning tree problem. The centralized case
has been studied for many decades, see e.g., the recent
work of [21] and the references therein; also see the re-
cent work of Goyal et al. [19] which gives nice applica-
tions of RST to fault-tolerant routing and constructing
expanders. In the distributed context, the work of Bar-
Ilan and Zernik [5] give a distributed RST algorithm for
two special cases, namely that of a complete graph (run-
ning in constant time) and a synchronous ring (running
in O(n) time). The work of [4] give a self-stablizing dis-
tributed algorithm for constructing a RST in a wireless
ad hoc network and mentions that RST is more resilient
to transient failures that occur in mobile ad hoc net-
works.

Our algorithm works by giving an efficient distributed
implementation of the well-known Aldous-Broder ran-
dom walk algorithm [1, 7] for constructing a RST.

(2)Decentralized Computation of Mixing Time. We present
a fast decentralized algorithm for estimating mixing time,
conductance and spectral gap of the network (cf. 4.2).
In particular, we show that given a starting point x, the
mixing time with respect to x, called τx

mix, can be esti-
mated in Õ(n1/2 + n1/4

√
Dτx

mix) rounds. This gives an
alternative algorithm to the only previously known ap-
proach by Kempe and McSherry [22] that can be used to

estimate τx
mix in Õ(τx

mix) rounds.
1 To compare, we note

1Note that [22] in fact do more and give a decentralized
algorithm for computing the top k eigenvectors of a weighted
adjacency matrix that runs in O(τmix log

2 n) rounds if two
adjacent nodes are allowed to exchange O(k3) messages per

that when τx
mix = ω(n1/2) the present algorithm is faster

(assuming D is not too large).

The work of [18] discusses spectral algorithms for en-
hancing the topology awareness, e.g., by identifying and
assigning weights to critical links. However, the algo-
rithms are centralized, and it is mentioned that obtaining
efficient decentralized algorithms is a major open prob-
lem. Our algorithms are fully decentralized and based
on performing random walks, and so more amenable to
dynamic and self-organizing networks.

2. A SUBLINEAR TIME DISTRIBUTED RAN-
DOM WALK ALGORITHM

2.1 Description of the Algorithm
We first describe the Õ(ℓ2/3D1/3)-round algorithm in [11]

and then highlight the changes in our current algorithm.
The current algorithm is randomized and uses several new
ideas that are crucial in obtaining the new bound.

The high-level idea is to perform “many” short random
walks in parallel and later stitch them together as needed.
In the first phase of the algorithm Single-Random-Walk
(we refer to the full version [12] for pseudocodes of all algo-
rithms and subroutines), each node performs η independent
random walks of length λ. (Only the destination of each
of these walks is aware of its source, but the sources do
not know destinations right away. The sources will get to
know destinations later on when it is needed.) It is shown

that this takes Õ(ηλ) rounds with high probability. Sub-
sequently, the source node that requires a walk of length ℓ
extends a walk of length λ by “stitching” walks. If the end
point of the first λ length walk is u, one of u’s λ length walks
is used to extend. When at u, one of its λ-length walk des-
tinations are sampled uniformly (to preserve randomness)
using Sample-Destination in O(D) rounds (including the
time to deliver such sampled destination to u). (We call
such u and other nodes at the stitching points as connec-
tors — cf. Algorithm 1.) Each stitch takes O(D) rounds
(via the BFS tree). This process is extended as long as un-
used λ-length walks are available from visited nodes. If the
walk reaches a node v where all η walks have been used up
(which is a key difficulty), then Get-More-Walks is in-
voked. Get-More-Walks performs η more walks of length
λ from v, and this can be done in Õ(λ) rounds. The num-
ber of times Get-More-Walks is invoked can be bounded
by ℓ

ηλ
in the worst case by an amortization argument. The

overall bound on the algorithm is O(ηλ + ℓD/λ + ℓ
η
). The

bound of Õ(ℓ2/3D1/3) follows from appropriate choice of pa-
rameters η and λ.

The current algorithm uses two crucial ideas to improve
the running time. The first idea is to bound the number of
times any node is visited in a random walk of length ℓ (which
in turn bounds the number of times Get-More-Walks is
invoked). Instead of the worst case analysis in [11], the new
bound is obtained by bounding the number of times any
node is visited (with high probability) in a random walk of
length ℓ on an undirected unweighted graph. The number
of visits to a node beyond the mixing time can be bounded
using its stationary probability distribution. However, we

round, where τmix is the mixing time and n is the size of the
network.

