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Abstract

We study markets in which consumers are trying to hire
a team of agents to perform a complex task. Each
agent in the market prices their labor, and based on
these prices, consumers hire the cheapest available team
capable of doing the job they need done. We define
the cheap labor cost in such a market as the ratio
of the best Nash equilibrium of the original market
and the best possible Nash equilibrium of any of its
submarkets, where “best” is defined with respect to
consumers, i.e., we are looking at Nash equilibria in
which the consumer pays the least. This definition
is motivated by a “Braess-style” paradox: in certain
kinds of marketplaces, competition, in the form of the
availability of “cheap labor”, can actually cause the
prices paid by consumers to go up.

We present tight bounds on the cheap labor cost for
a variety of markets including s-t path markets, matroid
markets and perfect bipartite matching markets. The
differences in cheap labor cost across markets demon-
strate the complex relationship between the combina-
torial structure of the marketplace and the advantages
or more precisely, disadvantages to consumers due to
competition.

1 Introduction

It is common wisdom that competition between vendors
of goods and services benefits, or at least never hurts,
consumers. Intuitively, when faced with competition, a
service provider may be forced to lower prices in order
to maintain or increase their market share. Indeed, this
is one of the key motivations for anti-monopoly laws.

Consider, for example, a customer wishing to pur-
chase the rights to have data routed on its behalf from a
source s to a sink t in a network where each link is owned
by a different non-cooperative selfish agent. Given the
pricing of the links in the network, the customer will
naturally choose to purchase the cheapest route.

How do we expect agents (edges) to price their
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links? The price an agent chooses depends (primarily)
on two things: their costs and the competition they face.
Each agent has an associated overhead/cost it incurs
for routing data, and thus agents will certainly set their
prices to at least recover these costs. Moreover, since
agents are selfish, they will try to set their prices much
higher, in an attempt to maximize their own profit.
Clearly, if there is only one path from s to t in the
network, the edges on that path have a monopoly and
can ask arbitrarily high prices (assuming the routing is
necessary for the consumer). On the other hand, if there
is competition in the form of another parallel path from
s to t, edges on each path are limited in how high they
can set their prices, because the edges on the alternative
path can undercut them if they go too high.

The setting we have just described defines a game,
in fact a first-price auction, in which the agents’ strate-
gies consist of the possible prices or bids they offer cus-
tomers. Following standard practice, we consider a price
vector in Nash equilibrium to be a rational outcome of
the process. A set of agent bids is a Nash equilibrium if
no agent has an incentive to unilaterally change its bid
to get more profit1, given the bids by the other agents.
Since there may be many Nash equilibria and our goal
is to understand the impact of competition on consumer
surplus, we consider the best possible Nash equilibrium
from the perspective of the consumer, namely the Nash
equilibrium in which the consumer pays the least [1, 22].
We call such a Nash equilibrium the best Nash equilib-
rium.
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Figure 1: Two sets of edges P and P ′ compete to sell
the s-t path.

Consider, for example, Figure 1 which shows a
network with two paths from s to t. The values shown

1The profit of an agent is the difference between the price he
is paid by the consumer and his overhead, if he is selected, and 0
otherwise.
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on the edges are the overheads/costs that each of the
agents incurs to route data. It is easy to see that in
this network, assuming ties are broken in favor of the
bottom path, one of the possible Nash equilibria is when
each of the two edges on the bottom path bids 1/2, and
the upper edge bids 1.2

Paradoxically, it is also possible for more compe-
tition to lead to a reduction in consumer surplus in
the path auction setting.3 Consider Figure 2 where,
again, the value on an edge is the overhead incurred by
that edge if it routes data. In this example, the total
consumer payment in the best Nash equilibrium is 10,
where for example (e1, e3, e6) is the winning path and
e1 and e6 each bid 5, and all other edges bid their cost.
However, if we eliminate the competition present due to
the existence of edges e3 and e4, the best Nash equilib-
rium for the consumer results in a total payment of 5,
where for example (e1, e5) is the winning path and all
edges bid their cost.
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Figure 2: An example that competition leads to worse
consumer surplus.

It is this intriguing example that motivates us to
consider the following questions. How much consumer
surplus can be lost due to competition by some “cheap”
agents? Can we efficiently determine which agents’
removal from the marketplace is most helpful to con-
sumers? How do the answers to these questions depend
on the combinatorial structure of the marketplace?

We study this problem by considering a quantity we
call the cheap labor cost of a market, which is equal to
the consumer payment in the best Nash equilibrium of
the original market divided by the consumer payment
in the best possible Nash equilibrium of any of its
submarkets, where a submarket is just the market
defined by some subset of agents of the original market.

