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ABSTRACT General Terms
This paper addresseartial information spreadingmongn nodes Algorithms, Theory

of a network. As opposed to traditional information spreading,

where each node has a message that must be received by all nodeg eywords
we propose a relaxed requirement, where only nodes need to
receive each message, and every node should repgivenes-
sages, for some > 1.

As a key tool in our study we introduce the novel concepteak
conductancea generalization of classic graph conductance which
allows to analyze the time required for partial information spread- 1. INTRODUCTION
ing. We show the power of weak conductance as a measure of how Many distributed applications require the nodes in a network to
well-knit the components of a graph are, by giving an example of a spread information throughout the network in order to perform a
graph family for which the conductance¥n~?), while the weak  global task. The problem afiformation spreadings to distribute
conductance is as large B&2. For such graphs, weak conductance the messages sent by each of the nodes in a network to all other
can be used to show that partial information spreading requires timenodes. Information spreading algorithms have been extensively

distributed computing, randomized algorithms, weak conductance,
partial information spreading, maximum coverage, approximation
algorithms

complexity ofO(log n). studied (see, e.g., [11, 21, 22, 9]). We consider the synchronous
Finally, we demonstrate the usefulness of partial information push/pull model of communication, where each node chooses in

spreading in solving thenaximum coveragproblem, which nat-  each round a randomeighborto exchange information with.

urally arises in circuit layout, job scheduling and facility location,  The time required for achieving information spreading depends

as well as in distributed resource allocation with a global budget on the structure of the communication graph, or more precisely,
constraint. Our algorithm yields a constant approximation factor on how well-connected it is. The notion of grapbnductance
and a constant deviation from the given budget. For graphs with a defined by Sinclair [32], gives a measure of the connectivity of a
constant weak conductance, this implies a scalable time complexity graph. Roughly speaking, the conductance of a gi@pHenoted
for solving a problem with a global constraint. by ®(G), is a value in[0, 1]: This value is large for graphs that
are well-connected (e.g., cliques), and small for graphs that are no
(i.e., graphs which have many communication bottlenecks). Graph
Categories and Subject Descriptors conductance plays a pivotal role in analyzing algorithms for such
NP-hard optimization problems as clustering and graph partition-
ing, as well as in recent studies of social networks (e.g. [9]). In
distributed computing, it has been shown that the time required for
information spreading crucially depends on the conductance of the
underlying communication graph [6, 8, 9, 28]. In particular, Mosk-
Aoyama and Shah [28] show that, for afye (0, 1), information
spreading can be achieved@{%) rounds with proba-
bility at leastl — §. This implies that information spreading may
*Supported in part by the Adams Fellowship Program of the Israel be faster on graphs with large conductance.
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Foundation(grant number 953/06). not well-connected and therefore may require many rounds of com-
munication for information spreading. Nevertheless, for some of
these graphs we can do better if we do not require the information
of every node to reach every other node in the network. This is the
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n/c messages. We call an algorithm that fulfills this requirement ©(1/logn)) our algorithm has a scalable time complexity, in spite
(4, c)-spreading Indeed, the special case where- 1 corresponds of the need to address a global constraint.
to full information spreading. Finally, in Section 4 we extend our results to networks without
As a key tool in our study we introduce the novel concept of node identities. This model, which has been widely studied (see,
weak conductangea generalization of graph conductance which e.g., [4, 36, 14, 3]), captures well ad-hoc and mobile networks,
allows to analyze the time required for partial information spread- which lack infrastructure such as IP addresses, limiting the knowl-
ing. We show the power of weak conductance as a measure of howedge a node can gain on the structure of the network. We borrow the
well-knit the components of a graph are, by giving an example of a technique of [28], which allows the nodes to estimate sums of val-
graph family for which the conductance@¥rn ~2), while the weak ues of other nodes despite the possibility of duplicated messages,
conductance is as large B&2. For such graphs, weak conductance and show how it can be embedded in our algorithm for maximum
can be used to show that partial information spreading requires time coverage, in order to obtain a constant approximation, while using

complexity ofO(logn). only partial information spreading.
We demonstrate the usefulness of partial information spreading
in solving the classienaximum coveragproblem defined as fol-  Related Work:.Communication models vary in different stud-