204

need a bound on the visits to a node for any ℓ-length walk
starting from the first step. We show a somewhat surprising
bound that applies to an ℓ-length (for ℓ = O(m2)) random
walk on any arbitrary (undirected) graph: no node x is vis-

ited more than Õ(d(x)
√
ℓ) times, in an ℓ-length walk from

any starting node (d(x) is the degree of x) (cf. Lemma 2.6).
Note that this bound does not depend on any other param-
eter of the graph, just on the (local) degree of the node and
the length of the walk. This bound is tight in general (e.g.,
consider a line and a walk of length n).
The above bound is not enough to get the desired running

time, as it does not say anything about the distribution of
connectors when we chop the length ℓ walk into ℓ/λ pieces.
We have to bound the number of visits to a node as a con-
nector in order to bound the number of times Get-More-
Walks is invoked. To overcome this we use a second idea:
Instead of nodes performing walks of length λ, each such
walk i is of length λ+ri where ri is a random number in the
range [0, λ− 1]. Notice that the random numbers are inde-
pendent for each walk. We show the following “uniformity
lemma”: if the short walks are now of a random length in
the range of [λ, 2λ − 1], then if a node u is visited at most
Nu times in an ℓ step walk, then the node is visited at most
Õ(Nu/λ) times as an endpoint of a short walk (cf. Lemma
2.7). This modification to Single-Random-Walk allows us
to bound the number of visits to each node (cf. Lemma 2.7).
The change of the short walk length above leads to two

modifications in Phase 1 of Single-Random-Walk andGet-
More-Walks. In Phase 1, generating η walks of different
lengths from each node is straightforward: Each node sim-
ply sends η tokens containing the source ID and the desired
length. The nodes keep forwarding these tokens with de-
creased desired walk length until the desired length becomes
zero. The modification of Get-More-Walks is trickier. To
avoid congestion, we use the idea of reservoir sampling [32].
In particular, we add the following process at the end of the
Get-More-Walks algorithm in [11]:

for i = 0 to λ− 1 do
For each message, independently with prob-
ability 1

λ−i
, stop sending the message fur-

ther and save the ID of the source node (in
this event, the node with the message is the
destination). For messages M that are not
stopped, each node picks a neighbor corre-
spondingly and sends the messages forward
as before.

end for

The reason it needs to be done this way is that if we first
sampled the walk length r, independently for each walk, in
the range [0, λ−1] and then extended each walk accordingly,
the algorithm would need to pass r independently for each
walk. This will cause congestion along the edges; no conges-
tion occurs in the mentioned algorithm as only the count of
the number of walks along an edge are passed to the node
across the edge. Therefore, we need to decide when to stop
on the fly using reservoir sampling.
We also have to make another modification in Phase 1 due

to the new bound on the number of visits. Recall that, in
this phase, each node prepares η walks of length λ. However,
since the new bound of visits of each node x is proportional
to its degree d(x) (see Lemma 2.6), we make each node pre-

pare ηd(x) walks instead. We show that Phase 1 uses Õ(ηλ)

rounds, instead of Õ(λη
δ
) rounds where δ is the minimum

degree in the graph (cf. Lemma 2.3).
To summarize, the main algorithm for performing a single

random walk is Single-Random-Walk. This algorithm, in
turn, uses Get-More-Walks and Sample-Destination.
The key modification is that, instead of creating short walks
of length λ each, we create short walks where each walk has
length in range [λ, 2λ−1]. To do this, we modify the Phase 1
of Single-Random-Walk and Get-More-Walks.

We now state four lemmas which are similar to the Lemma 2.2-
2.6 in [11]. However, since the algorithm here is a modifi-
cation of that in [11], we include the full proofs in the full
version [12].

Lemma 2.1. Phase 1 finishes in O(λη logn) rounds with
high probability.

Lemma 2.2. For any v, Get-More-Walks(v, η, λ) al-
ways finishes within O(λ) rounds.

Lemma 2.3. Sample-Destination always finishes within
O(D) rounds.

Lemma 2.4. Algorithm Sample-Destination(v) returns
a destination from a random walk whose length is uniform
in the range [λ, 2λ− 1].

2.2 Analysis
The following theorem states the main result of this Sec-

tion. It states that the algorithm Single-Random-Walk
correctly samples a node after a random walk of ℓ steps and

the algorithm takes, with high probability, Õ
(√

ℓD
)
rounds

where D is the diameter of the graph. Throughout this sec-
tion, we assume that ℓ is O(m2), where m is the number of
edges in the network. If ℓ is Ω(m2), the required bound is
easily achieved by aggregating the graph topology (via up-
cast) onto one node in O(m+D) rounds (e.g., see [29]). The
difficulty lies in proving for ℓ = O(m2).

Theorem 2.5. For any ℓ, Algorithm Single-Random-
Walk solves 1-RW-DoS (the Single Random Walk Problem)

and, with probability at least 1 − 2
n
, finishes in Õ

(√
ℓD

)
rounds.

We prove the above theorem using the following lemmas.
As mentioned earlier, to bound the number of times Get-
More-Walks is invoked, we need a technical result on ran-
dom walks that bounds the number of times a node will
be visited in a ℓ-length random walk. Consider a simple
random walk on a connected undirected graph on n ver-
tices. Let d(x) denote the degree of x, and let m denote the
number of edges. Let Nx

t (y) denote the number of visits to
vertex y by time t, given the walk started at vertex x. Now,
consider k walks, each of length ℓ, starting from (not neces-
sary distinct) nodes x1, x2, . . . , xk. We show a key technical
lemma (proof in the full version [12]) that applies to a ran-
dom walk on any graph: With high probability, no vertex y
is visited more than 24d(x)

√
kℓ+ 1 log n+ k times.