2If any of the edges on the bottom path raises its bid to try
to make more money, they will “lose” the customer’s business.
On the other hand, the upper edge has no incentive to lower its
bid, since it will run a deficit if it charges less than its overhead.
Raising its bid doesn’t benefit it either.

3This is reminiscent of Braess’s paradox [5, 28, 35, 25], where
adding more edges to a network might hurt all of the traffic.

We call the submarket with the best possible Nash
equilibrium the consumer-optimal submarket. In the
example of Figure 2, the cheap labor cost is 2, and the
consumer-optimal submarket is the submarket obtained
by removing edges e3 and e4.

1.1 Our results To study the cheap labor cost of
markets as a function of their combinatorial structure,
we adopt a general framework initiated in [3, 40, 22]
of hiring a team of agents. Specifically, we consider
a consumer wishing to hire a team of agents capable
of performing a certain complex task on his behalf.
Each agent e can perform a simple task/service at a
cost (to himself) of c(e). Based on their knowledge
of the marketplace, each of the agents sets a price for
his service – we refer to the price set by agent e as
his bid b(e) – and based on these bids, the consumer
selects a feasible set — a set of agents whose combined
services are sufficient to perform the complex task —
and pays each selected agent their bid value. Naturally,
the consumer wishes to pay as little as possible to get the
job done and thus we assume that the consumer selects
the feasible set whose combined services will cost him
the least money. Thus, the particular setting is defined
entirely by the set system of feasible sets and the costs
the agents incur.

Two special cases of this general setting have been
studied extensively in the past: (i) The path auction
[29, 3, 15, 22], discussed above, where the agents own
edges of a known graph, and the consumer wants to
purchase a path between two given nodes s and t (or
have data routed on its behalf.) (ii) The minimum
spanning tree auction [40, 4], where the agents again
own edges of a graph, and the consumer wants to
purchase a minimum spanning tree.

Prior work in these settings has focused largely on
the frugality of truthful mechanisms such as the VCG
mechanism and on the design of truthful mechanisms
with optimal frugality. Here, our goal is very different
– we seek to understand the relationship between the
combinatorial structure of the marketplace and the
ramifications of competition from the perspective of the
consumer.

Our main results are the following:

• In Section 3, we prove that the cheap labor cost
of any market is upper bounded by the size of
the cheapest feasible set, say n, and we give an
algorithm for computing a Nash equilibrium that is
within a factor of n of the best Nash equilibrium.
While the bound we give on the cheap labor cost
is not tight in general, we show that for certain
interesting markets, such as the perfect bipartite
matching markets, discussed in Section 4, it is.
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• At the other end of the spectrum, in Section 5,
we show that for spanning tree markets, and more
generally for any set system where the feasible sets
are bases of a matroid, the cheap labor cost is one.
Thus, matroid markets are the canonical market-
places in which competition and the existence of
cheap laborers never hurt the consumer. We also
give an algorithm for computing the best Nash
equilibrium in a matroid markets.

• Finally, in Section 6, we return to the s-t path
markets discussed above, and show that the cheap
labor cost is at most two. In other words, the
example given in Figure 2 is the worst possible
case. We also show that finding the best Nash
equilibrium of the consumer-optimal submarket is
NP-hard, and even approximating the price the
consumer pays in this optimal submarket to within
a factor better than two is NP-hard. In the process,
we are also able to show that approximating the
best Nash equilibrium in the original market to
within a factor better than two is NP-hard. On
the other hand, we show that it is easy to get a
2-approximation to the best Nash equilibrium.

1.2 Related Work The effectiveness, efficiency and
social ramifications of competitive markets are objects
of extensive study in economics. Most research in
this area has focused on the operation of markets,
demand and supply analysis, social welfare, competitive
equilibria, and so on. See, e.g., [26] for a comprehensive
discussion. To the best of our knowledge, no previous
work in the economics literature studies the cheap labor
cost we study here measuring loss in consumer surplus
due to competition in the market.

The problem of hiring a team of agents in a complex
setting at minimum total cost to the consumer, has been
shown to have many practical economic applications
and has been studied extensively [29, 3, 15, 40, 21, 14,
22, 11, 33]. The path auction problem in particular
has been received a great deal of attention. Most of
the work in this area has been on the study of truthful
auction mechanisms, such as the VCG mechanism [43,
7, 19], and on understanding the frugality of truthful
mechanisms. In addition, path auctions have been
studied from the Bayesian perspective [15, 11]. There
are also some papers which consider Nash equilibria in
first-price path auctions. For example, motivated by the
large overpayments required for truthful mechanisms,
Immorlica, Karger, Nikolova and Sami [21] study Nash
equilibria in first-price auctions, with a particular focus
on the overpayments compared to VCG. Karlin, Kempe
and Tamir [22] propose the payments in a best Nash
equilibrium for a first-price auction as a benchmark

against which to evaluate the payments of truthful
mechanisms.