lows. Given is a universe ofi elements, each having some non- jes. For example, Karp et al. [21] consider tamdom phone-call
negative weight, and subsets of the elements; also, given is an model, where in each round every node chooses a random node
integer X' > 1. We need to select a collection &f subsets so as  to communicate with, assuming that the communication graph is
to maximize the total weight of the covered elements. Coverage complete. Our results hold for arbitrary communication graphs.
problems are at the heart of resource allocation problems in com-  Feige et al. [13] study rumor spreading in arbitrary graphs, where
munication networks and information systems (see, e.g., [33, 34]). initially one node has information that needs to be spread across the
In particular, the maximum coverage problem and its variants nat- graph. Their work also provides examples of graphs that allow fast
urally arise in circuit layout, job scheduling and facility location  information spreading despite having a small conductance. Thus,
(see, e.g., [23, 2] and a comprehensive survey in [18]). We @V the conductance itself is insufficient as a lower bound for informa-
algorithm for the special case of the problem where each elementtion spreading.
belongs to exactly two subsets. In a distributed network, thisisthe  Previously, Avin and Brito [5] and Avin and Ercal [6] analyzed
problem of selecting< nodes with the goal of maximizing the to-  the partial cover time of a random walk, namely, the time required
tal number of covered edges. Consider, for example, a monitoring for a random walk to visit a large fraction of the nodes. A ran-
system for the traffic flow on the links of the network. The system dom walk is related to our model, since the process of relaying a
can handle in each phase the data collected from at Aiasddes message in the graph corresponds to a random walk, however, as
on the status of their neighboring links, for soffe> 1. Then the opposed to the single random walk considered in [5, 6], our model
objective is to select in each phase a subséf abdes which cover  consists of many parallel random walks for every message, as a
the maximum number of (unmonitored) links (See, e.g.,[33]). Our new random walk begins in each round.
algorithm yields a constant approximation factor and a constantde- Dolev et al. [31] considered gossip in multi-channel radio net-
viation from the given budget. For graphs with a constant weak works, where in each round a node chooses a channel on which to
conductance, this implies a scalable time complexity for solving a participate. The paper introduces thgossip problem in which
problem with a global constraint. The same algorithm can be ap- (1 — ¢)n of the messages need to be fully spread in the network.
plied to more general instances of maximum coverage, where eachThis differs from our definition of partial information spreading,
element has a weight and can appear in arbitrary number of sub-since we requirall messages to heartially spread in the network.
sets, as well as for approximating thedgeted maximum coverage Georgiou et al. [16] investigatedajority gossiffor solving con-
problem (see in Section 3). sensus. The requirement of majority gossip is that each node re-
ceives the message of a majority of the nodes, guaranteeing some
Main Contributions:. Our first main contribution is in gen-  overlap of received messages. This is strictly stronger than our def-
eralizing the definition of conductance tweak conductance inition of partial spreading, in which a node may receive anfi
Roughly speaking, rather than measuring connectivity of the whole messages (or less, for a larggr
graph, weak conductance is the minimal conductance among the Some modifications to the definition of graph conductance have
bestsubsets of at least/c nodes containing each node (we give been proposed in the past (see, e.g., [27, 20, 29]), but all dee-dif
the precise definition in Section 2). ent than the concept of weak conductance presented in this work.
We prove that partial information spreading is fast on graphs  The maximum coverage problem, which is known to be NP-hard
which have a large weak conductance, although they may have[15], has been widely studied in the sequential setting. For the case
small conductance and therefore may not enable fast full infor- of unit costs, a1/« )-approximation algorithm follows from the

mation spreading. Specifically, we prove that for @ng (0, 1), works of [30, 10, 35, 18, 19], where, = 1 — (1 — 1/k)*, which
H H H H H 9 og 1 O —1 i
partial information spreading can be achievedif's @tl(ég)é ) decreases dsincreases, and tendste-1/e ask — oo. Budgeted

maximum coverage can be approximated within faette — 1)

(see, e.g., [23]), and this is the best possible, unfess N P [12].