Lemma 2.6. For any nodes x1, x2, . . . , xk, and ℓ = O(m2),

Pr
(
∃y s.t.

k∑
i=1

Nxi
ℓ (y) ≥ 24d(x)

√
kℓ+ 1 log n+ k

)
≤ 1/n .

205

This lemma says that the number of visits to each node
can be bounded. However, for each node, we are only in-
terested in the case where it is used as a connector. The
lemma below shows that the number of visits as a connector
can be bounded as well; i.e., if any node vi appears t times
in the walk, then it is likely to appear roughly t/λ times as
connectors.

Lemma 2.7. For any vertex v, if v appears in the walk at
most t times then it appears as a connector node at most
t(logn)2/λ times with probability at least 1− 1/n2.

Intuitively, this argument is simple, since the connectors
are spread out in steps of length approximately λ. However,
there might be some periodicity that results in the same
node being visited multiple times but exactly at λ-intervals.
This is where we crucially use the fact that the algorithm
uses walks of length λ + r where r is chosen uniformly at
random from [0, λ−1]. The proof then goes via constructing
another process equivalent to partitioning the ℓ steps in to
intervals of λ and then sampling points from each interval.
We analyze this by carefully constructing a different process
that stochastically dominates the process of a node occurring
as a connector at various steps in the ℓ-length walk and
then use a Chernoff bound argument. The detailed proof is
presented in the full version [12].
Now we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. First, we claim, using Lemma
2.6 and 2.7, that each node is used as a connector node at

most 24d(x)
√
ℓ(logn)3

λ
times with probability at least 1− 2/n.

To see this, observe that the claim holds if each node x is
visited at most t(x) = 24d(x)

√
ℓ+ 1 log n times and conse-

quently appears as a connector node at most t(x)(logn)2/λ
times. By Lemma 2.6, the first condition holds with proba-
bility at least 1− 1/n. By Lemma 2.7 and the union bound
over all nodes, the second condition holds with probabil-
ity at least 1− 1/n, provided that the first condition holds.
Therefore, both conditions hold together with probability at
least 1− 2/n as claimed.

Now, we choose η = 1 and λ = 24
√
ℓD(log n)3. By

Lemma 2.1, Phase 1 finishes in Õ(λη) = Õ(
√
ℓD) rounds

with high probability. For Phase 2, Sample-Destination
is invoked O(ℓ

λ
) times (only when we stitch the walks) and

therefore, by Lemma 2.3, contributes O(ℓD
λ
) = Õ(

√
ℓD)

rounds. Finally, we claim that Get-More-Walks is never
invoked, with probability at least 1 − 2/n. To see this, re-
call our claim above that each node is used as a connec-
tor node at most 24d(x)

√
ℓ(logn)3

λ
times. Moreover, observe

that we have prepared this many walks in Phase 1; i.e., af-

ter Phase 1, each node has ηλd(x) = 24d(x)
√
ℓ(logn)3

λ
short

walks. The claim follows.
Therefore, with probability at least 1 − 2/n, the rounds

are Õ(
√
ℓD) as claimed.

Regenerating the entire random walk: It is important
to note that our algorithm can be extended to regenerate
the entire walk. As described above, the source node ob-
tains the sample after a random walk of length ℓ. In certain
applications, it may be desired that the entire random walk
be obtained, i.e., every node in the ℓ length walk knows its
position(s) in the walk. This can be done by first inform-
ing all intermediate connecting nodes of their position (since

there are only O(
√
ℓ) such nodes). Then, these nodes can re-

generate their O(
√
ℓ) length short walks by simply sending

a message through each of the corresponding short walks.
This can be completed in Õ(

√
ℓD) rounds with high prob-

ability. This is because, with high probability, Get-More-
Walk will not be invoked and hence all the short walks are
generated in Phase 1. Sending a message through each of
these short walks (in fact, sending a message through every
short walk generated in Phase 1) takes time at most the time

taken in Phase 1, i.e., Õ(
√
ℓD) rounds.

2.3 Extension to Computing k Random Walks
We now consider the scenario when we want to compute

k walks of length ℓ from different (not necessary distinct)
sources s1, s2, . . . , sk. We show that Single-Random-Walk
can be extended to solve this problem. Consider the follow-
ing algorithm.

Many-Random-Walks:.
Let λ = (24

√
kℓD + 1 log n + k)(logn)2 and η = 1. If

λ > ℓ then run the naive random walk algorithm, i.e., the
sources find walks of length ℓ simultaneously by sending to-
kens. Otherwise, do the following. First, modify Phase 2
of Single-Random-Walk to create multiple walks, one at
a time; i.e., in the second phase, we stitch the short walks
together to get a walk of length ℓ starting at s1 then do
the same thing for s2, s3, and so on. We state the theorem
below and the proof is in the full version [12].