There have been papers which considered the ques-
tion of how to best remove edges from a network to im-
prove efficiency. For example, Roughgarden [35] stud-
ied the complexity of finding the best subnetwork to be
used for selfish routing when the goal is to minimize
total latency. Elkind [14] showed that VCG payments
can sometimes be improved by a factor of Θ(n) for the
path auction problem if one can remove edges from the
network.

Finally, one can also view this research as vaguely
similar in spirit to work on the price of anarchy [23,
38, 37, 27, 34, 10, 42, 12, 17, 20] and the price of
stability [1, 2, 8] which quantifies loss of efficiency due to
selfish behavior. See Papadimitriou [32] and Tardos [41]
for recent surveys on these topics.

2 Preliminaries

We consider a consumer wishing to hire a team of
agents capable of performing a certain complex task
on his behalf. Following [40, 22], the consumer has
access to a market M defined by a set system (E, F ; c),
where E = {e1, . . . , en} is a collection of agents, F is a
collection of feasible subsets of E and c is a cost vector
for agents. A subset S ⊆ E is feasible (i.e., S ∈ F )
if the agents in S have the combined skills necessary to
accomplish the consumer’s task. We assume there are m
feasible combinations of agents, F = {S1, . . . , Sm}. We
also assume that (a) each agent e ∈ E has an associated
cost c(e) ∈ N, representing the cost that agent incurs (in
time, money or resources, measured in terms of some
standard currency) to provide his labor, and (b) each
agent’s goal is to make as large a profit as possible. An
agent’s profit is the difference between what he is paid
and the cost he incurs to provide his services.

A basic question is: what will the consumer have
to pay to get the job done? We assume that each agent
e ∈ E submits a bid, b(e) ∈ R, representing the price
at which the agent is willing to provide his services.
Based on the bids of agents, the consumer will hire
the cheapest feasible subset of agents (i.e., the feasible
subset S ∈ F such that

∑
e∈S b(e) is minimized) to

do the job. The consumer will pay each of the agents
hired their bid value. Thus, the consumer is in essence
running a first-price auction. We will refer to the set of
agents hired as the winning set and each agent in this
set as a winning agent. If e ∈ E is a winning agent, its
profit is b(e)− c(e); otherwise, its profit is zero. In this
paper we assume b(e) ≥ c(e), for e ∈ E, since no agent
aspires to obtain a negative profit.

The model just described defines a game, in which
an agent’s strategy set consists of the possible bids it
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can propose to the consumer. We say a bid vector b is
a Nash equilibrium (NE) if no agent has an incentive to
unilaterally change its bid to get more profit, given the
bids by the other agents. As we shall see shortly, this
game has pure Nash equilibria, and since in this context,
it is natural to imagine that bidding is performed
through posted prices and agents can see each other’s
bids, mixed strategies are not terribly natural. Thus, we
restrict attention in this paper only to pure equilibria.
We define the value of a NE given by a bid vector
b to be b(S) =

∑
e∈S b(e), where S ∈ F is the

winning set w.r.t b. A NE b is said to be a best Nash
equilibrium if, among pure Nash equilibria, it minimizes
the total price paid by the consumer. Thus, the best NE
represents an equilibrium price paid by the consumer
which maximizes the consumer’s surplus.

2.1 A Greedy Algorithm to Compute a Nash
Equilibrium If there is an agent e ∈ E that holds a
monopoly, i.e., e ∈ S for every feasible set S ∈ F , and
the consumer must buy a feasible set, no Nash equi-
librium exists, since e can increase its bid arbitrarily.
Thus, we assume that the market is monopoly-free. In
this case, the existence of a pure NE follows trivially by
running the following greedy algorithm.4

GreedyAlg

1. Find the cheapest feasible set S ∈ F w.r.t

costs (breaking ties arbitrarily).

2. For each e ∈ E, initialize b(e) to c(e).
3. For each e ∈ S
4. raise b(e) until there is S′ ∈ F s.t.

e /∈ S′ and b(S) = b(S′).
5. Output the bid vector b and winning set S.