In the distributed setting, Subhadrabandhu et al. [33] developed a
constant factor approximation algorithm which uses network-wide
broadcasts. In contrast, our algorithm avoids spreading information
network-wide, because of the large number of rounds that may be
required.

Finally, we note that there is a long line of research on approx-
imating other graph problems in a distributed setting, and in par-
ticular minimum vertex covefsee, e.g., [17, 24, 25, 26]), where
the goal is to cover all edges with the smallest possible number

rounds, wher@.(G) is the weak conductance of the graph. More-
over, we give examples of families of graphs for which partial infor-
mation spreading is significantly faster than the current guarantees
known for full information spreading.

Our second main contribution is in showing that for solving max-
imum coverage, we can do well enough with only partial informa-
tion spreading. In Section 3 we show how to solve the maximum
coverage problem in a distributed manner wittoastantapproxi-
mation factor, given a partial information spreading algorithm. Our
result implies that for graphs with a large weak conductance (of



of nodes. A main difference between minimum vertex cover and ~ LEMMA 1. For every graphGl = (V, E), ®(G) > ®(G).
maximum coverage, is in the local nature of the former in a dis- o
tributed setting. Indeed, a feasible (though not necessarily good) The conductance of a graph measures how well it is connected.

solution can be found by little communication of each node with Consider a clique on ait nodes, which is a well-connected graph.

its neighbors. This is not the case for maximum coverage. Conse-We associate with the graph a stochastic symmetric m&tushere

quently, the quality of approximation is measured by two criteria:

P; =1/(n—1)foreveryl < i # j < n,andP;; = 0

the amount of covered edges and the deviation from the given bud-for everyl < i < n. This implies that the conductance is

get.

2. PARTIAL INFORMATION
SPREADING

The time required for an information spreading algorithm to

complete, i.e., for every node to receive every piece of information,
has been previously analyzed using the notion of graph conduc-

tance [28]:
®(G) = sgvf?s‘f‘gn/ﬁ(s’ V),
where
D ies, Pi;
P8, V) = SR (1)

and P is the stochastic matrix associated with the communication

of the nodes. Notice that the conductance satifigs®(G) < 1,
since for everyi € Swe haved ", .o Pij <> oy Pij = 1.

As mentioned in [28], this definition differs from the traditional
definition of conductance [32]:

QS V\9)
LICI I

wherer(S) = 3, s 7(i), 7 is the stationary probability vector of

the matrixP, and
QS,VAS) = > Qi)=Y
i€S,jEV\S i€S,jeV\S

3(G) =

= min
SCV,x(S)<1/2

W(i)Pi’j.

However, for a symmetric stochastic matdkthe definitions are
equivalent We can obtain a symmetric matrix for any graph, by
taking

T if (i,j) € E
P = 1—dd7"' ifi=j
0 otherwise

whered; is the degree of nodg andd,.. = max;cv d; is the
maximum degree in the graph. This matrix is slightly different than
our model of communication, in which a noflehooses a neighbor

j with probability1/d;. Furthermore, we avoid the assumption that
the nodes have knowledge of the valuelgf,.. Nevertheless, for
every node we havedii > dmlaz , which implies that the spreading
of information in our model can only be faster than by using the
above matrixP. Indeed, letb(G) be the conductance as calculated
for the transition matrix?, where

1
= d;
' 0

then the conductancg(G) using the matrixP is at least the con-
ductance®(G) using P, as stated in the next lemma, whose proof
appears in Appendix A.

if (1,7) € E
otherwise

!Recall that if P is symmetric then the stationary distribution is
uniform.

((g)(n - g)ﬁ) /% = zigy which is©(1). On the other
hand, a path of. nodes is associated with a matdx in which

P;; = 1/2 for every two neighbors andj, P;; = 1/2 for the

two nodes at the ends of the path, @id, = 0 otherwise. A path
has conductanc(z%) /5 = % and indeed, a path contains many
communication bottlenecks. Graphs with small conductance may
require more rounds of communication for full information spread-
ing.

