
Sublogarithmic Distributed MIS Algorithm
for Sparse Graphs using Nash-Williams Decomposition

[Extended Abstract]

Leonid Barenboim∗

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, Israel.
leonidba@cs.bgu.ac.il

Michael Elkin∗

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, Israel.
elkinm@cs.bgu.ac.il

ABSTRACT
We study the distributed maximal independent set (hence-
forth, MIS) problem on sparse graphs. Currently, there
are known algorithms with a sublogarithmic running time
for this problem on oriented trees and graphs of bounded
degrees. We devise the first sublogarithmic algorithm for
computing MIS on graphs of bounded arboricity. This is
a large family of graphs that includes graphs of bounded
degree, planar graphs, graphs of bounded genus, graphs of
bounded treewidth, graphs that exclude a fixed minor, and
many other graphs. We also devise efficient algorithms for
coloring graphs from these families.

These results are achieved by the following technique that
may be of independent interest. Our algorithm starts with
computing a certain graph-theoretic structure, called Nash-
Williams forests-decomposition. Then this structure is used
to compute the MIS or coloring. Our results demonstrate
that this methodology is very powerful.

Finally, we show nearly-tight lower bounds on the running
time of any distributed algorithm for computing a forests-
decomposition.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on Discrete Structures; G.2.2 [Graph Theory]:
Network Problems

General Terms
Algorithms

∗This research has been supported by the Israeli cademy
of Science, grant 483/06. Additional funding was provided
by the Lynn and William Frankel Center for Computer Sci-
ences.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

Keywords
MIS, Coloring, Arboricity, Forests Decomposition

1. INTRODUCTION
1.1 MIS
We consider the synchronous message-passing model of

distributed computing. The network is modeled by an un-
weighted undirected n-vertex graph G = (V, E), with every
vertex hosting a processor. The processors communicate
over the edges of G. In each communication round each ver-
tex v ∈ V can send a short message to each of its neighbors,
and these messages arrive before the next round starts. The
processors have distinct identity numbers (henceforth, IDs)
represented by bit strings of length O(log n). For an algo-
rithm A in this model, the running time of A is the (worst-
case) number of rounds of distributed communication that
may occur during an execution of A.

We focus on the maximal independent set (henceforth,
MIS) and coloring problems. A subset I ⊆ V of vertices
is called an MIS of G if (1) for every pair u, w ∈ U of neigh-
bors, either u or w do not belong to I, and (2) for every
vertex v ∈ V , either v ∈ I or there exists a neighbor w ∈ V
of v that belongs to I.

The problem of computing MIS is one of the most fun-
damental problems in the area of Distributed Algorithms.
More than twenty years ago Luby [18] and Alon, Babai, and
Itai [1] devised two logarithmic time randomized algorithms
for this problem on general graphs. These algorithms remain
the state-of-the-art to this date. Awerbuch, Goldberg, Luby,
and Plotkin [3] devised the first deterministic algorithm for
this problem on general graphs, which was later improved
by Panconesi and Srinivasan [20] in 1992. The latter algo-

rithms is the state-of-the-art. Its running time is 2O(
√

log n).
The best-known lower bound for the MIS problem on gen-

eral graphs, Ω(
√

log n
log log n

), is due to Kuhn, Moscibroda, and

Wattenhofer [14].
Cole and Vishkin [5] presented an algorithm for comput-

ing MIS on rings and oriented trees. The running time of
the algorithm of [5] is O(log∗ n). Linial [17] has shown that
this result is tight up to constant factors. In 1988 Goldberg,
Plotkin, and Shannon [11] initiated the study of the MIS
problem on sparse graphs. They devised a deterministic al-
gorithm for the MIS problem on planar graphs that requires
O(log n) time. Their algorithm extends also to graphs of
bounded genus.

In this paper we improve and generalize the result of Gold-
berg et al. [11] and devise a deterministic algorithm for the
MIS problem on graphs of bounded arboricity that requires
time O(log n

log log n
). The arboricity of a graph is a measure for

its sparsity. Sparse graphs have low arboricity. The fam-
ily of graphs of bounded arboricity includes not only planar
graphs, graphs of bounded genus, and graphs of bounded
degree, but also graphs that exclude any fixed minor and
graphs of bounded treewidth. Moreover, a graph with con-
stant arboricity may have genus O(n), and may contain
K√

n as a minor. Consequently, the family of graphs on
which our algorithm constructs MIS in sublogarithmic time
is much wider than each of the families that we have listed
above. Moreover, our result applies also when the arboric-
ity a = a(G) of the input graph G is super-constant (up to

a = log1/2−ε n, for any ε > 0).
To our knowledge, prior to our work the only graph fami-

lies on which there existed a sublogarithmic time algorithm
for the MIS problem were the family of graphs with bounded
degree [11, 16, 17] and the family of graphs with bounded
growth [9]. In other words, our algorithm is the first subloga-
rithmic time (deterministic or randomized) algorithm for the
MIS problem on any graph family other than these two fami-
lies of graphs. Even for the family of unoriented trees, which
is contained in the family of graphs of constant arboricity,
the best previous result has running time of O(log n).

In addition, we show that an MIS on graphs of arboricity
at most a can be computed deterministically in O(a

√
log n+

a log a) time. In particular, this result implies that an MIS
can be computed deterministically in polylogarithmic time
on graphs G with arboricity at most polylogarithmic in n.
Hence we significantly extend the class of graphs on which
an efficient (that is requiring a polylogarithmic time) deter-
ministic algorithm for computing MIS is known.

1.2 Coloring
We also study the coloring problem. This problem is

closely related to the MIS problem, and similarly to the
latter problem, the coloring problem is one of the most cen-
tral and most intensively studied problems in Distributed
Algorithms [10, 11, 17, 16, 24]. The goal of the coloring
problem is to assign colors to vertices so that for each edge
e, the endpoints of e are assigned distinct colors. There is an
inherent tradeoff between the running time of a distributed
coloring algorithm and the number of colors it employs for
coloring the underlying network.

There are efficient algorithms for coloring graphs of
bounded degree. Specifically, for a positive integer parame-
ter ∆, Goldberg, Plotkin, and Shannon [11] devised a (∆ +
1)-coloring algorithm with running time O(∆ log n). Gold-
berg and Plotkin [10] devised an O(∆2)-coloring algorithm
with running time O(log∗ n), for constant values of ∆, and
Linial [17] extended this result to general values of ∆. Re-
cently, Kuhn and Wattenhofer [16] presented a (∆ + 1)-
coloring algorithm with running time O(∆ log ∆ + log∗ n).
For planar graphs, Goldberg et al. [11] devised a 7-coloring
algorithm with running time O(log n), and a 5-coloring al-
gorithm with running time O(log n log log n). (The latter
algorithm assumes that a planar embedding of the input
graph is known to the vertices.)

We significally extend the class of graphs families for which
efficient coloring algorithms are known, and devise a
(b(2 + ε) · ac+1)-coloring algorithm for graphs G of bounded

arboricity a(G) ≤ a that has running time O(a · log n). (The
parameter ε > 0 can be set as an arbitrarily small positive
constant.) In particular, our algorithm 7-colors any graph
of arboricity at most 3 in logarithmic time, subsuming the
result of Goldberg et al. [11]. Moreover, it provides an O(1)-
coloring of any graph of constant arboricity in logarithmic
time. As was discussed above, this family of graphs contains
graphs of bounded degree, graphs of bounded genus, graphs
that exclude any fixed minor, and many other graphs.

We also present two tradeoffs between the running time
of our algorithm and the number of colors it employs. For a
positive parameter q ≥ 1, and an input graph G of arboricity
a = a(G), our first algorithm computes an O(q ·a2)-coloring
of the input graph in time O(log n

log q
+ log∗ n). In addition,

for a positive parameter t, 1 ≤ t ≤ a, our second algorithm
computes an O(t · a)-coloring in time O(a

t
· log n + a · log a).

Finally, we show that for any a and q, any algorithm for
O(q ·a2)-coloring graphs requires Ω(log n

log a+log q
+log∗ n) time,

and thus our first tradeoff is nearly optimal.