It is easy to verify the following proposition:

Proposition 2.1. The bid vector b and winning set S
generated by GreedyAlg define a pure NE.5

Proof. For any agent e ∈ E \ S, since b(e) = c(e), e
has no incentive to change its bid to obtain more profit.
For any agent e ∈ S, consider the threshold that we
cannot increase b(e) any more in Step 4 of the algorithm.
At that time, there is S′ ∈ F such that e /∈ S′ and

4Note that when we talk about computing NE, we are assum-
ing full information about the agents’ costs. We are explicitly not
studying the question of how the agents would arrive at a Nash
equilibrium, which is of course a very interesting question in its
own right. We are trying merely to understand the impact of
various Nash equilibria on consumer surplus.

5Technically, this requires that the consumer breaks ties among
the sets with the cheapest bid value the same way ties are broken
in Step 1 of GreedyAlg. Alternatively, one can avoid tie-breaking
issues completely by using the notion of an ε-Nash equilibrium.
See [21] for a discussion of some of the subtleties involved.

b(S) = b(S′). That is, b(S \ S′) = b(S′ \ S) = c(S′ \ S).
Note that we cannot increase the bids of agents in S \S′

after that point, which implies that at the end of the
algorithm, we still have b(S \ S′) = b(S′ \ S). Thus,
agent e does not have an incentive to change its bid. ¥

We will need the following general fact about Nash
equilibria.

Proposition 2.2. Consider any NE b where S ∈ F is
the winning set. For any e ∈ S, there is another feasible
set S′ ∈ F , e /∈ S′, such that b(S \ S′) = b(S′ \ S) =
c(S′ \ S). We call such a set S′ a tight set w.r.t b.

Proof. First, due to the first-price auction, we know
b(S\S′) ≤ b(S′\S). If b(S\S′) < b(S′\S) for all feasible
set S′ where e /∈ S′, agent e can raise its bid by a small
amount and still win the auction, which contradicts the
assumption that b is a NE.

Now consider S′ such that e ∈ S, e /∈ S′ and
b(S \ S′) = b(S′ \ S). If b(S′ \ S) > c(S′ \ S), then
some agent in S′ \ S can reduce its bid a little to win,
again contradicting the assumption that b is a NE. ¥

2.2 Cheap Labor Cost Given a market M =
(E, F ; c), we say M′ = (E′, F ′; c) is a submarket of
M, denoted by M′ ⊆ M, if E′ ⊆ E and F ′ = {S ∈
F | S ⊆ E′}. That is, M′ is generated from M by re-
moving some agents and keeping the remaining agents
with their associated costs and the corresponding feasi-
ble sets.

Definition 2.1. (Cheap Labor Cost) For any mar-
ket M, let νM be the value of the best NE of M. The
cheap labor cost of M is defined by

νM
minM′⊆M νM′

where νM′ is the value of the best NE of submarket M′.
If there is no feasible solution in M′, we define νM′ as
infinity. We use M∗ , arg minM′⊆M νM′ to denote the
consumer-optimal submarket.

Note that since the whole market is itself a sub-
market, the cheap labor cost of any market is at least
one. The cheap labor cost characterizes how much bet-
ter off the market can be for the consumer by removing
a subset of the agents.

In the following sections we will study the cheap
labor cost for different types of markets.

3 A General Upper Bound

We begin by proving a general upper bound on the
cheap labor cost of any market.
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Theorem 3.1. The cheap labor cost of any market
M = (E, F ; c) is at most |S|, where S ∈ F is a feasible
set with the minimum total cost.

Proof. Let b be a NE of M computed by GreedyAlg,
and S the corresponding winning set. Consider any
submarket M′ ⊆ M. Assume b′ is a best NE of M′

and S′ ∈ F ′ is the winning set. It suffices to show that
b(S) ≤ |S| · b′(S′).

Note that for any agent e ∈ S′ \S, e is not a winner
in the NE computed by GreedyAlg. Thus, we have
b(e) = c(e) and b(S′ \ S) = c(S′ \ S), which implies
that c(S′ \ S) is an upper bound that agents in S \ S′

can bid up to. That is,

b(S \ S′) ≤ b(S′ \ S) = c(S′ \ S) ≤ b′(S′ \ S)

For each e ∈ S ∩ S′, according to Proposition 2.2,
in the best NE b′ of M′, there is a set S′′ ∈ F ′ such
that b′(S′) = b′(S′′) and e /∈ S′′. We claim that for each
such e, b(e) ≤ b′(S′). Otherwise, we have

b(S) = b(S \ S′′) + b(S ∩ S′′)
> b′(S′) + b(S ∩ S′′)
= b′(S′′) + b(S ∩ S′′)
≥ c(S′′) + b(S ∩ S′′)
≥ c(S′′ \ S) + b(S ∩ S′′)
= b(S′′ \ S) + b(S ∩ S′′)
= b(S′′)

which contradicts the fact that S is the winning set
according to bid vector b.