Since we only require a relaxed spreading guarantee, we intro-
duce the concept ofveak conductancén order to analyze par-
tial information spreading. While conductance provides a mea-
sure for the connectivity of the whole graph, weak conductance
measures théestconnectivity among subsets that include each
node. Formally, for an integer, the weak conductance of a graph
G = (V, E) is defined as:

®.(G) = min { max { min (S, VZ)} },

€V | vicvievilvil2 2 | scv,, 5<%l
whereyp(S, V) is defined in (1). Indeed, in the special case where
¢ = 1, the weak conductance @f is equal to its conductance,
namely,®:(G) = ®(G).

As stated in the following lemma, this definition implies that the
weak conductance of a graph is a monotonically increasing func-
tion of ¢, and specifically implies that the weak conductance is at
least as large as the conductance.

LEMMA 2. For every graphG = (V, E) and every; > c2 >
L @, (G) 2 @y (G).

PROOF Sinceci > c2, we have thai/c1 < n/ce, implying
that for every node, the maximum in the definition ob., (G)
taken over all set¥; of size at leasti/c1, cannot be smaller than
the maximum in the definition ob., (G) taken over all set¥; of
size at least/c2. Hence @, (G) > ®.,(G). O

Before we proceed to use weak conductance to analyze partial
information spreading, we show how it can serve as a refined mea-
sure of connectivity, by examining several graph classes. First, con
sider a clique on alh nodes. The weak conductance of a clique is
((g)(n - g)ﬁ) /5 = sp1y» which is equal to its conduc-
tance, since for every nodethe best subsel; is V itself. The
weak conductance of a path@) /5= = £, since for every node
i the bestV; is the smallest possible, i.e., of siz¢c. This, as the
conductance, is als®(1/n) if c is a constant. For the two ex-
amples above, the weak conductance is in the same order as the
conductance for some constant 1.

We now give an example of a graph with very small conductance
(which may be bad for fast information spreading) but a large weak
conductance. Since a clique has a large conductance, and a path has
a small conductance, we introduce thbarbell graph, which is a
generalization of thbarbellgraph, consisting of a path etliques,
where each contains/c nodes (see Figure 1). Tlebarbell graph
is associated with the transition matififor which P; ; = 1/ (2)
for every two neighborsP; ; = 1/ (2) for every node that does
not connect two cliques, ané; ; = 0 for every node connecting

two cliques. While the conductance of this graplig(2)) /2 =



sagem(j) equals the probability of nodgreceiving the message
m(z). This gives our main result:

THEOREM 3. For anyé € (0,1), the number of rounds re-
quired for ¢, ¢)-spreading isO (M)

@ (G)
Figure 1. Thec-barbell graph isa path of ¢ equal-sized cliques. Notice that the result of Theorem 3 matches the result of [28] for
It is an example of a graph with small conductance and large c=1.
weak conductance. For a graph with a constant weak conductance, by taking

O(1/n) we obtain { /n, ¢)-spreading irO(log n) rounds.
We emphasize that a graph with a large weak conductance may

2¢, the weak conductance (S(%)(% -2 nl/c) /2 = L. For be very different from the-barbell graph, and hence the sets.gé
any constant > 1, this implies a conductance &f(1/n?) while messages that are received by the different nodes may be ‘fan” fr
the weak conductance is 1) constituting a partition inte disjoint subsets of size/c. For our

Indeed, the barbell graph has been studied before [1, 7] as aapplication of t_he maximum_ coverage problem, this allows to ob-
graph for which information spreading requires a large number of {@in an approximation algorithm that exceeds the budget by factor
rounds (in [1] the context is random walks, which is closely re- at moste, by conS|der|r_19 _the network as partitioned and solving the
lated, since the path of a message can be viewed as a random Wa"pr_oblem separately within each set. An example for such a graph
on the graph). Our definition of weak conductance and the relaxed With large weak conductance is a clique on-alhodes. Indeed,
requirement of partial information spreading greatly improve the if €ach node in the clique receiveg'c messages, with only small
guarantees that can be obtained for this graph. There are additionaProPability the received messages induce a partition of the nodes
families of graphs that have a similar property of small conductance 10 ¢ disjointsubsets. Thus, in general, for graphs with large weak
and large weak conductance. Examples include rings of cliques andconductance we can only aim for each message to be received by
other structures with equal-sized well-connected components that n/c nodes (and for each node to receivgc messages), but not
are connected by only a few edges. Notice that for a graph to have anécessarily as a well-structured partition.
large weak conductance, it need not even be connected. For exam-
ple, a graph consisting efdisconnected cliques has a large weak