1.3 Forests-Decomposition
It is well-known [19] that the edge set E of any graph

G = (V, E) of arboricity a = a(G) can be decomposed into
a edge-disjoint forests. We refer to this decomposition as
the forests-decomposition. This fundamental theorem has
many applications in graph theory and combinatorics (see
[4], and the references therein). However, so far there was
no efficient distributed algorithm known for computing such
a decomposition. A key ingredient in most of our algorithms
for the MIS and coloring problems is an efficient subroutine
for computing forests-decompositions. We demonstrate that
for a parameter q, q ≥ 1, a forests-decomposition into O(q·a)
forests of a graph with arboricity a can be computed (dis-
tributedly) in time O(log n

log q
). We also show a lower bound of

Ω(log n
log q+log a

− log∗ n) for this problem, demonstrating that
our algorithm is near-optimal. Remarkably, all our algo-
rithms in this paper can be applied even when vertices do
not know the arboricity of the underlying graph.

It is plausible that our algorithm for computing forests-
decompositions will be useful for other applications. Hence
we believe that this result is of independent interest.

1.4 Related Work
Recently, MIS and coloring problems were studied on unit

disk, unit ball, and more generally, bounded growth graphs
[15, 13, 9, 22]. Specifically, Kuhn et al. [15] devised a de-
terministic algorithm with running time O(log∗ n) for these
problems on unit ball graphs whose underlying metric is
doubling. This result was extended in [13] to a more gen-
eral family of bounded growth graphs at the expense of
increasing the running time to O(log ∆ · log∗ n). Gfeller
and Vicari devised a randomized algorithm for computing
MIS in O(log log n · log∗ n) time on bounded growth graphs
[9]. Finally, Schneider and Wattenhofer improved this re-
sult and devised a deterministic algorithm with running time
O(log∗ n) for the MIS problem on graphs of bounded growth
[22]. We remark that the family of graphs of bounded growth
and of bounded arboricity are incomparable, i.e., there are
graphs of bounded growth that have large arboricity and
vice versa.

Our algorithm for computing forests-decomposition is
closely related to one of the coloring algorithms from Gold-
berg et al. [11]. However, the latter algorithm does not

explicitly compute a forests-decomposition. An algorithm
that does compute a forests-decomposition explicitly in the
PRAM model of parallel computing was devised by Arikati
et al. [2]. This algorithm computes an unoriented forests-
decomposition, i.e., the computed trees are unrooted and,
consequently, there is no child-parent relationship between
neighboring vertices. Once the decomposition has been com-
puted, each forest is oriented separately. However, this tech-
nique does not guarantee an acyclic orientation which is re-
quired for our coloring algorithms. Moreover, the algorithm
of [2] starts with computing a constant approximation on
the graph arboricity. While this can be accomplished effi-
ciently in the PRAM model, it is not hard to see that in
the distributed model computing such an estimate requires
Ω(n) time. Consequently, the technique of Arikati et al. is
inapplicable in the distributed setting.

Finally, a number of recent papers considered the effect of
”sense of direction” or ”orientation” on distributed compu-
tation [23, 12]. In particular, Kothapalli et al. [12] showed
that if the graph G is provided with an orientation that sat-
isfies a certain helpful property then an O(∆)-coloring of G
can be constructed in O(log ∆ +

√
log n log log n) time with

high probability. However, unfortunately, it is currently not
known whether such an orientation can be constructed as
efficiently from scratch.

1.5 The structure of the paper
In Section 3 we present our algorithm for computing a

forests-decomposition. In Section 4 we present an O(a)-
coloring algorithm with running time O(a · log n). In Section
5 we demonstrate that if the algorithm is allowed to use more
than O(a) colors, then coloring can be accomplished much
faster. In Section 6 we utilize the results of Section 5 to
devise our sublogarithmic algorithm for the MIS problem,
and present our lower bounds.

Due to space limitations, in this extended abstract start-
ing from Section 4 we assume that the value a = a(G) of the
arboricity of the input graph is known to the vertices before
the computation starts. However, all our algorithms can
be extended to the scenario when the arboricity is unknown
to the vertices using techniques similar to those presented in
Section 3.2. The time complexity of the extended algorithms
grows only by constant factors.

Also, some proofs are omited from this extended abstract.

2. PRELIMINARIES
2.1 Definitions and Notation
Unless the base value is specified, all logarithms in this

paper are of base 2.
For a non-negative integer i, the iterative log-function log(i)(·)
is defined as follows. For a positive integer n, log(0) n =
n, and log(i+1) n = log(log(i) n), for every i = 0, 1, 2,
Also, for a positive integer n, log∗ n is defined by: log∗ n =

min
{

i | log(i) n ≤ 2
}

.

The degree of a vertex v in a graph G = (V, E), denoted
deg(v), is the number of edges incident to v. A vertex u
such that (u, v) ∈ E is called a neighbor of v in G. For a
subset U ⊆ V , the degree of v with respect to U , denoted
deg(v,U), is the number of neighbors of v in U . The maxi-
mum degree of a vertex in G, denoted ∆(G), is defined by
∆(G) = maxv∈V deg(v). The graph G′ = (V ′, E′) is a sub-
graph of G = (V, E), denoted G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E.

The out-degree of a vertex v in a directed graph G is the
number of edges connected to v that are oriented outwards
of v.
A directed cycle in a directed graph G is a cycle whose edges
are oriented consistently, e.g., each vertex in the cycle is con-
nected to one outgoing edge and one incoming edge of the
cycle.
An orientation of (the edges of) an undirected graph G is
an assignment µ of direction to each edge of G. An orien-
tation is acyclic if the resulting directed graph Ĝ contains
no directed cycles. An out-degree of a vertex v in G with
respect to an orientation µ, or shortly, µ-out-degree, is the
out-degree of v in Ĝ. An outgoing edge of v in Ĝ is called
an outgoing edge with respect to µ, or shortly, a µ-outgoing
edge.
The arboricity of a graph G = (V, E) is defined by: a(G) =

max
{⌈

|E(G′)|
|V (G′)|−1

⌉∣∣∣ G′ ⊆ G, |V (G′)| ≥ 2
}

.

If the graph G can be understood from the context, we
use the notation ∆ (respectively, a) as a shortcut for ∆(G)
(resp., a(G)).
A coloring ϕ : V → IIN that satisfies ϕ(v) 6= ϕ(u) for each
edge (u, v) ∈ E is called a legal coloring

Some of our algorithms use as a black-box an algorithm
due to Kuhn and Wattenhofer [16] that (∆ + 1)-colors any
graph G with maximum degree ∆ in time O(∆ · log ∆ +
log∗ n). We will refer to this algorithm as KW Coloring Al-
gorithm.

2.2 Graph Parameters and Classes
It follows from the definition of arboricity that a(G) ≤

∆(G), and thus, the family of graphs with bounded arboric-
ity contains the family of graphs with bounded degree.

For a graph G of bounded genus g, by Euler formula,
|E| ≤ 3|V |−6+6 · g, and thus, a(G) = O(1+ g/|V |). Hence
the family of graphs of genus g = O(n) is contained in the
family of graphs of bounded arboricity.

Another important graph family that is contained in the
family of graphs with bounded arboricity is the family of
graphs that exclude a fixed minor. Given an edge e = (x, y)
of a graph G, the graph G/e is obtained from G by con-
tracting the edge e, that is, by identifying the vertices x and
y, and removing all self-loops. In addition, for each pair of
nodes u and w for which the resulting graph has now more
than one edge, we replace all these edges with a single edge
(u, w). A graph H ′ that is obtained from G by a sequence
of edge contractions is called a contraction of G, and a sub-
graph H of a contraction of G is called a minor of G. For a
fixed graph H, a graph family G is said to exclude a minor
H if for every graph G ∈ G, H is not a minor of G.

It is well-known (see, e.g., [6] Theorem 7) that for any
fixed graph H there exists a number aH such that every
graph G that excludes minor H has arboricity at most aH .
Consequently, the family of graphs that exclude a fixed mi-
nor is contained in the family of graphs with bounded ar-
boricity.