Therefore,

b(S) = b(S \ S′) + b(S ∩ S′)
≤ b′(S′ \ S) + |S ∩ S′| · b′(S′)
≤ |S| · b′(S′)

completing the proof of the theorem. ¥

The following corollary is immediate.

Corollary 3.1. For any market M = (E, F ; c),
GreedyAlg computes a NE whose value is an |S|-
approximation to the best NE of both M and M∗, where
S ∈ F is a feasible set with the minimum total cost.

In general, this theorem is far from tight. However,
there are certain market types for which it is tight. An
example is given in the next section.

4 The Perfect Bipartite Matching Market

In a perfect bipartite matching market, the agents E
represent the set of edges in a bipartite graph G =

(U, V ;E), where U and V are two disjoint sets of
vertices, |U | = |V |, and all edges have one endpoint
in U and one endpoint in V . A subset S ⊆ E is feasible
if the edges in S form a perfect matching in G. Since the
size of each feasible set is |V |, by Theorem 3.1, the cheap
labor cost of the perfect bipartite matching market is at
most |V |.

We now show that in the worst case, this bound
is essentially tight. Consider the market shown in
Figure 3. This market is given by G = (U, V ; E), where

U = {u1, u2, u2′ , . . . , uk, uk′},
V = {v1, v2, v2′ , . . . , vk, vk′}

and

E = {(u1, v1)} ∪
{(u1, vi), (ui, v1), (ui′ , v1),
(ui, vi′), (ui, vi), (ui′ , vi′) | i = 2, . . . , k}.

The cost of edge (ui′ , v1) is one, i = 2, . . . , k, and the
cost of any other edge is zero. It is not hard to check
that the consumer-optimal subgraph is G′ = (U, V ; E′),
where E′ = E \ {(ui, v1) | i = 2, . . . , k}. Let H =
{(u1, v1)} ∪ {(ui, vi), (ui′ , vi′) | i = 2, . . . , k}. In G′, the
best NE has a value of one, where edge (u1, v1) bids
one and all other edges in E′ \ {(u1, v1)} bid their cost,
and H is the winning perfect matching. On the other
hand, the value of the best NE of G is k−1, where each
edge (ui′ , vi′) bids one, i = 2, . . . , k, and all other edges
bid their cost, and H is the winning perfect matching.
Therefore, the cheap labor cost is k − 1 = O(|V |).

u3
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v4

uk

vk

u3′

v3′

u4′

v4′

uk′

vk′

u1

v1

u2

v2

u2′

v2′

1

1

1

1

Figure 3: A tight example of cheap labor cost of perfect
bipartite matching.
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5 Matroid Markets

In this section we consider matroid markets M =
(E,F ; c), where E is the set of elements of a matroid and
F is the set of bases of the matroid. A natural special
case is when the set E represents the edges in a graph
G = (V,E) and the feasible sets are spanning trees in
the graph. In this case, Theorem 3.1 guarantees that
the cheap labor cost of the market is at most |V | − 1,
where |V | is the number of vertices in the graph. In
contrast to the perfect bipartite matching market, this
upper bound is way off. In fact, we will show in this
section that for spanning tree markets and any market
where the feasible sets are bases of a matroid, the cheap
labor cost is one.

We use the following well-known property of ma-
troids [6].

Proposition 5.1. A collection F = {S1, . . . , Sm} of
feasible sets is the set of bases of a matroid if and only
if for any Si, Sj ∈ F , there is a bijection f between
Si \ Sj and Sj \ Si such that Si \ {e} ∪ {f(e)} ∈ F , for
any e ∈ Si \ Sj.

We begin by characterizing the winning set for
matroid markets.

Lemma 5.1. For any submarket M′ = (E′, F ′; c) of a
matroid market M = (E, F ; c), the winning set in any
NE of M′ is one with the minimum total cost among
all feasible sets in F ′.