Theorem 2.8. Many-Random-Walks finishes in

Õ
(
min(

√
kℓD + k, k + ℓ)

)
rounds with high probability.

3. LOWER BOUND
In this section, we show an almost tight lower bound on

the time complexity of performing a distributed random
walk. At the end of the walk, we require that each node
in the walk should know its correct position(s) among the ℓ
steps. We show that any distributed algorithm needs at least

Ω
(√

ℓ
log ℓ

)
rounds, even in graphs with low diameter. Note

that Ω(D) is a lower bound [11]. Also note that if a source
node wants to sample k destinations from independent ran-
dom walks, then Ω(k) is also a lower bound as the source
may need to receive Ω(k) distinct messages. Therefore, for k

walks, the lower bound we show is Ω(
√

ℓ
log ℓ

+k+D) rounds.

(The rest of the section omits the Ω(k+D) term.) In partic-
ular, we show that there exists a n-node graph of diameter
O(logn) such that any distributed algorithm needs at least

Ω(
√

n
logn

) time to perform a walk of length n. Our lower

bound proof makes use of a lower bound for another prob-
lem that we call as the Path Verification problem defined
as follows. Informally, the Path Verification problem is for
some node v to verify that a given sequence of nodes in the
graph is a valid path of length ℓ.

Definition 3.1 (Path-Verification Problem). The
input of the problem consists of an integer ℓ, a graph G =
(V,E), and ℓ nodes v1, v2, ..., vℓ in G. To be precise, each
node vi initially has its order number i.

206

The goal is for some node v to “verify” that the above
sequence of vertices forms an ℓ-length path, i.e., if (vi, vi+1)
forms an edge for all 1 ≤ i ≤ ℓ − 1. Specifically, v should
output “yes” if the sequence forms an ℓ-length path and “no”
otherwise.

We show a lower bound for the Path Verification problem
that applies to a very general class of verification algorithms
defined as follows. Each node can (only) verify a segment
of the path that it knows either directly or indirectly (by
learning form its neighbors), as follows. Initially each node
knows only the trivial segment (i.e. the vertex itself). If
a vertex obtains from its neighbor a segment [i1, j1] and it
has already verified segment [i2, j2] that overlaps with [i1, j1]
(say, i1 < i2 < j1 < j2) then it can verify a larger interval
([i1, j2]). Note that a node needs to only send the endpoints
of the interval that it already verifies (hence larger intervals
are better). The goal of the problem is that, in the end,
some node verifies the entire segment [1, ℓ]. We would like
to determine a lower bound for the running time of any
distributed algorithm for the above problem.
A lower bound for the Path Verification problem, implies

a lower bound for the random walk problem as well. The
reason is as follows. Both problems involve constructing a
path of some specified length ℓ. Intuitively, the former is a
simpler problem, since we are not verifying whether the local
steps are chosen randomly, but just whether the path is valid
and is of length ℓ. On the other hand, any algorithm for the
random walk problem (including our algorithm of Section 2),
also solves the Path Verification problem, since the path it
constructs should be a valid path of length ℓ. It is straight-
forward to make any distributed algorithm that computes
a random walk to also verify that indeed the random walk
is a valid walk of appropriate length. This is essential for
correctness, as otherwise, an adversary can always change
simply one edge of the graph and ensure that the walk is
wrong.
In the next section we first prove a lower bound for the

Path Verification problem. Then we show the same lower
bound holds for the random walk problem by giving a re-
duction.

3.1 Lower Bound for the Path Verification Prob-
lem

The main result of this section is the following theorem.

Theorem 3.2. For every n, and ℓ ≤ n there exists a
graph Gn of Θ(n) vertices and diameter O(logn), and a path
P of length ℓ such that any algorithm that solves the Path-
Verification problem on Gn and P requires more than k

rounds, where k =
√

ℓ
log ℓ

.

The rest of the section is devoted to proving the above
Theorem. We start by defining Gn.

Definition 3.3 (Graph Gn). Let k′ be an integer such
that k is a power of 2 and k′/2 ≤ 4k < k′. Let n′ be such
that n′ ≥ n and k′ divides n′. We construct Gn having
(n′ + 2k′ − 1) = O(n) nodes as follows. First, we construct
a path P = v1v2...vn′ . Second, we construct a binary T hav-
ing k′ leaf nodes. Let u1, u2, ..., uk′ be its leaves from left
to right. Finally, we connect P with T by adding an edge
uivjk′+i for every i and j. We will denote the root of T
by x and its left and right children by l and r respectively.

v
1
 v
2
 v
k
'
 v
k
'+1
 v
k
'+2
 v
2k
'
 v
n
'

u
1
 u
2
 u
k
'

r
l

x

T

P

Figure 1: Gn

Clearly, Gn has diameter O(logn). We then consider a path
of length ℓ = Θ(n). If required n can always be made larger
by connecting dummy vertices to the root of T .(The resulting
graph Gn is as in Figure 1.)

To prove the theorem, let A be any algorithm for the
Path-Verification problem that solves the problem on Gn

in at most k′ rounds. We need some definitions and claims
to prove the theorem.