The same is true for graphs with bounded treewidth. For
a positive integer parameter k, we say that a vertex v is a
k-simplicial vertex if the set of its neighbors forms a clique
of size k, Kk. A k-tree is a graph G that is either isomorphic
to Kk, or G has a k-simplicial vertex v and the graph G \ v
obtained by removing v from G is a k-tree. A treewidth
of a graph G is the minimum k such that G is a spanning

subgraph of a k-tree. It is well-known that a graph with
treewidth k has arboricity at most k. (See, e.g., [7] Theorem
2). Consequently, the family of graphs of bounded treewidth
is contained in the famiy of graphs of bounded arboricity.

3. FORESTS-DECOMPOSITION
In this section we present a distributed algorithm that

computes a forests-decomposition with (2+ ε) ·a forests, for
an arbitrarily small constant parameter ε > 0. This algo-
rithm is a basic building block in most of our coloring algo-
rithms. Some of them invoke this algorithm directly. Other
algorithms do not employ it as a black-box, but rather use
the partition of the vertex set V produced by this algorithm.

In Section 3.1 we present a simpler variant of our algo-
rithm for computing a forests decomposition that applies to
the scenario in which both the number of vertices n and the
arboricity a = a(G) of the input graph are known to all
vertices before the computation starts. In Section 3.2 we
extend the algorithm to scenarios in which one of those pa-
rameters is not known in the beginning of the computation.

3.1 Known arboricity
On the first step, our algorithm for computing a forests-

decomposition, henceforth Procedure Forests-Decomposition,
invokes the partitioning subroutine called Procedure Parti-
tion. Both Procedure Forests-Decomposition and Procedure
Partition accept as input two parameters. The first param-
eter is the arboricity of the input graph, and the second
parameter ε is a positive real number. Procedure Partition
partitions the vertex set of the graph into ` =

⌊
2
ε
log n

⌋
disjoint subsets H1, H2, ..., H` that satisfy that every vertex
v ∈ Hi, i ∈ {1, 2, ..., `}, has at most (2 + ε) · a neighbors in

the vertex set
⋃`

j=i Hj , i.e., deg(v,
⋃`

j=i Hj) ≤ (2 + ε) · a.
We will henceforth refer to partitions that satisfy this prop-
erty as H-partitions with degree at most (2 + ε) · a and size
` = O(log n).

During the execution of this procedure each vertex in V is
either active or inactive. Initially, all the vertices are active.
For every i = 1, 2, ..., `, on the ith round each active vertex
with at most (2+ ε) ·a active neighbors joins the set Hi and
becomes inactive. The pseudo-code of Procedure Partition is
presented below. In all our algorithms the presented pseudo-
code is for a given vertex v, and it is executed in parallel by
all vertices in the network.

Algorithm 1 Procedure Partition(a,ε): partitions the ver-
tices into ` =

⌊
2
ε
log n

⌋
sets such that every vertex v ∈ Hi,

i ∈ {1, 2, ..., `}, has at most (2 + ε) · a neighbors in
⋃`

j=i Hj .

Initially all vertices are active.

1: for round i = 1, 2, ..., ` do
2: if v is active and has at most (2+ε)·a active neighbors

then
3: make v inactive
4: add v to Hi

5: send the messages ’inactive’ and ’v joined Hi’ to all
the neighbors

6: end if
7: for each received ’inactive’ message do
8: mark the sender neighbor as inactive
9: end for

10: end for

The next lemma shows that if all the vertices execute this
procedure with ` =

⌊
2
ε
log n

⌋
, then each vertex in the net-

work becomes inactive during the execution, and joins one
of the sets H1, H2,, H`.

Lemma 3.1. A graph G = (V, E) with arboricity a(G) has
at least ε

2+ε
· |V | vertices with degree (2 + ε) · a or less.

Proof. Suppose for contradiction that there are more
than 2

2+ε
· |V | vertices with degree greater than (2 + ε) · a.

It follows that
2|E| =

∑
v∈V deg(v) > ((2 + ε) · a) · |V | · 2

2+ε
= 2 · a · |V |

≥ 2 · |E|
|V |−1

· |V | > 2|E|. This is a contradiction. 2

By the definition of arboricity, the subgraph induced by
any subset of V of active vertices has arboricity at most a.

Lemma 3.2. For any subgraph G′ of G, the arboricity of
G′ is at most the arboricity of G.

By Lemmas 3.1-3.2, on each round at least (ε
2+ε

)-fraction
of the active vertices become inactive, and so after log(2+ε)/2 n
rounds all vertices become inactive. Since log(2+ε)/2 n ≤
2
ε
log n for ε, 0 < ε ≤ 2, we have proved the following lemma.

Lemma 3.3. For a graph G with a(G) = a, and a pa-
rameter ε, 0 < ε ≤ 2, Procedure Partition(a,ε) produces an

H-partition H = H1, H2,, H` of size ` ≤
⌊
log(2+ε)/2 n

⌋
≤⌊

2
ε
log n

⌋
.

The next lemma shows that the H-partition H has a small
degree.

Lemma 3.4. The H-partition H = {H1, H2, ..., H`} , ` ≤⌊
2
ε
log n

⌋
, has degree at most (2 + ε) · a.

Proof. The vertex v was added to Hj on round num-
ber j. Every neighbor of v that belongs to one of the sets
Hj , Hj+1, ..., H` was added to its set on round j or later.
Therefore, at the end of round j − 1 all its neighbors in
Hj ∪ Hj+1 ∪ ... ∪ H` were active. The vertex v has been
added because the number of its active neighbors was at
most (2 + ε) · a. Thus the number of the neighbors of v in
Hj ∪Hj+1 ∪ ... ∪H` is at most (2 + ε) · a. 2

We summarize the properties of Procedure Partition in
the following theorem.

Theorem 3.5. For a graph G with arboricity a(G) = a,
and a parameter ε, 0 < ε ≤ 2, Procedure Partition(a, ε)
computes an H-partition of size ` ≤

⌊
2
ε
log n

⌋
with degree

at most (2 + ε) · a. The running time of the procedure is
O(log n).

We will also use this procedure with second parameter q ≥
2. (For convenience, we call this parameter ε when it is at
most 2, and q when it is larger than 2.) Observe that Lemma
3.1 is applicable for all values of the second parameter. The
number of rounds required to make all vertices inactive is
at most log 2+q

2
n = O(log n

log q
), and thus, for q > 2, we set

` =
⌊
log 2+q

2
n
⌋
. Hence the resulting H-partition has size

O(log n
log q

) as well. On the other hand, by Lemma 3.4, the

degree of the H-partition is at most (2 + q) · a.

Corollary 3.6. For a graph G with arboricity a(G) = a,
and a parameter q, q > 2, Procedure Partition(a,q) computes
an H-partition of size O(log n

log q
) with degree at most (2+q) ·a.

The running time of the procedure is O(log n
log q

).

On the next step Procedure Forests-Decomposition orients
the edges of the graph as follows. For each edge e = (u, v), if
the endpoints u, v are in different sets Hi, Hj , i 6= j, then the
edge is oriented towards the vertex in the set with a greater
index. Otherwise, if i = j, the edge e is oriented towards
the vertex with a greater ID among the two vertices u and
v. The orientation µ produced by this step is acyclic. By
Lemma 3.4, each vertex has µ-out-degree at most (2+ ε) · a.
This step is called Procedure Orientation.

Finally, on the last step Procedure Forests-Decomposition
partitions the edge set of the graph into forests. Each vertex
is in charge for its outgoing edges, and it assigns each outgo-
ing edge a different label from the set {1, 2, ..., b(2 + ε) · ac}.
This step will be henceforth referred as the labeling step. It
will later be shown that for each index i, the set of edges
labeled by i forms a forest.

Algorithm 2 Forests-Decomposition(a,ε): partition the
edge set into b(2 + ε) · ac forests.