conductance, but its conductance is equal to zero. 3. DISTRIBUTED MAXIMUM

Next, we proceed to the analysis of the partial information

spreading algorithm. Recall that in every round, each nioda- COVERAGE
domly chooses a neighbgrwith probability 1/d; and exchanges In this section we present a distributed algorithm which uses par-
information with it. LetG = (V, E) be the underlying communi- tial information spreading for approximating maximum coverage.

cation graph, and for every noddet V; be the subset that realizes  The problem that we consider is defined as follows.
the weak conductance 6f.

Consider a nodéand letS;(r) C V; denote the set of nodes of
V; that received the message(i) of nodei by roundr; also, let

X; be an indicator random variable for the receipt of the message should return a value i{true, false}, such that the number of
m(i) from a node inS; (r) at a nodej € V;, in roundr + 1. Then nodes that returitrue is K and the number of edges that are cov-

for |S;(r)| < |Vi|/2 we have: ered by the nodes that retutnue is maximized.

DEFINITION 1. Inthe distributed maximum coverage problem,
each node is given the number of nodeand the budge& and

We are interested in bi-criterigx, 3)-approximation algorithms,
which exceed the given budget by a factor of at mast/hile guar-

E(IS:(m+ DI Si(7)) = anteeing a cover that is at least a fagbanf an optimal cover with

=[S+ > E[X;]Si(r)] the given budget.
FEVi\Si(7) We show a randomized algorithm for maximum coverage, which
in expectation obtains gy, 3)-approximation with constait and
= [Si(7)] + Z Pr.j (. Later, we show that for values & that are not too small, e.g.,
k€S (7),3€Vi\Si(T) K = Q(logn), these approximation factors are obtained with high
D ' Py . probability, and not only in expectation.
= |85(7)] (1 4 £kESir).deViNSi(r) ’J> We first give some intuition to the difficulty in obtaining an ef-
15:(7)] ficient distributed algorithm for maximum coverage. As discussed
> 1S:(7)|(1 + ®(G)). (2) above, using an information spreading algorithm allows approx-

imating maximum coverage within a constant factor. However,
From here, the analysis proceeds exactly as the proof of Lemmaas shown in Section 2, some networks require a large number of
4 in [28]. The proof considers two phases of the algorithm, the rounds to achieve full information spreading, and therefore we wish
first is while less thafV;| /2 of the nodes irV/; receivedm(i), and to avoid it. By allowing only partial information spreading, we can
the second is until allV;| nodes receive the message. The evolv- no longer guarantee that a node knows the degrees in the graph,
ing of S;(7) in each phase is examined using sub-martingales, for and certainly not the structure of the graph. Knowing only half of
which inequality (2) suffices to carry out the rest of the analysis. the degrees is insufficient, since the unknown degrees may be very
Although the analysis is for the number of nodes that receive a large, in which case the node should not choose itself for the cover,
messagen(i), a similar argument addresses the number of mes- or very small, in which case perhaps it should. Even knowledge of
sages that nodereceives. This is because we are using a push/pull the maximal and/or average degrees does not seem to be sufficient.
model of communication, along with a symmetric transition matrix Nevertheless, we present a constant-approximation algorithm for
P, which implies that the probability of a nodeeceiving a mes- maximum coverage that uses only partial information spreading.



Let Spro be a(d,2)-spreading algorithm with a round complex-
ity of Rspr, (€.9., the partial information spreading algorithm in
Section 2). The idea is that the nodes use the algorithpm to
construct a distributed algorithm for solving the maximum cover-
age problem with a given budgéf, by partially spreading their

[ 4
1 A2

degrees, and at the same time estimating the number of nodes in

certain predetermined ranges of degrees. The latter information is7;, (v) > 7, /2

then also spread using the algoritttfpr,.

For simplicity, we assume that = 2° for some integet > 1,
although our results hold for any value of We denote byn(v)
the message that nodespreads in algorithn®pr.. We assume
that every node always receives its own messagév). First, we
define below the local variables maintained by each node.