Proof. Let Si be the winning set of a NE b′ of M′.
Thus, b′(Si) ≤ b′(Sj), for any Sj ∈ F ′. Let f be the
bijection between Si \Sj and Sj \Si given by the above
lemma. Note that Si ∪ Sj ⊆ E′. For any e ∈ Si \ Sj ,
since Si \ {e} ∪ {f(e)} ∈ F and Si \ {e} ∪ {f(e)} ⊆ E′,
we know Si \ {e} ∪ {f(e)} ∈ F ′ is a feasible set of
M′. Thus, b′(Si) ≤ b′(Si \ {e} ∪ {f(e)}). Hence,
c(e) ≤ b′(e) ≤ c(f(e)), otherwise agent f(e) would
have an incentive to reduce its bid to be the winner.
Therefore,

c(Si) = c(Si ∩ Sj) +
∑

e∈Si\Sj

c(e)

≤ c(Si ∩ Sj) +
∑

e∈Si\Sj

c(f(e))

= c(Si ∩ Sj) + c(Sj \ Si)
= c(Sj)

The lemma follows. ¥

Theorem 5.1. The cheap labor cost is one for any
matroid market M.

Proof. Let E = {e1, . . . , en} and feasible set F =
{S1, . . . , Sm}. Assume c(S1) ≤ c(S2) ≤ · · · ≤ c(Sm).
Let b be a NE of M computed by GreedyAlg with S1

being the winning set.
Consider any submarket M′ = (E′, F ′; c) of M,

where E′ ⊆ E and F ′ ⊆ F . Assume b′ is a best NE of
M′ and S′ ∈ F ′ is the winning set. Note that according
to Lemma 5.1, for any S′′ ∈ F ′, c(S′) ≤ c(S′′).

Next we will compare b(S1) with b′(S′). Note that
since c(S1) ≤ c(S′), according to GreedyAlg, we have

b(S1 \ S′) ≤ b(S′ \ S1) = c(S′ \ S1) ≤ b′(S′ \ S1)

For any e ∈ S1∩S′, consider the best NE b′ ofM′. Since
S′ is the winning set of b′ and e ∈ S′, we know there is
S′′ ∈ F ′ such that (i) e /∈ S′′, (ii) b′(S′) = b′(S′′), and
(iii) S′ \ S′′ = {e}. Note that the first two conditions
follow from Proposition 2.2, and the last condition
follows from Proposition 5.1. Let S′′ \ S′ = {e′}. We
know b′(e) = b′(e′) = c(e′). Consider the two feasible
sets S1 and S′′ in M. By the symmetric basis-exchange
axiom [6, 31], we know there is e′′ ∈ S′′ such that
S1 \ {e} ∪ {e′′} ∈ F and S′′ \ {e′′} ∪ {e} ∈ F . If e′′ = e′

(which implies that e′ /∈ S1), according to GreedyAlg,

b(e) ≤ c(e′) = b′(e)

If e′′ 6= e′, we know e′′ ∈ S′ ∩ S′′. Since all elements of
S′′ \ {e′′} ∪ {e} are in E′, S′′ \ {e′′} ∪ {e} is a feasible
set of F ′. Thus, c(S′) ≤ c(S′′ \ {e′′} ∪ {e}), which
implies that c(e′′) ≤ c(e′). On the other hand, we know
S1 \ {e} ∪ {e′′} ∈ F . Again due to GreedyAlg,

b(e) ≤ c(e′′) ≤ c(e′) = b′(e)

Therefore,

b(S1) = b(S1 \ S′) +
∑

e∈S1∩S′
b(e)

≤ b′(S′ \ S1) +
∑

e∈S1∩S′
b′(e)

= b′(S′)

Since the value of the best NE of M is at most b(S1),
which is smaller than or equal to the value of the best
NE of any of its submarkets. Thus, the cheap labor cost
of M is one. ¥

Note that in the proof of the above theorem, we
essentially showed that the NE computed by GreedyAlg
has the minimum value. Thus, we have the following
conclusion.

Corollary 5.1. For any matroid market M =
(E, F ; c), GreedyAlg computes a best NE of M.
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An alternative proof of Theorem 5.1 can be ob-
tained by using the facts that (1) VCG has frugality
ratio one for matroid markets [22] and (2) VCG pay-
ments cannot increase with the addition of agents for
matroid markets (or more precisely, when the “agents
are substitutes” property holds) [44].

6 Path Markets

The final class of markets we explore are those that
arise from first-price path auctions, henceforth called
path markets. In this case, the market is a connected
directed graph G = (V, E), where each edge corresponds
to an agent. There are two special vertices s, t ∈ V .
The consumer’s goal is to purchase a path (or have data
routed on its behalf) from s to t.

We begin with an important characterization about
NE in path markets.

Lemma 6.1. Let b be a NE for a path market G, with
winning path P . Then there is a pair of edge-disjoint
s-t paths P ′ and P ′′ such that b(P ′) = b(P ′′) = b(P ).