1: Invoke Procedure Partition(a, ε)
2: µ := Orientation()
3: Assign a distinct label to each µ-outgoing edge of v from

the set {1, 2, ..., b(2 + ε) · ac}

The time complexity of Procedure Partition is O(log n),
and the steps 2 and 3 of Procedure Forests-Decomposition,
orienting and labeling the edges, require O(1) rounds each.
Hence the overall time complexity of the forests- decompo-
sition algorithm is O(log n).

Lemmas 3.7-3.9 constitute the proof of correctness of the
algorithm for computing forests-decomposition.

Lemma 3.7. The orientation µ formed by the algorithm is
consistent.

Lemma 3.8. The orientation µ formed by the algorithm is
acyclic.

The correctness of the last lemma follows from the fact
that the orientation µ guarantees that each cycle contains a
vertex with two outgoing edges.

For each i = 1, 2, ..., `, consider the graph Gi = G(Hi)
induced by the set Hi. Lemma 3.4 implies that the maxi-
mum degree ∆(Gi) of a vertex in Gi is at most (2 + ε) · a.
Moreover, a stronger result follows:

Lemma 3.9. Each vertex has µ-out-degree at most (2+ε)·a.

By Lemma 3.9, once the orientation µ is formed, each
vertex can assign distinct labels to its outgoing edges from
the range 1, 2, ..., b(2 + ε) · ac. The next lemma shows that
the undirected graph induced by the set of edges labeled
with the label i does not contain cycles.

Lemma 3.10. For each label i, the set of edges labeled by i
forms a forest.

Proof. By Lemma 3.8 , each cycle of G has a vertex
with two outgoing edges on this cycle. Suppose for con-
tradiction that there is a cycle C with all edges labeled by
the same label i. There exists a vertex v in this cycle and
two edges e1, e2 adjacent to v oriented outwards of v. Thus,
the algorithm labeled the edges e1, e2 with different labels,
contradiction. 2

We summarize this section with the following corollary.

Corollary 3.11. For a graph G with arboricity a = a(G),
and a parameter ε, 0 < ε ≤ 2,
Procedure Forests-Decomposition(a, ε) partitions the edge
set of G into b(2 + ε) · ac forests in O(log n) rounds. More-
over, as a result of its execution each vertex v knows the
label and the orientation of every edge (v, u) adjacent to v.

Similarly to Procedure Partition, Procedure Forests- De-
composition can be invoked with second parameter q > 2.
Lemmas 3.7 - 3.10 stay unchanged, and thus we obtain the
following corollary.

Corollary 3.12. For a graph G with a(G) = a, and a pa-
rameter q, q > 2, Procedure Forests-Decomposition(a, q)
partitions the edge set of G into at most (2 + q) · a forests
within time O(log n

log q
).

An outgoing edge from a vertex u to a vertex v labeled
with a label i means that v is the parent of u in a tree of
the ith forest Fi.

3.2 General scenarios
For Algorithm 2 to work properly, each vertex needs to

know the number of vertices n, and the arboricity of the
graph a at the beginning of the computation. (The number
of vertices is required for the vertices to be able to compute
the value

⌊
2
ε
log n

⌋
.) In this section we extend the algorithm

to apply to the scenario in which one of these parameters is
not known to the vertices when the computation starts.

If only the number of vertices n is known, we compute a
2·(2+ε)·a forests-decomposition without a priori knowledge
of a in O(log n) rounds by the following algorithm. First, we
extend Procedure Partition to this scenario. The generalized
procedure is called Procedure General-Partition.

Procedure General-Partition invokes a procedure similar
to Procedure Partition(a,ε) for dlog ne+ 1 times in parallel.
The ith invocation of this procedure accepts as input a = 2i,
for i = 0, 1, ..., dlog ne. Each vertex v maintains a boolean
activity array Av, and round numbers array Rv. The entry
Av[i] is equal to 1 if v is currently active in the invocation of
Procedure Partition with the parameter a = 2i. Henceforth
we say that v is i-active (respectively, i-inactive) if it is ac-
tive (resp., inactive) with respect to invocation i. Initially,
all vertices are i-active in all invocations, i.e., Av[i] = 1
for all i. On every round, each i-active vertex v that has
at most (2 + ε) · 2i i-active neighbors becomes i-inactive,
and the value of Av[i] is set to 0. In addition, the round
number in which it became i-inactive is recorded in Rv[i].
We remark that some vertices may stay i-active in some
invocation i during the entire execution of the algorithm.
However, by a previous argument, when the process stops
after k =

⌊
2
ε
log n

⌋
rounds, for all vertices v in the graph G

and for all indices i such that a(G) ≤ 2i ≤ n, the vertex v
is i-inactive, i.e., Av[i] = 0.

On round k+1 each vertex v joins a set Hind, 1 ≤ ind ≤ `,
for ` = O(log a log n). The index ind of the set Hind depends
on the invocation with the smallest index m in which v be-
came m-inactive, and on the number of the round Rv[m]
in which it became m-inactive. Note that v had at most
(2 + ε) · 2m m-active neighbors when it became m-inactive.
All other neighbors w became m-inactive before v did. The
index ind of v is computed by the formula ind = ind(v) =
m ·

⌊
2
ε
log n

⌋
+ Rv[m].

For the index ind as above, the set Hind is said to belong
to the class m. The collection of sets Hind that belong to the

class m is denoted Cm. Observe that there may exist indices
q ∈ {1, 2, ..., `} for which no vertex v satisfies ind(v) = q.
The corresponding sets Hq are set as empty, i.e, Hq := ∅.

The pseudo-code of the algorithm is provided below.

Algorithm 3 General-Partition(ε)

Each vertex maintains an activity array Av of size dlog ne+1.
Initially for each vertex v, Av[i] = 1 for i = 0, 1, ..., dlog ne.
set k =

⌊
2
ε
log n

⌋
1: for round i := 1, 2, ..., k do
2: for j := 0, 1, ..., dlog ne in parallel do
3: Sum[j] :=

∑
u∈adj(v) Au[j] /* sum of arrays of

neighbors of v */
4: end for
5: for j := 0, 1, ..., dlog ne in parallel do
6: if Av[j] = 1 and Sum[j] ≤ (2 + ε) · 2j then
7: /* if v has ≤ (2 + ε) · 2j active neighbors in the

invocation j */
8: Av[j] := 0
9: Rv[j] := i

10: end if
11: end for
12: send the array Av to all the neighbors
13: end for
14: m := min {i | Av[i] = 0, i = 0, 1, ..., dlog ne}
15: ind := m · k + Rv[m]
16: join the set Hind

17: send the message ’v joined Hind’ to all neighbors

Note that on step 11 only O(log n) bits are sent in each
message.

Next, we show that the degree of the H-partition H =
{H1, H2, ..., H`} is O(a(G)).
Recall that for a vertex v and a set Hi, we say that the set
Hi is the set of v if v ∈ Hi.
The index i as above is called the H-index of v.

Lemma 3.13. For an index m = 1, 2, ..., dlog ne, a set
Hind ∈ Cm, and a vertex v ∈ Hind,
(1) deg(v,

⋃`
j=ind Hj) ≤ (2 + ε) · 2 · a(G).

(2) deg(v,
⋃
{Hj | Hj ∈ Cm, j ≥ ind}) ≤ (2 + ε) · 2m.

Proof. For a neighbor w that became m-inactive before
v did, the number of the invocation with the smallest index
q in which w becomes q-inactive at some point during the
execution is less or equal to m. If q < m then

ind(w) = q·
⌊

2

ε
log n

⌋
+Rw[q] ≤ ind(v) = m·

⌊
2

ε
log n

⌋
+Rv[m],

because 1 ≤ Rw[q], Rv[m] ≤
⌊

2
ε
log n

⌋
. If q = m then

Rw[m] < Rv[m], since w became m-inactive before v did.
Hence in this case as well, ind(w) < ind(v). Since v has at
most (2+ε)·2m other neighbors, the number of neighbors of v
with an H-index greater or equal than the H-index ind of v is
at most (2+ε)·2m. Hence deg(v,

⋃
{Hj | Hj ∈ Cm, j ≥ ind})

≤ deg(v,
⋃`

j=ind(v) Hj) ≤ (2+ε) ·2m, proving the second as-

sertion of the lemma. Since for all i such that a(G) ≤ 2i ≤ n,
at the end of the execution Av[i] = 0 holds, it follows that
2m ≤ 2 · a(G). Therefore, the overall number ` of sets Hi

is at most log(2 · a(G)) ·
⌊

2
ε
log n

⌋
= O(log a(G) · log n).