Definitions of left/right subtrees and breakpoints..
Consider a tree T ′ obtained by deleting all edges in P .

Notice that nodes vjk′+i, for all j and i ≤ k′/2 are in the
subtree of T ′ rooted at l and all remaining points are in the
subtree rooted at r. For any node v, let sub(v) denote the
subtree rooted at node v. (Note that sub(v) also include
nodes in the path P .) We denote the set of nodes that are
leaves of sub(l) by L (i.e., L = sub(l) ∩ P) and the set of
nodes that are leaves in sub(r) by R.

Since we consider an algorithm that takes at most k rounds,
consider the situation when the algorithm is given k rounds
for free to communicate only along the edges of the path P
at the beginning. Since L and R consists of every k′/2 ver-
tices in P and k′/2 > 2k, there are some nodes unreachable
from L by walking on P for k steps. In particular, all nodes
of the form vjk′+k′/2+k+1, for all j, are not reachable from
L. We call such nodes breakpoints for sub(l). Similarly all
nodes of the form vjk′+k+1, for all j, are not reachable from
R and we call them the breakpoints for sub(r).

Definitions of path-distance and covering..
For any two nodes u and v in T ′ (obtained from Gn by

deleting edges in P), let c(u, v) be a lowest common ancestor
of u and v. We define path dist(u, v) to be the number of
leaves of subtree of T rooted at c(u, v). Note that the path-
distance is defined between any pair of nodes in Gn but the
distance is counted using the number of leaves in T (which
excludes nodes in P).

We also introduce the notion of the path-distance cov-
ered by a message. For any message m, the path-distance
covered by m is the maximum path-distance taken over all
nodes that have held the message m. That is, if m cov-
ers some nodes v′1, v

′
2, ..., v

′
k then the path-distance covered

by m is the number of leaves in the subtrees of T rooted by
v′1, v

′
2, ..., v

′
k. Note that some leaves may be in more than one

subtrees and they will be counted only once. Our construc-
tion makes the right and left subtrees have a large number
of break points, as in the following lemma.

Lemma 3.4. The number of breakpoints for the left sub-
tree and for the right subtree are at least n

4k
each.

The reason we define these breakpoints is to show that

207

the entire information held by the left subtree has many
disjoint intervals, and same for the right subtree. This then
tells us that the left subtree and the right subtree must com-
municate a lot to be able to merge these intervals by con-
necting/communicating the break points. To argue this, we
show that the total path distance (over all messages) is large,
as in the following lemma. (Proof is in the full version [12].)

Lemma 3.5. For algorithm A to solve Path-Verification
problem, the total path-distance covered by all messages is at
least n.

These messages can however be communicated using the
tree edges as well. We bound the maximum communication
that can be achieved across sub(l) and sub(r) indirectly by
bounding the maximum path-distance that can be covered
in each round. In particular, we show the following lemma.
Proof is in the full version [12].

Lemma 3.6. In k rounds, all messages together can cover
at most a path-distance of O(k2 log k).

We now describe the proof of the main theorem using
these three claims.

Proof of Theorem 3.2. Use Lemmas 3.5 and 3.6 we
know that if A solves Path-Verification, then it needs
to cover a path dist of n, but in k rounds it can only cover a

path dist of O(k2 log k). But this is o(n) since k =
√

n
logn

,

contradiction.

3.2 Reduction to Random Walk Problem
We now discuss how the lower bound for the Path Verifi-

cation problem implies the lower bound of the random walk
problem. The main difference between Path-Verification
problem and the random walk problem is that in the former
we can specify which path to verify while the latter problem
generates different path each time. We show that the “bad”
instance (Gn and P) in the previous section can be modified
so that with high probability, the generated random walk is
“hard” to verify. The theorems below are stated for ℓ length
walk/path instead of n as above. As previously stated, if it
is desired that ℓ be o(n), it is always possible to add dummy
nodes.

Theorem 3.7. For any n, there exists a graph Gn of
Θ(n) vertices and diameter O(logn), and ℓ = Θ(n) such
that, with high probability, a random walk of length ℓ needs

Ω(
√

ℓ
log ℓ

) rounds.

Proof. Theorem 3.2 can be generalized to the case where
the path P has infinite capacity, as follows.

Theorem 3.8. For any n and ℓ = Θ(n), there exists a
graph Gn of O(n) vertices and diameter O(logn), and a
path P of length ℓ such that any algorithm that solves the
Path-Verification problem on Gn and P requires more

than Ω(
√

ℓ
log ℓ

) rounds, even if edges in P have large capacity

(i.e., one can send larger sized messages in one step).

Proof. This is because the proof of Theorem 3.2 only
uses the congestion of edges in the tree T (imposed above
P) to argue about the number of rounds.