For example, in the NE for the path market of
Figure 2 (with b(e1) = b(e6) = 5, and b(e) = c(e)
for all other edges, and winning path (e1, e3, e6)), the
two paths P ′ and P ′′ are (e1, e5) and (e2, e6), and
b(P ′) = b(P ′′) = b(P ) = 10.

6.1 Proof of Lemma 6.1 The following claim fol-
lows from Proposition 2.2, where the statement is in
terms of path markets.

Claim 6.1. For any e ∈ P , there is another s-t path
P ′, e /∈ P ′, such that b(P \P ′) = b(P ′ \P ) = c(P ′ \P ).
We call such a path P ′ a tight path w.r.t b.

Claim 6.2. Let v be a vertex on a tight path P ′. Then
the portion of the prefix of the path P ′ from s to v is a
cheapest path w.r.t b.

Proof. Since P ′ is tight, b(P ′) = b(P ). If there is a
shorter path from s to v than the prefix of P ′ from s to
v, then there is a shorter path from s to t than b(P ),
contradicting the fact that P is the winning path. ¥

Claim 6.3. Let T be the union of all edges on tight
paths w.r.t b together with the edges in P . Every s-t
path in T has total bid value b(P ).

Proof. Let P̃ be an s-t path in T and let v be the first
vertex on P̃ such that the prefix of P̃ terminating at
v has total bid value greater than the length of the
cheapest path from s to v (w.r.t b). Suppose that the
last edge on this subpath is (u, v). Then the prefix of P̃
to u is a cheapest path to u. Moreover the edge (u, v) is

on some tight path P ′. Therefore due to Claim 6.2, the
prefix of P ′ to u (and v) is a cheapest path to u (and v).
That is,

∑
e∈(s,u)P̃

b(e) =
∑

e∈(s,u)P ′
b(e), where (s, u)P

denotes the path from s to u along P , which implies
that

∑

e∈(s,v)P̃

b(e) =
∑

e∈(s,u)P̃

b(e) + b(u, v)

=
∑

e∈(s,u)P ′

b(e) + b(u, v)

=
∑

e∈(s,u)P ′

b(e)

contradicting the assumption that the prefix of P̃ up to
v is not a cheapest path. ¥

We complete the proof of Lemma 6.1 by observing
that by Claim 6.1, the set T is two-connected, and
therefore, contains two edge-disjoint s-t paths. By
Claim 6.3, these two paths both have bid value b(P ).

6.2 Cheap Labor Cost of Path Markets We now
turn to the main results about the cheap labor cost for
path markets. We begin with a characterization of the
best NE of the consumer-optimal subgraph.

Lemma 6.2. Let P1 and P2 be two edge-disjoint s-t
paths such that max{c(P1), c(P2)} is minimized. Then
minG′⊆G νG′ = max{c(P1), c(P2)}, where νG′ is the
value of the best NE of subgraph G′ ⊆ G.

Proof. Assume without loss of generality that c(P1) ≤
c(P2). Consider the subgraph G′′ = P1 ∪ P2. It is
easy to verify that the best NE b′′ of G′′ with winning
path P1 satisfies b′′(P1) = b′′(P2) = c(P2). Thus,
minG′⊆G νG′ ≤ b′′(P1) = c(P2) = max{c(P1), c(P2)}.

Let G∗ = arg minG′⊆G νG′ and b∗ be a best NE
of G∗ with winning path P . By Lemma 6.1, G∗

contains two edge-disjoint s-t paths P ∗1 and P ∗2 such that
b∗(P ∗1 ) = b∗(P ∗2 ) = b∗(P ). Observe that b∗(P ∗1 ) ≥ c(P ∗1 )
and b∗(P ∗2 ) ≥ c(P ∗2 ). Hence,

min
G′⊆G

νG′ = b∗(P )

≥ max{c(P ∗1 ), c(P ∗2 )}
≥ max{c(P1), c(P2)}

Therefore, minG′⊆G νG′ = max{c(P1), c(P2)}. ¥

Theorem 6.1. The cheap labor cost of any path auc-
tion problem is at most two.

Proof. Let P1 and P2 be two edge-disjoint s-t paths
such that max(c(P1), c(P2)) is minimized. Observe that
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c(P1) + c(P2) gives an upper bound of νG. Thus, νG ≤
c(P1) + c(P2) ≤ 2max{c(P1), c(P2)} = 2 minG′⊆G νG′ ,
yielding the desired result. ¥

Essentially, the above theorem tells us that no
matter how we delete edges from the original graph, the
value of the best NE in the resulting subgraph is at least
one half of that in the original graph. By the example
from the introduction, we know that this bound is tight.