Also, it follows that for a vertex v ∈ Ht, t = 1, 2,, `,
deg(v,

⋃`
j=t Hj) ≤ (2 + ε) · 2m ≤ (2 + ε) · 2 · a(G), proving

the first assertion. 2

The algorithm for computing the forests-decomposition
when only n is known, Procedure General-Forests- Decom-
position, starts with invoking Procedure General-Partition
with input ε. Step 2, Procedure Orientation, is executed
exactly as in Algorithm 2, and produces an orientation µ
of the graph. Finally, on the Labeling step each vertex that
has δ outgoing edges with respect to µ assigns distinct labels
to its outgoing edges from the set {1, 2, ..., δ}. By the same
argument as in the proof of Lemma 3.8, the orientation µ is
an acyclic orientation. Also, by Lemma 3.9, for every vertex
v the µ-out-degree of v is at most 2 · (2 + ε) · a(G).

The properties of Procedure General-Forests- Decomposi-
tion are summarized in the following corollary.

Corollary 3.14. Procedure General-Forests-Decomposition(ε)
computes a forests-decomposition of the input graph G =
(V, E) into O(a(G)) forests. In addition, the procedure pro-
duces an H-partition of size O(log a log n) and degree at
most (2 + ε) · 2 · a(G). The running time of the procedure is
O(log n).

We remark that the upper bound on the degree of the H-
partition can be made as close to (2+ε) ·a(G) as one wishes,
at the expense of increasing its size and the running time of
the procedure by a constant factor.

One can also run Procedure General-Forests-Decomposition
with an input parameter q, q > 2. By the same consider-
ations, this way we obtain a forests-decomposition into at
most a(G)·(2+q) forests in time O(log n

log q
), and an H-partition

of size O(log a · log n
log q

) and degree at most a(G) · (2 + q).

4. O(A)-COLORING
In this section we employ the Forests-Decomposition algo-

rithm described in Section 3 to devise an efficient algorithm,
called Procedure Arb-Color, that colors the input graph G
of arboricity a = a(G) in (b(2 + ε) · ac + 1)-colors, for an
arbitrarily small parameter ε > 0. The running time of the
algorithm is O(a · log n). We present the algorithm for the
scenario when all vertices know both the number of ver-
tices n, and the arboricity at the beginning of computa-
tion. The algorithm can be extended to the scenarios in
which the arboricity or the number of vertices is not known
in advance, using standard synchronization techniques in
Procedure Arb-Color on top of Procedure General-Forests-
Decomposition. The number of colors in the extended algo-
rithm is not affected, and the running time grows only by a
constant factor.

Set A = b(2 + ε) · ac. We say that a color c is admissible
for a vertex v with respect to the vertex set H if each neighbor
of v in G(H) has a color different from c. We will prove that
whenever a vertex is required to choose an admissible color
by the algorithm, there is at least one such a color in the
range 1, 2, , ..., A + 1.

The algorithm starts by executing Procedure Forests- De-
composition with the input parameter a = a(G). This in-
vocation returns an H-partition of G of size ` ≤

⌊
2
ε
log n

⌋
and degree at most A. Then, for each index i, the graph
Gi = G(Hi) induced by the set Hi is colored using the
KW (∆ + 1)-coloring algorithm. By Lemma 3.4, for all i,
i = 1, 2, ...,

⌊
2
ε
log n

⌋
, the subgraph Gi satisfies ∆(Gi) ≤ A.

Hence the algorithm colors each graph Gi with at most
A + 1 colors. The resulting coloring is not necessarily a
legal coloring for the entire network G. We then convert

it into a legal (A + 1)-coloring for G using the subrou-
tine Recolor . The latter subroutine accepts as input the
H-partition H1, H2, ..., H` that satisfies the above proper-
ties, with each set Hi being (A + 1)-colored legally. Proce-
dure Recolor merges these (A+1) colorings of H1, H2, ..., H`

into a unified legal (A + 1)-coloring of the entire vertex set

V =
⋃`

i=1 Hi.
The vertices of the set H` retain their colors. Vertices of

the sets H1, H2, ..., H`−1 are recolored iteratively. On the
first iteration vertices of the set H`−1 are recolored, and in
the end of this iteration the set H`−1∪H` is (A+1)-colored
legally. More generally, for i = 1, 2, ..., `− 1, before the iter-
ation i starts the set

⋃`
j=`−i+1 Hj is (A + 1)-colored legally.

On iteration i vertices of the set H`−i are recolored, and in
the end of this iteration the set

⋃`
j=`−i Hj is (A+1)-colored

legally. The algorithm maintains also an auxiliary set W of
vertices that were already recolored. Before the iteration i
starts, W =

⋃`
j=`−i+1 Hj , and during the iteration i it holds

that
⋃`

j=`−i+1 Hj ⊆ W ⊆
⋃`

j=`−i Hj .

To recolor the set H`−i (on the ith iteration of Proce-
dure Recolor), the algorithm uses the (A + 1)-coloring ϕ of
H`−i that was computed on step 2. Specifically, the algo-
rithm recolors one color class of H`−i at a time. It starts
with finding (in parallel) an admissible color from the set
{1, 2, ..., A + 1} with respect to W for every vertex v ∈ H`−i

such that ϕ(v) = 1.
Observe that for every vertex v ∈ H`−i, deg(v, W) ≤

deg(v,
⋃`

j=`−i Hj) ≤ A, and thus, there necessarily exists
an admissible color for v with respect to W in the set
{1, 2, ..., A + 1}. In addition, since ϕ is a legal coloring of
H`−i, it follows that the vertex set
H1

`−i = {v ∈ H`−i | ϕ(v) = 1} is an independent set, and
thus vertices of H1

`−i can be recolored in parallel. Once H1
`−i

is recolored, the algorithm proceeds to recoloring H2
`−i =

{v ∈ H`−i | ϕ(v) = 2}, H3
`−i = {v ∈ H`−i | ϕ(v) = 3},...,

HA+1
`−i = {v ∈ H`−i | ϕ(v) = A + 1}. Later we argue that

the resulting (A + 1)-coloring of
⋃`

j=`−i Hj is legal.
The pseudo-code of Procedure Arb-Color is provided be-

low.

Algorithm 4 Procedure Arb-Color(a,ε)

1: H = (H1, H2..., H`) := Forests-Decomposition(a,ε).
2: In parallel, color each graph Gi, i = 1, 2, ..., `,

with A + 1 colors using the KW coloring algorithm.
Denote the resulting colorings ϕi, i = 1, 2, ..., `.

3: Recolor(H).

Algorithm 5 Procedure Recolor (H = (H1, H2, ..., H`))

1: W := ∅
2: for i := `− 1 downto 1 do
3: for round k from 1 to A + 1 do
4: for each vertex v in Hi such that ϕi(v) = k do
5: recolor v with a color from {1, 2, ..., A + 1} that

is admissible with respect to W
6: W := W ∪ {v}
7: end for
8: end for
9: end for

The next corollary follows directly from Lemma 3.4.

Corollary 4.1. For and index i, i = 1, 2, ..., `, and any
coloring of the vertices of G, legal or illegal, each vertex
v that belongs to Hi has an admissible color in the range
1, 2, ..., A + 1 with respect to

⋃`
j=i Hj.

The correctness of Procedure Arb-Color is proven in the
next theorem.

Theorem 4.2. Procedure Arb-Color produces a legal (A +
1)-coloring.