We definet + 1 setsD1, D, . . ., Diog n+1, that partition the set
of nodes according to their degree:

D; = {v eV]dw) e (n/2i,n/2i71}} ,i=1,...,logn+ 1.
For everyi, 1 < i <t + 1, we denote by:; the number of nodes
in the setD;, i.e.,n; = |D;|. The goal of each nodeis to obtain
good estimates;(v) of these sizes, while the initial information
a node has is only the number of nodesand the budgek al-
lowed for covering. Therefore, initially;; (v) = 1if v € D;, and
n;(v) = 0 otherwise.

For our analysis to go through, the actual information that the
nodes spread is about the valdgs$v) = >>°_, n;(v), which are
the estimates ot; = Z _, 4, rather than the values; (v) them-
selves. To this end, each nodelso maintaing + 1 static boolean
variablesb; (v), for everyi, 1 <4 <t + 1, such thab;(v) = 1 if
and only ifv € J;_, D;.

ai(v) > {u e V]ue Ay NUi_, D;}|

Figure 2: The partition of nodes into the sets A% and A% in
Lemmab.

hold. We also note that more iterations cannot improve these guar-
antees, since it may be the case that(th€)-spreading algorithm
induces two disjoint subsets af/2 nodes and each node receives
all the messages within its subset.

It is easy to see that the number of rounds of Algorithm 1 is in
the same order as the number of rounds of the spreading algorithm
Sprs, since we have three iterations of it. In addition, each message
containsO (log n) variables, each of siz@(log n) bits. Therefore,
we get the following round and bit complexity:

LEMMA 4. The round complexity of Algorithm 1@3(Rspr, ).
The bit complexity per messagg(v) of a nodev is O(log® n).

We now prove the approximation factors of the algorithm.
Throughout the rest of the analysis, we assume$pat obtained
the required spreading in all three iterations. This event happens
with probability at leasti — 34, sinceSpr. is a (4, 2)-spreading
algorithm.

We first bound the expected number of nodes that refuua.

The estimate of a node is updated according to two types of in- First, the next lemma bounds the expected number of nodes that
formation it gathers. First, the node receives messages from a seteturntrue in a given setD;. This bound itself is not enough for
of nodesU with the informationn;(u), for w € U. In addition, guaranteeing a constant deviation from the budget, since the num-
the node estimates the sun,, ., b:(u). The estimatéi;(v) will ber of sets ig + 1 = logn + 1. However, we will use it later for
then be updated to the maximum of these values. The pseudocodesome of the sets, while the others will be bounded more carefully.
appears in Algorithm 1. We use the following notation, which considers the algorithm
after thethird iteration. For every, 1 < ¢ < t + 1, we partition
the set of all node¥” into two setsA’ and A%, such that nodes in
A’ received a message from some nadgith 72; (u) > 7;/2, and
nodes inA? did not.

Algorithm 1 Maximum coverage algorithm, code for node

1. repeat 3times:
2: run Spro with messagen(v) containing the sequence

(< bi(v),n1(v) >,..., < beg1(v), Neg1(v) >) LEMMA 5. Foreveryi, 1 < < t+ 1, the expected number of
3 fori =1tot+ 1: nodes inD; that returnt¢rue is at mosB K.
4 estimate; (v) = 3_, ¢y bi(u) according to PROOF. SinceSpr, is (6, 2)-spreading, the first iteration con-

the set of received messadés

5: updaten; (v) = maxuev 7;(u) according to

the set of received messadés

updaten;(v) = max {7 (v), n;(v)}
letrn = ¢ such thaw € D;
8: if nm(v) < K then returnirue
Il returntrue with probabilityp(v) =1

9: elseiffi,—1(v) < K then returnirue

with probabilityp(v) = ==
else returrfalse '

tains at leasfi; -  messages by nodes with(u) = 1. A simple
pigeon-hole argument implies that there is a noti¢hat receives
at leasti; /2 out of these messages.

The nodev™ estimatesi; (v*) = >, ., bi(u) according to the
setU of received messages. Sincéreceives at leasi; /2 mes-
sages withb; (u) = 1, we have that;(v*) > n,/2 after line 6.