Now, we modify Gn to G′
n as follows. Recall that the path

P in Gn has vertices v1, v2, ..., vn′ . For each i = 1, 2, ..., n′,
we define the weight of an edge (vi, vi+1) to be (2n)2i (note
that weighted graphs are equivalent to unweighted multi-
graphs in our model). By having more weight, these edges
have more capacity as well. However, increasing capacity
does not affect the claim as shown above. Observe that,
when the walk is at the node vi, the probability of walk will
take the edge (vi, vi+1) is at least 1 − 1

n2 . Therefore, P is
the resulting random walk with probability at least 1− 1/n.

When the random walk path is P , it takes at least
√

n
logn

rounds to verify, by Theorem 3.8. This completes the proof.
We remark that this construction requires exponential in n
number of edges (multiedges). For the distributed comput-
ing model, this only translates to a larger bandwidth. The
length ℓ is still comparable to the number of nodes.

4. APPLICATIONS

4.1 A Distributed Algorithm for Random Span-
ning Tree

We now present an algorithm for generating a random
spanning tree (RST) of an unweighted undirected network

in Õ(
√
mD) rounds with high probability. The approach

is to simulate Aldous and Broder’s [1, 7] RST algorithm
which is as follows. First, pick one arbitrary node as a root.
Then, perform a random walk from the root node until all
nodes are visited. For each non-root node, output the edge
that is used for its first visit. (That is, for each non-root
node v, if the first time v is visited is t then we output the
edge (u, v) where u is the node visited at time t − 1.) The
output edges clearly form a spanning tree and this spanning
tree is shown to come from a uniform distribution among
all spanning trees of the graph [1, 7]. The expected time
of this algorithm is the expected cover time of the graph
which is shown to be O(mD) (in the worst case, i.e., for any
undirected, unweighted graph) by Aleniunas et al. [2].

This algorithm can be simulated on the distributed net-
work by our random walk algorithm as follows. The algo-
rithm can be viewed in phases. Initially, we pick a root node
arbitrarily and set ℓ = n. In each phase, we run log n (dif-
ferent) walks of length ℓ starting from the root node (this

takes Õ(
√
ℓD) rounds using our distributed random walk al-

gorithm). If none of the O(logn) different walks cover all
nodes (this can be easily checked in O(D) time), we double
the value of ℓ and start a new phase, i.e., perform again log n
walks of length ℓ. The algorithm continues until one walk
of length ℓ covers all nodes. We then use such walk to con-
struct a random spanning tree: As the result of this walk,
each node knows its position(s) in the walk (cf. Section 2.2),
i.e., it has a list of steps in the walk that it is visited. There-
fore, each non-root node can pick an edge that is used in
its first visit by communicating to its neighbors. Thus at
the end of the algorithm, each node can know which of its
adjacent edges belong to the output tree. (An additional
O(n) rounds may be used to deliver the resulting tree to a
particular node if needed.)

We now analyze the number of rounds in term of τ , the
expected cover time of the input graph. The algorithm takes
O(log τ) phases before 2τ ≤ ℓ ≤ 4τ , and since one of log n
random walks of length 2τ will cover the input graph with
high probability, the algorithm will stop with ℓ ≤ 4τ with

208

high probability. Since each phase takes Õ(
√
ℓD) rounds,

the total number of rounds is Õ(
√
τD) with high probability.

Since τ = Õ(mD), we have the following theorem.

Theorem 4.1. The algorithm described above generates
a uniform random spanning tree in Õ(

√
mD) rounds with

high probability.

4.2 Decentralized Estimation of Mixing Time
We now present an algorithm to estimate the mixing time

of a graph from a specified source. Throughout this section,
we assume that the graph is connected and non-bipartite
(the conditions under which mixing time is well-defined).
The main idea in estimating the mixing time is, given a
source node, to run many random walks of length ℓ using
the approach described in the previous section, and use these
to estimate the distribution induced by the ℓ-length random
walk. We then compare the distribution at length ℓ, with
the stationary distribution to determine if they are close,
and if not, double ℓ and retry. For this approach, one issue
that we need to address is how to compare two distributions
with few samples efficiently (a well-studied problem). We
introduce some definitions before formalizing our approach
and theorem.

Definition 4.2 (Distribution vector). Let πx(t) de-
fine the probability distribution vector reached after t steps
when the initial distribution starts with probability 1 at node
x. Let π denote the stationary distribution vector.

Definition 4.3. (τx(ϵ) and τx
mix, mixing time for source

x) Define τx(ϵ) = min t : ||πx(t) − π||1 < ϵ. Define τx
mix =

τx(1/2e).

The goal is to estimate τx
mix. Notice that the definition of

τx
mix is consistent due to the following standard monotonic-
ity property of distributions (proof in the full version [12]).

Lemma 4.4. ||πx(t+ 1)− π||1 ≤ ||πx(t)− π||1.

To compare two distributions, we use the technique of
Batu et. al. [6] to determine if the distributions are ϵ-near.
Their result (slightly restated) is summarized in the follow-
ing theorem.

Theorem 4.5 ([6]). For any ϵ, given Õ(n1/2poly(ϵ−1))
samples of a distribution X over [n], and a specified distri-
bution Y , there is a test that outputs PASS with high prob-

ability if |X − Y |1 ≤ ϵ3

4
√

n logn
, and outputs FAIL with high

probability if |X − Y |1 ≥ 6ϵ.