Proof. Step 1 of Algorithm 4 divides the vertex set V
of the graph G into ` = O(log n) sets Hi. By Lemma 3.4,
for each index i, i = 1, 2, ..., `, the maximum degree of Gi =
G(Hi) is at most A. Step 2 of Algorithm 4 produces a legal
(A + 1)-coloring for each Gi, i = 1, 2, ..., `.
We prove by induction on i that Procedure Recolor produces
a legal (A + 1)-coloring for the graph induced by H`−i ∪
H`−i+1 ∪ ... ∪H`.
Base (i = 0): Step 2 of Procedure Arb-Color produces a
legal coloring for H`. This coloring does not change in step
3. Therefore, when the algorithm terminates, G` is (A + 1)-
colored legally.
Induction step: Let ϕ denote the (A + 1)-coloring of the

graph G(
⋃`

j=`−i+1 Hj) produced by the first i− 1 iterations
of Procedure Recolor. By the induction hypothesis, ϕ is a
legal (A+1)-coloring. Also, let ϕ`−i denote the legal (A+1)-
coloring of G`−i produced on step 2 of Procedure Arb-Color.

We argue that the ith iteration produces a legal (A + 1)-

coloring ϕ′ for G(
⋃`

j=`−i Hj). Consider two neighboring ver-

tices u, v in
⋃`

j=`−i Hj . If they both belong to
⋃`

j=`−i+1 Hj

then their colors do not change during the ith iteration, and
so ϕ′(u) = ϕ(u) 6= ϕ(v) = ϕ′(v), as required. If they both
belong to H`−i then ϕ`−i(u) 6= ϕ`−i(v). In other words, u
and v were colored differently before the ith iteration has be-
gan. Hence u and v select their respective colors ϕ′(u) and
ϕ′(v) on different rounds of the ith iteration. Suppose with-
out loss of generality that v selects a color after u does so.
Since v selects an admissible color ϕ′(v) with respect to W
and u ∈ W is a neighbor of v, it follows that ϕ′(u) 6= ϕ′(v).

Finally, we are left with the case that one of the vertices
u and v belongs to H`−i, and the other to

⋃`
j=`−i+1 Hj .

Suppose without loss of generality that u ∈ H`−i and v ∈⋃`
j=`−i+1 Hj . In this case the color of v does not change

on the ith iteration, i.e., ϕ′(v) = ϕ(v). When the vertex u
sets its color ϕ′(u) it selects an admissible color. Since v is
a neighbor of u, it follows that ϕ′(u) 6= ϕ′(v), and we are
done. 2

Recall that A = O(a), and thus, Procedure Arb-Color
produces an O(a)-coloring of the input graph.

Lemma 4.3. The time complexity of Procedure Arb-Color
is O(a log n).

Proof. By Corollary 3.11, Procedure Forests- Decompo-
sition requires O(log n) rounds. Let i be the index such that
the maximum degree of Gi is the largest among G1, G2, ..., G`.
Since the graphs G1, G2, ..., G` are colored in parallel, step 2
of Algorithm 4 requires O(∆(Gi)·log ∆(Gi)+log∗ n) rounds.
In addition, the maximum degree of Gi is at most A for ev-
ery index i = 1, 2, ..., `, and A = O(a). Hence, it follows that
the time complexity of step 2 is O(a log a + log∗ n). Step 3
of Algorithm 4, Procedure Recolor, invokes `− 1 = O(log n)
iterations, each running for A + 1 rounds. Hence this step
requires O(a log n) rounds. 2

We summarize this section with the following theorem.

Theorem 4.4. For a graph G with arboricity a = a(G), and
a positive parameter ε, 0 < ε ≤ 2, Procedure Arb-Color(a,
ε) computes an O(a) coloring of G in time O(a log n).

We remark that invoking Procedure Arb-Color with q > 2
as second parameter results in inferior results than those
given by Theorem 4.4.

5. FASTER COLORING
In this section we present two algorithms. Both algo-

rithms exhibit tradeoffs between the running time and the
number of colors that they employ. For a positive param-
eter t, 1 ≤ t ≤ a, our first algorithm, Procedure Tradeoff-
Color, computes an O(t · a)-coloring in time O(a

t
· log n +

a log a). Our second algorithm, Procedure Tradeoff-Arb-
Linial, achieves an O(q · a2)-coloring within time O(log n

log q
+

log∗ n). Again, we assume that the arboricity and the num-
ber of vertices are known in advance, but it is possible to
extend those algorithms to general scenarios.

5.1 Procedure Tradeoff-Color
Similarly to Procedure Arb-Color (Algorithm 4), Proce-

dure Tradeoff-Color consists of three steps. Moreover, steps
1 and 2 are exactly the same as in Procedure Arb-Color,
and the only difference is that on step 3 it invokes Proce-
dure Tradeoff-Recolor instead of Procedure Recolor.

Similarly to Procedure Recolor, Procedure Tradeoff-Recolor
accepts as input the H-partition H = {H1, H2, ..., H`} of the
graph G computed by Procedure Forests-Decomposition on
step 1. Both Procedure Recolor and Procedure Tradeoff-
Recolor proceed iteratively, and in both procedures vertices
of the set H` retain their colors, and on iteration i, i =
1, 2, ..., ` − 1, vertices of the set H`−i are recolored. The
difference between the two procedures is that while in Pro-
cedure Recolor each color class of H`−i is recolored in a
separate round, Procedure Tradeoff-Recolor recolors roughly
t color classes of H`−i on the same round. Specifically,
Procedure Tradeoff-Color groups the (A + 1) color classes
C1, C2, ..., CA+1 of H`−i into p =

⌈
A+1

t

⌉
disjoint subsets

S1, S2, ..., Sp. Each subset Sj , j = 1, 2, ..., p, contains the
color classes Cr with indices
r ∈ Ij = {(j − 1)t + 1, (j − 1)t + 2, ..., min {j · t, p}}.

The ith iteration of Procedure Tradeoff-Recolor continues
for p rounds. On round j, j = 1, 2, ..., p, vertices of color
classes Cr, r ∈ Ij , are recolored in parallel. To guarantee
that no pair of neighboring vertices u ∈ Cr, w ∈ C′

r, r 6=
r′, r, r′ ∈ Ij , will select the same color, the color classes
{Cr | r ∈ Ij} are assigned disjoint palettes {Pr | r ∈ Ij},
Pr = {(A + 1)(r − 1− (j − 1)t) + 1,
(A+1)(r−1−(j−1)t)+2,, (A+1)(r−1−(j−1)t)+(A+1) }.

In other words, the color class C(j−1)t+1 is assigned the
palette P(j−1)t+1 = {1, 2, ..., A + 1}, the color class C(j−1)t+2

is assigned the palette P(j−1)t+2 = {(A + 1) + 1, (A + 1) + 2,
..., 2(A + 1) }, etc.

Consider a vertex v ∈ Cr, r ∈ Ij . On round j of the
ith iteration the vertex v selects an admissible color from
its palette Pr with respect to the set W of already recol-
ored vertices. This completes the description of Procedure
Tradeoff-Recolor.

Since each palette Pr contains (A+1) colors, and deg(v, W)

≤ deg(v,
⋃`

j=`−i Hj) ≤ A, it follows that there necessarily

exists an admissible color for v with respect to W . An in-
ductive argument similar to the one employed in the proof of
Theorem 4.2 shows that Procedure Tradeoff-Color produces
a legal coloring.

For an upper bound on running time, observe that Proce-
dure Tradeoff-Recolor runs for O(log n) iterations, and each
iteration requires

⌈
A+1

t

⌉
= O(a

t
) rounds. Hence the run-

ning time of Procedure Tradeoff-Recolor is O(a
t

log n). The
running time of step 1 of Procedure Tradeoff-Color, that is,
of Procedure Forests-Decomposition, is O(log n). Finally,
step 2 of Procedure Tradeoff-Color (see step 2 of Procedure
Arb-Color, Algorithm 4) requires O(a log a+log∗ n) rounds.
Hence the overall running time of Procedure Tradeoff-Color
is O(a

t
· log n + a log a).

However, the improved running time of Procedure Tradeoff-
Color has a price. Specifically, since we used t disjoint
palettes of size A + 1 each, the number of colors that were
used is t · (A + 1) = O(t · a). We summarize the properties
of Procedure Tradeoff-Color in the following theorem.