In the second iteration, at leasf2 nodes receive the message
m(v*), and therefore at least/2 nodes havei;(u) > 7, /2 after
line 6.

Now, consider the partition of all nodes after the third iteration
into AY andA%. If v € D; isin A thens; (v) > 7;/2. Otherwise,
let z be the number of nodes iB; that are inA%. These nodes do
not receive in the third iteration any of the messages wit) >
n;/2, but each of them still receives at least2 messages, since

N o

10:
Il returnt¢rue with probabilityp(v) = 0

The algorithm consists of three iterations, in each of which a
nodev invokes the information spreading algorithspr, and up- our spreading algorithm i}, 2)-spreading. This implies that each
dates the estimates of the valuegv). As our proof will show, nodev of D; which is in A5 receives all messages from nodes in
since the spreading algorithm promises only that half of the mes- 4%, and hence ha#; (v) > « (see Figure 2).
sages are received by each node, we need three iterations of it in Anodev € D; in Aj returnsirue with probability at most--,
order for our guarantees of the maximum coverage algorithm to unlessi;(v) < K, in which case returnstrue with probability 1.



Either all nodes in € D; N A} havefi;(v) > K and the expected

number of nodes iD; N Aj that returnérue is at most D D, Dy, | Degar
. K
n; B < 2K, ne_1 < 2K At most3K At most K’ At most3K No node

nl/ returntrue retum?r.u_e returntrue returns

or there is a node € D; N Aj for which #;(v) < K, but then by Lemma 5 2]%’,?ef'”'t'°” by Lemma5  true

n; < 2K and again the expected number of node®jm Aj that

returntrue is at most2 K. )

Anodev € D; in A} returnstrue with probability at most< Figure 3: The bounds on the number of nodesthat return true
unlessz < K, in which casev returnstrue with probability 1. In in the sets D;, as proved in Theorem 6.

the latter case we have at mdstnodes inD; N A%, and therefore
the expected number of nodes i N Aj that returntrue is at
mostK. Otherwise, ifr > K then the expected number of nodes
in D; N A that returnérue is at mostz - ‘; =K.

LEMMA 7. The expected number of nodeg jfi_, D; that re-
turn true is at leastK and every node inﬁ_1 Dj returnstrue.

Therefore, the expected number of node®inthat returnirue PROOE There are less thali nodes |rU5 1 Dy, and therefore
is atmosK + K = 3K, which completes the proof.L] less thank nodesu with b,_1(u) = 1. ThIS implies that every

We are now ready to prove the upper bound on the expected num-nodev hasi.—1(v) < 7s—1 < K. Therefore, every node in
ber of nodes that returtrue. We denote by the minimal index U521 Dj returnstrue. The total number of these nodesiis-

such thati, > 2K. Ideally, we would like to choose the nodes in Now consider nodes ii,.. A nodev in D, returnstrue with
D, fori < ¢ and perhaps some of the nodesli such that their  Probability at least (if 72s(v) < K thenv retumnstrue with
total number isk', in order to exceed the budget by no more than a probability 1). Similar to the previous argument, every nodes

constant fraction of it. We define s (v) < is.
R _ The expected number of nodeslin that returnirue is therefore
Bad; ={v € D; | n;—1(v) < 2K andn;—1 > 2K},

. _ . K K Ko
which is the set of nodes iD; that estimate that they are in Z s (0) > (s — ”sfl)ﬁ* =K - FI
U} D;, but are actually not there. These are nodes that may veD; ° ) °
be chosen by the algorithm and exceed the budgetVe wish to which implies that the expected number of nodes that reftcwna

bound the number of such nodes to derive a bound on the deviationjp U . D; is at least
from the budgef.