We now give a very brief description of the algorithm of
Batu et. al. [6] to illustrate that it can in fact be simulated
on the distributed network efficiently. The algorithm par-
titions the set of nodes in to buckets based on the steady
state probabilities. Each of the Õ(n1/2poly(ϵ−1)) samples
from X now falls in one of these buckets. Further, the ac-
tual count of number of nodes in these buckets for distri-
bution Y are counted. The exact count for Y for at most
Õ(n1/2poly(ϵ−1)) buckets (corresponding to the samples) is
compared with the number of samples from X; these are
compared to determine if X and Y are close. We refer the
reader to their paper [6] for a precise description.

Our algorithm starts with ℓ = 1 and runs K = Õ(
√
n)

walks of length ℓ from the specified source x. As the test of

comparison with the steady state distribution outputs FAIL
(for choice of ϵ = 1/12e), ℓ is doubled. This process is
repeated to identify the largest ℓ such that the test outputs
FAIL with high probability and the smallest ℓ such that the
test outputs PASS with high probability. These give lower
and upper bounds on the required τx

mix respectively. Our
resulting theorem is presented below and the proof is in the
full version [12].

Theorem 4.6. Given a graph with diameter D, a node
x can find, in Õ(n1/2 + n1/4

√
Dτx(ϵ)) rounds, a time τ̃x

mix

such that τx
mix ≤ τ̃x

mix ≤ τx(ϵ), where ϵ = 1
6912e

√
n logn

.

Proof. For undirected unweighted graphs, the station-

ary distribution of the random walk is known and is deg(i)
2m

for
node i with degree deg(i), where m is the number of edges in
the graph. If a source node in the network knows the degree
distribution, we only need Õ(n1/2poly(ϵ−1)) samples from
a distribution to compare it to the stationary distribution.
This can be achieved by running MultipleRandomWalk
to obtain K = Õ(n1/2poly(ϵ−1)) random walks. We choose
ϵ = 1/12e. To find the approximate mixing time, we try
out increasing values of l that are powers of 2. Once we find
the right consecutive powers of 2, the monotonicity property
admits a binary search to determine the exact value for the
specified ϵ.

The result in [6] can also be adapted to compare with the
steady state distribution even if the source does not know the
entire distribution. As described previously, the source only
needs to know the count of number of nodes with steady
state distribution in given buckets. Specifically, the buck-
ets of interest are at most Õ(n1/2poly(ϵ−1)) as the count
is required only for buckets were a sample is drawn from.
Since each node knows its own steady state probability (de-
termined just by its degree), the source can broadcast a
specific bucket information and recover, in O(D) steps, the
count of number of nodes that fall into this bucket. Us-
ing the standard upcast technique previously described, the
source can obtain the bucket count for each of these at most
Õ(n1/2poly(ϵ−1)) buckets in Õ(n1/2poly(ϵ−1) +D) rounds.

We have shown previously that a source node can obtain
K samples from K independent random walks of length ℓ in
Õ(K +

√
KlD) rounds. Setting K = Õ(n1/2poly(ϵ−1) +D)

completes the proof.

Suppose our estimate of τx
mix is close to the mixing time

of the graph defined as τmix = maxx τ
x
mix, then this would

allow us to estimate several related quantities. Given a mix-
ing time τmix, we can approximate the spectral gap (1−λ2)
and the conductance (Φ) due to the known relations that

1
1−λ2

≤ τmix ≤ logn
1−λ2

and Θ(1 − λ2) ≤ Φ ≤ Θ(
√
1− λ2) as

shown in [20].

5. CONCLUDING REMARKS
This paper makes progress towards resolving the time

complexity of distributed computation of random walks in
undirected networks. The dependence on the diameter D
is still not tight, and it would be interesting to settle this.
There is also a gap in our bounds for performing k inde-
pendent random walks. Further, we look at the CONGEST
model enforcing a bandwidth restriction and minimize num-
ber of rounds. While our algorithms have good amortized
message complexity over several walks, it would be nice to

209

come up with algorithms that are round efficient and yet
have smaller message complexity.
We presented two algorithmic applications of our distributed

random walk algorithm: estimating mixing times and com-
puting random spanning trees. It would be interesting to im-
prove upon these results. For example, is there a Õ(

√
τx
mix+

n1/4) round algorithm to estimate τx; and is there a Õ(n)
round algorithm for RST?
There are several interesting directions to take this work

further. Can these techniques be useful for estimating the
second eigenvector of the transition matrix (useful for sparse
cuts)? Are there efficient distributed algorithms for random
walks in directed graphs (useful for PageRank and related
quantities)? Finally, from a practical standpoint, it is im-
portant to develop algorithms that are robust to failures and
it would be nice to extend our techniques to handle such
node/edge failures.

6. REFERENCES
[1] D. Aldous. The random walk construction of uniform

spanning trees and uniform labelled trees. SIAM J.
Discrete Math., 3(4):450–465, 1990.