Theorem 5.1. For a positive parameter t, 1 ≤ t ≤ a, Pro-
cedure Tradeoff-Color produces a legal O(a ·t)-coloring of the
input graph in time O(a

t
· log n + a log a).

5.2 Procedures Arb-Linial and Tradeoff-Arb-Linial
Observe that by substituting t = a in Theorem 5.1 we ob-

tain an O(a2)-coloring algorithm with running time O(log n+
a log a). Next, we present another O(a2)-coloring algorithm
that has an even better running time of O(log n). The im-
proved algorithm, Procedure Arb-Linial, like the algorithm
of Linial [17], relies on the following combinatorial result by
Erdős et al. [8]. (The proof can also be found in [17]).

Theorem 5.2. For positive integers n′ and r, n′ > r, there
exists a family Q̂ = Q̂(n′, r) of n′ subsets of{
1, 2, ...,

⌈
5r2 · log n′

⌉}
that satisfies that for every r +1 sets

Q0, Q1, ..., Qr ∈ Q̂, Q0 /∈
⋃r

i=1 Qi.

Our algorithm consists of two steps. On the first step
it constructs a forests-decomposition F = {F1, F2, ..., FA}
of the input graph G, and on the second step it uses F
for computing the O(a2)-coloring of G. The first (forests-
decomposition) step entails an invocation of Procedure Forests-
Decomposition with the input parameter a = a(G) and ε,
0 < ε ≤ 2. By Corollary 3.11, this invocation produces a
forests-decomposition F with A ≤ b(2 + ε) · ac forests. For a
vertex v and a forest Fi, i ∈ {1, 2, ..., A}, such that v ∈ V (Fi)
and such that v has a parent in Fi, let πi(v) denote the par-
ent of v in Fi. Finally, let Π(v) denote the set of neighbors
u of v such that u = πi(v) for some index i, i ∈ {1, 2, ..., A}.

The second (coloring) step of the algorithm proceeds it-
eratively. Initially, each vertex v uses its distinct identity
number ID(v) as its color. On each round vertices recolor
themselves while maintaining the legality of the coloring.
The number of colors used by these coloring is gradually re-
duced from n to O(a2). Similarly to the algorithm of Linial
[17], the reduction in the number of colors consists of two
phases. The first phase continues for O(log∗ n) rounds, and
reduces the number of colors from n to O(a2 log a). The
second phase lasts for just one single round, and reduces the
number of colors to O(a2).

In each round of the coloring step each vertex v sends
its current color to all its neighbors. Fix a round R and
a vertex v, and let ϕ(v) and {ϕ(u) | u ∈ Π(v)} be the col-
ors of v and the colors of its parents in forests F1, F2, ..., FA

in the beginning of round R, respectively. Also, let p be
the current upper bound on the number of colors employed
by the algorithm. (Initially, p = n.) Based on the colors
ϕ(v) and {ϕ(u) | u ∈ Π(v)}, and on parameters p and A,

the vertex v computes the set system Q̂(p, A) whose exis-
tence is guaranteed by Theorem 5.2. This computation is
performed by v locally, involving no communication what-
soever. Then the vertex v selects an arbitrary new color
ϕ′(v) from Qϕ(v) \

⋃ {
Qϕ(u) | u ∈ Π(v)

}
. By Theorem 5.2,

the set Qϕ(v) \
⋃ {

Qϕ(u) | u ∈ Π(v)
}

is not empty. More-

over, by Theorem 5.2, ϕ′(v) ∈
{
1, 2, ...,

⌈
5A2 · log p

⌉}
, and

thus, the vertex v updates its upper bound on the number
of employed colors from p to

⌈
5A2 · log p

⌉
.

After O(log∗ n) rounds the number of colors reduces to
O(A2 log A). Employing another related set system T ex-
actly in the same way as described above, our algorithm
reduces the number of colors to O(A2). The required set
system T is given by the following theorem.

Theorem 5.3. [17],[8]: There exists a collection T of
O(A2 log A) subsets of

{
1, 2, ..., O(A2)

}
such that for every

A + 1 subsets T0, T1, ..., TA ∈ T , T0 /∈
⋃A

i=1 Ti.

We remark that Procedure Arb-Linial is essentially a com-
position of Linial O(∆2)-coloring algorithm with our algo-
rithm for computing forests-decomposition. The main dif-
ference of the coloring step of Procedure Arb-Linial from the
original Linial coloring algorithm is that in Procedure Arb-
Linial each vertex considers only the colors of its parents in
forests F1, F2, ..., FA. On the other hand, in the algorithm
of Linial each vertex considers the colors of all its neighbors.

The next lemma shows that all colorings produced through-
out the algorithm are legal.

Lemma 5.4. Suppose that the coloring ϕ is legal. Then the
coloring ϕ′ is legal as well.

Proof. Consider an edge e = (u, v) ∈ E. Since F =
{F1, F2, ..., FA} is a partition of the edge set E into disjoint
forests, there exist an index i ∈ {1, 2 ...A} such that e ∈
E(Fi). Suppose without loss of of generality that u is the
parent of v. Then u ∈ Π(v), and consequently ϕ′(v) ∈
Qϕ(v) \ Qϕ(u). On the other hand, ϕ′(u) ∈ Qϕ(u) and so
ϕ′(v) 6= ϕ′(u), as required. 2

By Corollary 3.11, the running time of Procedure Forests-
Decomposition is O(log n). The coloring step of Procedure
Arb-Linial requires O(log∗ n) time. Hence the overall run-
ning time of the algorithm Arb-Linial is O(log n). Observe
that A = O(a), and thus, the resulting coloring is an O(a2)
coloring. To summarize, we have proved the following theo-
rem.

Theorem 5.5. Procedure Arb-Linial computes a legal O(a2)-
coloring in O(log n) time.

Next, we present a variant of Procedure Arb-Linial,
Procedure Tradeoff-Arb-Linial, that provides a tradeoff be-
tween the number of colors and the running time. Procedure
Tradeoff-Arb-Linial accepts as input a = a(G), and a param-
eter q, q > 2. On its first step it invokes Procedure Forests-
Decomposition with the same pair of parameters a and q.
By Corollary 3.12, this procedure partitions the edge set of
G into at most (2 + q) · a forests, and it does so within time
O(log n

log q
). The second recoloring step of Procedure Tradeoff-

Arb-Linial is very similar to that of Procedure Arb-Linial.

The only difference is that the value of A is now (2+q)·a and
not b(2 + ε) · ac as it was in Procedure Arb-Linial. By the
same argument, Procedure Tradeoff-Arb-Linial computes an
O(A2 ·q2) = O(a2 ·q2)-coloring within time O(log n

log q
+log∗ n).

Finally, set q′ = q2. We get an O(a2 · q′)-coloring within
time O(log n

log q
+ log∗ n).

Corollary 5.6. For an n-vertex graph G with arboricity a
and a parameter q, 2 < q ≤ O(

√
n
a
), Procedure Tradeoff-

Arb-Linial invoked with parameters a and q computes O(a2 ·
q)-coloring in time O(log n

log q
+ log∗ n).

6. MIS ALGORITHMS
AND LOWER BOUNDS

In this section we capitalize on the results of Section 5, and
present an algorithm that computes an MIS in graphs with
bounded arboricity in sublogarithmic time. The algorithm
employs a standard reduction from MIS to coloring [21],
described below.

First, observe that by Corollary 5.6, for any graph with
arboricity o(

√
log n), a legal o(log n)-coloring can be found in

o(log n) time. Then a standard technique [21] that reduces
the number of colors, one color per round, can be used to
achieve (∆ + 1)-coloring in additional o(log n) rounds. We
summarize this fact in the following corollary.

Corollary 6.1. For a graph G with arboricity a(G) =
o(
√

log n), both (∆+1)-coloring and o(log n)-coloring can be
found in sublogarithmic time.