6.3 Complexity of the Cheap Labor Cost A
natural question to ask is whether, given a path market,
we can find its best NE, and the best NE of its
consumer-optimal submarket efficiently. In this section,
we outline the arguments showing that both of these
problems are NP-hard, and that in fact they are both
hard to approximate to within a factor of 2.

The basis for the hardness of these results is (a)
the characterization of Lemma 6.2; (b) the fact that,
given a weighted directed graph G and two specified
vertices s and t, it is NP-hard to find two edge-disjoint
paths from s to t that minimizes the maximum of the
two path lengths or even approximates this value to
within a factor better than 2 [24]; and (c) the following
polynomial time reduction.

Theorem 6.2. There is a polynomial time reduction
from the problem of computing the value of the best
NE of the consumer-optimal subgraph to the problem of
computing the value of the best NE of the original graph.

Proof. Let G = (V, E) be a path auction instance. Let
G∗ = (V, E∗) be the consumer-optimal subgraph of
G = (V,E) where E∗ ⊆ E, and b∗ be a best NE of
G∗ with winning path P ∗.

We construct a new graph G′ according to G as
follows: For each edge (u, v) ∈ E, we add a new vertex
w and replace (u, v) by two new edges (u,w), (w, v).
Let the cost of (u,w) and (w, v) be 0 and c(u, v),
respectively, where c(u, v) is the cost of (u, v) in G, as
the following figure shows.

u v u w v

c(u, v) 0 c(u, v)

G G
′

Figure 4: Construction of graph G′

Let b′ be a best NE of G′ with winning path P ′.
We claim that the value of the best NE of G′ is equal
to that of G∗, i.e., b∗(P ∗) = b′(P ′).

Given b∗ of G∗, we construct a bid vector b1 for G′

as follows: For any (u, v) ∈ E∗, let b1(u,w) = 0 and

b1(w, v) = b∗(u, v); and for any (u, v) ∈ E \ E∗, let
b1(u,w) and b1(w, v) be sufficiently large, where (u,w)
and (w, v) in G′ are the two corresponding edges of
(u, v) in G. Let the winning path w.r.t b1 in G′ be
P ∗. It is easy to see that b1 defines a NE for G′. Thus,
b′(P ′) ≤ b1(P ∗) = b∗(P ∗).

Given b′ of G′, let T be the union of all edges on
tight paths w.r.t b′ together with the edges in P ′. We
construct a bid vector b2 for subgraph G′′ = (V, T )
of G as follows: For each (u, v) ∈ T , let b2(u, v) =
b′(u,w) + b′(w, v), where (u,w) and (w, v) in G′ are the
two corresponding edges of (u, v) in G′′. Let the winning
path w.r.t b2 in G′′ be P ′. Note that b2 defines a NE
for G′′. Thus, we have b∗(P ∗) ≤ b2(P ′) = b′(P ′). ¥

Putting these facts together we obtain:

Theorem 6.3. There are no polynomial time approx-
imation algorithms for computing the best NE of path
markets or for computing the best NE of the consumer-
optimal subgraph with approximation ratio less than two
unless P=NP.

On the other hand:

Theorem 6.4. For any path market on graph G,
GreedyAlg generates a NE whose value is a 2-
approximation to the best NE of both the original graph
and consumer-optimal subgraph.

Proof. For graph G = (V,E), we run GreedyAlg on
path P and get a NE b of G, where P is the cheapest s-
t path w.r.t costs. Let P1 and P2 be two edge-disjoint s-t
paths minimizing max{c(P1), c(P2)}. Note that b(e) =
c(e) for any e ∈ E \ P . Thus, b(P \ P1) ≤ b(P1 \ P ) =
c(P1 \ P ) and b(P \ P2) ≤ b(P2 \ P ) = c(P2 \ P ). Since
P ⊆ (P \P1)∪ (P \P2), we have b(P ) ≤ c(P1)+c(P2) ≤
2max{c(P1), c(P2)} = 2minG′⊆G νG′ ≤ 2νG. ¥
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pointing out the alternative proof of Theorem 5.1.
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[41] É. Tardos, Network Games, STOC 2004, 341-342.
[42] A. Vetta, Nash Equilibria in Competitive Societies, with

Applications to Facility Location, Traffic Routing and
Auctions, FOCS 2002, 416-425.

[43] W. Vickrey, Counterspeculation, Auctions and Com-
petitive Sealed Tenders, Journal of Finance, V.16, 8-37,
1961.

[44] R. Vohra, private communication.

715