[2] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, and
C. Rackoff. Random walks, universal traversal
sequences, and the complexity of maze problems. In
FOCS, 1979.

[3] N. Alon, C. Avin, M. Koucký, G. Kozma, Z. Lotker,
and M. R. Tuttle. Many random walks are faster than
one. In SPAA, pages 119–128, 2008.

[4] H. Baala, O. Flauzac, J. Gaber, M. Bui, and T. A.
El-Ghazawi. A self-stabilizing distributed algorithm
for spanning tree construction in wireless ad hoc
networks. J. Parallel Distrib. Comput., 63(1):97–104,
2003.

[5] J. Bar-Ilan and D. Zernik. Random leaders and
random spanning trees. In 3rd International Workshop
on Distributed Algorithms (later called DISC), 1989.

[6] T. Batu, L. Fortnow, E. Fischer, R. Kumar,
R. Rubinfeld, and P. White. Testing random variables
for independence and identity. In FOCS, pages
442–451, 2001.

[7] A. Broder. Generating random spanning trees. In
FOCS, 1989.

[8] M. Bui, T. Bernard, D. Sohier, and A. Bui. Random
walks in distributed computing: A survey. In IICS,
pages 1–14, 2004.

[9] C. Cooper, A. Frieze, and T. Radzik. Multiple random
walks in random regular graphs. In Preprint, 2009.

[10] A. Das Sarma, S. Gollapudi, and R. Panigrahy.
Estimating pagerank on graph streams. In PODS,
pages 69–78, 2008.

[11] A. Das Sarma, D. Nanongkai, and G. Pandurangan.
Fast distributed random walks. In PODC, pages
161–170, 2009.

[12] A. Das Sarma, D. Nanongkai, G. Pandurangan, and
P. Tetali. Efficient distributed random walks with
applications. CoRR, abs/0911.3195, 2010. URL:
http://arxiv.org/abs/0911.3195.

[13] D. Dubhashi, F. Grandioni, and A. Panconesi.
Distributed algorithms via lp duality and
randomization. In Handbook of Approximation
Algorithms and Metaheuristics. 2007.

[14] M. Elkin. An overview of distributed approximation.
ACM SIGACT News Distributed Computing Column,
35(4):40–57, December 2004.

[15] M. Elkin. An unconditional lower bound on the
time-approximation trade-off for the distributed
minimum spanning tree problem. SIAM J. Comput.,
36(2):433–456, 2006. Also appeared in STOC’04.

[16] R. Elsässer and T. Sauerwald. Tight bounds for the
cover time of multiple random walks. In ICALP (1),
pages 415–426, 2009.

[17] J. Garay, S. Kutten, and D. Peleg. A sublinear time
distributed algorithm for minimum-weight spanning
trees. SIAM J. Comput., 27:302–316, 1998.

[18] C. Gkantsidis, G. Goel, M. Mihail, and A. Saberi.
Towards topology aware networks. In IEEE
INFOCOM, 2007.

[19] N. Goyal, L. Rademacher, and S. Vempala. Expanders
via random spanning trees. In SODA, 2009.

[20] M. Jerrum and A. Sinclair. Approximating the
permanent. SIAM Journal of Computing,
18(6):1149–1178, 1989.

[21] J. Kelner and A. Madry. Faster generation of random
spanning trees. In IEEE FOCS, 2009.

[22] D. Kempe and F. McSherry. A decentralized
algorithm for spectral analysis. Journal of Computer
and System Sciences, 74(1):70–83, 2008.

[23] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and
K. Talwar. Efficient distributed approximation
algorithms via probabilistic tree embeddings. In
PODC, pages 263–272, 2008.

[24] M. Khan and G. Pandurangan. A fast distributed
approximation algorithm for minimum spanning trees.
Distributed Computing, 20:391–402, 2008.

[25] S. Kutten and D. Peleg. Fast distributed construction
of k-dominating sets and applications. J. Algorithms,
28:40–66, 1998.

[26] N. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, San Mateo, CA, 1996.

[27] S. Muthukrishnan and G. Pandurangan. The
bin-covering technique for thresholding random
geometric graph properties. In ACM SODA, 2005. To
appear in Journal of Computer and System Sciences.

[28] G. Pandurangan and M. Khan. Theory of
communication networks. In Algorithms and Theory of
Computation Handbook, Second Edition. CRC Press,
2009.

[29] D. Peleg. Distributed computing: a locality-sensitive
approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[30] D. Peleg and V. Rubinovich. A near-tight lower bound
on the time complexity of distributed minimum-weight
spanning tree construction. SIAM J. Comput.,
30(5):1427–1442, 2000. Also in FOCS’99.

[31] R. Sami and A. Twigg. Lower bounds for distributed
markov chain problems. CoRR, abs/0810.5263, 2008.

[32] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, 1985. Also in
FOCS’83.

[33] M. Zhong and K. Shen. Random walk based node
sampling in self-organizing networks. Operating
Systems Review, 40(3):49–55, 2006.

210