Suppose we are given a legal p-coloring of the graph, for
some positive integer p. Let U1, U2, ..., Up be the disjoint
color classes, with all vertices of Ui being colored by i, for
i = 1, 2, ..., p. Initialize the independent set W as U1. The
reduction algorithm proceeds iteratively, taking care of one
of the color classes U2, U3, ..., Up on each of the p− 1 itera-
tions. For iteration i = 1, 2, ..., p − 1, before the iteration i
starts, an independent set W ⊆

⋃i
j=1 Uj is maintained. On

iteration i each vertex v ∈ Ui+1 checks in parallel whether
it has a neighbor w ∈ W . If it has, it decides not to join
W . Otherwise it joins W . Obviously, the algorithm requires
(p− 1) rounds, and produces an MIS.

The next theorem follows directly from Corollary 6.1.

Theorem 6.2. Consider an n-vertex graph G with arboric-
ity a(G) = o(

√
log n). Procedure Tradeoff-Arb-Linial com-

bined with the standard reduction from an MIS to coloring,
computes an MIS of G in time o(log n). Moreover, whenever

a = O(log1/2−δ n), for some constant δ, 0 < δ < 1/2, the
same algorithm runs in time O(log n

log log n
).

Whenever a = Ω(
√

log n) we use the same reduction in
conjunction with Procedure Tradeoff-Color. The running
time of the resulting algorithm for computing MIS becomes
O(a

t
· log n + a log a + a · t). This expression is optimized by

setting t = min
{√

log n, a
}
.

Theorem 6.3. Consider an n-vertex graph G with arboric-
ity a(G) = Ω(

√
log n). Procedure Tradeoff-Color invoked

with parameters a and t =
√

log n, combined with the stan-
dard reduction from MIS to coloring, computes an MIS of G
in time O(a ·

√
log n + a log a).

Our lower bounds rely on the following result of Linial
[17].

Theorem 6.4. [17] For a pair of positive integer numbers
n and d, n − 1 ≥ d, any distributed algorithm for coloring
the d-regular n-vertex tree which has running time at most
O(logd n) uses at least Ω(

√
d) colors.

Consider the family G of planar graphs. Suppose that a
correct algorithm for q-coloring G requires at least t(q) time
in the worst-case. Since unoriented O(q2)-regular tree is a
planar graph, it follows that t(q) = Ω(log n

log q
). By another

lower bound of Linial [17], 3-coloring an oriented path re-
quires Ω(log∗ n) time. We conclude that q-coloring planar
graphs requires Ω(log n

log q
+ log∗ n) time, which matches our

upper bound up to constant factors. (See Corollary 5.6.)
The next result follows directly.

Corollary 6.5. For graphs with arboricity a, and a param-
eter q = O(

√
n/a2), O(a2 ·q)-coloring requires Ω(log n

log a+log q
+

log∗ n) time.

Next, we turn to forests-decomposition lower bounds. Once
an O(a · q)-forests decomposition is computed, it is possible
to compute O(a2 · q2)-coloring by step 2 of procedure Arb-
Linial, in additional O(log∗ n) time. Since O(a2 ·q2)-coloring
requires Ω(log n

log a+log q
) time, the following result is achieved.

Theorem 6.6. For an n-vertex graph of arboricity a, and a
parameter q, q ≥ 1, q = O(n1/4/a), computing an O(q · a)-
forests-decomposition requires Ω(log n

log q+log a
− log∗ n) time.

7. CONCLUSIONS
In this paper we have presented efficient deterministic MIS

and coloring algorithms for the family of graphs with ar-
boricity polylogarithmic in n. Although this is a wide and
important family of graphs, the question regarding the exis-
tence of efficient deterministic algorithms for yet wider fam-
ilies remains open. In particular, it is currently not clear
whether it is possible to extend our results to graphs with
arboricity at most 2logε n for some constant ε > 0. Also, we
have devised a sublogarithmic time MIS algorithm on graphs
with arboricity at most o(

√
log n). It would be interesting

to extend this result to graphs with arboricity o(log n).

8. REFERENCES
[1] N. Alon, L. Babai, and A. Itai. A fast and simple

randomized parallel algorithm for the maximal
independent set problem. Journal of Algorithms,
7(4):567–583, 1986.

[2] S. R. Arikati, A. Maheshwari, and C. Zaroliagis.
Efficient Computation of Implicit Representations of
Sparse Graphs. Discrete Applied Mathematics,
78(1-3):1-16, 1997.

[3] B. Awerbuch, A. V. Goldberg, M. Luby, and
S. Plotkin. Network decomposition and locality in
distributed computation. In Proc. of the 30th
Symposium on Foundations of Computer Science,
pages 364–369, 1989.

[4] B. Bollobas. Extremal Graph Theory. Academic Press,
1978.

[5] R. Cole, and U. Vishkin. Deterministic coin tossing
with applications to optimal parallel list ranking.
Information and Control, 70(1):32–53, 1986.

[6] N. Deo and B. Litow. A structural approach to graph
compression. In Proc. of the MFCS Workshop on
Communications, pages 91–100, 1998.

[7] V. Dujmovic, and D. R. Wood. Graph Treewidth and
Geometric Thickness Parameters. Discrete and
Computational Geometry, 37(4):641–670, 2007.

[8] P. Erdős, P. Frankl, and Z. Füredi. Families of finite
sets in which no set is covered by the union of r
others. Israel Journal of Mathematics, 51:79–89, 1985.

[9] B. Gfeller, and E. Vicari. A randomized distributed
algorithm for the maximal independent set problem in
growth-bounded graphs. In Proc. of the 26th ACM
Symp. on Principles of Distributed Computing, pages
53–60, 2007

[10] A. Goldberg, and S. Plotkin. Efficient parallel
algorithms for (∆ + 1)- coloring and maximal
independent set problem. In Proc. 19th ACM
Symposium on Theory of Computing, pages 315–324,
1987.

[11] A. Goldberg, S. Plotkin, and G. Shannon. Parallel
symmetry-breaking in sparse graphs. SIAM Journal
on Discrete Mathematics, 1(4):434Ű-446, 1988.

[12] K. Kothapalli, C. Scheideler, M. Onus, and
C. Schindelhauer. Distributed coloring in O(

√
logn)

bit rounds. In Proc. of the 20th International Parallel
and Distributed Processing Symposium, 2006.

[13] F. Kuhn, T. Moscibroda, T. Nieberg, and
R. Wattenhofer. Fast Deterministic Distributed
Maximal Independent Set Computation on
Growth-Bounded Graphs. In 19th International
Symposium on Distributed Computing, 2005.

[14] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
cannot be ccomputed locally! In Proc. of the 23rd
ACM Symp. on Principles of Distributed Computing,
pages 300-309, 2004.

[15] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the
Locality of Bounded Growth. InProc. of the 24rd ACM
Symp. on Principles of Distributed Computing, 2005.

[16] F. Kuhn, and R. Wattenhofer. On the complexity of
distributed graph coloring. In Proc. of the 25th ACM
Symp. on Principles of Distributed Computing, pages
7–15, 2006.

[17] N. Linial. Locality in distributed graph algorithms.

SIAM Journal on Computing, 21(1):193Ű-201, 1992.

[18] M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM Journal on
Computing, 15:1036-1053, 1986.

[19] C. Nash-Williams. Decompositions of finite graphs
into forests. J. London Math, 39:12, 1964.

[20] A. Panconesi, and A. Srinivasan. On the complexity of
distributed network decomposition. Journal of
Algorithms, 20(2):581-Ű592, 1995.

[21] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. SIAM, 2000.

[22] J. Schneider, and R. Wattenhofer. A Log-Star
Distributed Maximal Independent Set Algorithm For
Growth Bounded Graphs. In Proc. of the 27th ACM
Symp. on Principles of Distributed Computing, 2008.

[23] G. Singh. Efficient leader election using sense of

direction. Distributed Computing, 10(3):159Ű-165,
1997.

[24] M. Szegedy, and S. Vishwanathan. Locality based
graph coloring. In Proc. 25th ACM Symposium on
Theory of Computing, pages 201-207, 1993.