THEOREM 6. The expected number of nodes that rettirne Z plv) = Zjl p)+ D p(v)
in Algorithm 1 is at mos9 k. veUjz Dj velU;2; Dj veDs
PrRoOOF From the _defir}izi?n oZ, it is clear that the numb_er of > ey 4 (K — KTNLSA) > K,
nodes that returtrue in | J;_; D; is at mosRK (becaus@kK is a s
bound on the total number of nodes in these sets). where the last inequality follows from the fact thiat > K, by the
Applying Lemma 5 fori = £ implies thatinD, there are atmost  gefinition ofs. [
3K nodes that returtrue.
We now defineh to be the minimal index such that The following theorem gives the expected number of edges cov-
| U?:Hl Bad,;| > K. These are nodes that retusirue from the ered by our solution.
set'sDHl, .. Dh. By the definition ofh, there are at mosk’

THEOREM 8. Let ALG be the expected value of the cover ob-
tained by Algorithm 1. TheM LG > OPT /4, whereOPT is the
value of an optimal solution.

nodes inJ//_ 0., D; that returnirue.
Again, applylng Lemma 5 for = h implies that inDj, there are
at most3K nodes that returtrue.

Finally, we claim that inD;, for i > h, no node returngrue. ~ PROOF. We denote by, ..., vk the nodes of an optimal solu-
This is because either a nodec D; is in Af, in which case the tion ordered according to decreasing degrees, angiby. ., ux
node hasi;—1(v) > 7e(v) > 7e/2 > 2K/2 = K and it re- the nodes of the solution of Algorithm 1 ordered according to de-
turns false, or the nodev € D; is in A%. In the latter case, node  creasing degrees. Recall that by Lemma 7 we haveiHar K.
v receives a message from every nade A5. Every nodeu in We use the simple observation that the number of edges covered by
U o1 Badjisin A$, otherwise, by the proof of Lemma 6 has a set of nodes is at least half of the sum of their degrees (because
W( ) > 2K/2 = K and henceu returns false, which contra- we count each edge twice in the worst case). We therefore have:
dicts the assumption thatis in U}?_Ml Bad;. Sincev receives a L& 1K
message from every nodein |J!_, , , Bad;, we have that ALG > 5 Z d(ui) 2 5 Zl d(u:)
Ng—1
i (v) > fn (v) > | U Badj| > K, 1 _
j=t+1 Z 3 Z d(ui) + Zﬂd(ul)
1=Ng_1

where the last inequality follows from the definition bf Hence, _— X«

in this casev also returnsfalse.
Therefore, in total we have at mask + 3K + K + 3K = 9K
nodes that returtrue (see Figure 3). [
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We now bound the number of edges covered by Algorithm 1. Let
s be the minimal index such thatJ;_, D;| > K.
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where the inequality on the third line is because all the nodes from  For more general instances of maximum coverage, where each
the firsts — 1 sets are selected by our algorithm and these are the element may belong to at mogtsets, instead of just two (e.g., an
ns—1 nodes with the largest degrees, and the other nodes are allf-hypergraph, in our setting), Algorithm 1 yields an approximation
from the setD,, and therefore have degree at leag2® while the factor of 3 = 2f instead of3 = 4, and the analysis remains the
largest degree in the set can be at most twice this value. same.

This gives the desired approximation ratid.]

4. NETWORKSWITHOUT NODE
IDENTITIES

In some distributed systems, nodes do not posses unique iden-
THEOREM 9. Algorithm 1 yields in expectation &9, 4)- tities. In this section we consider such a model, where each node

approximation to the maximum coverage problem, with a round has some local numbering of its neighbors, but the nodes are not

complexity 00 (Rsyr, ), andO(log? n) bits per messagen(v) of equipped with global identities, and therefore are limited in gain-
every node. ’ ing knowledge about the structure of the network. Thus, even with

a full information spreading algorithm it is not clear how to solve
the maximum coverage problem.
Improvements to the Analysisthe expected approxima- The main issue that arises in this setting is that nodes cannot
tion factors are proved by analyzing and summing the probabilities distinguish between a duplicated message and more than one dif-
p(v) of every nodev to returntrue. Since we consider the sum  ferent message with the same content. For our maximum cover-
of n independent Bernoulli random variables, we can use a stan-age algorithm to go through, this requires the nodes to use a dif-
dard Chernoff bound to obtain constant approximation factors for ferent method for counting the number of nodes in each category

By choosingd = O(1/n) the expected approximation factors re-
main the same, and the above analysis gives the following main
theorem that summarizes the properties of Algorithm 1.

the number of covered edges, as well as for the relative deviation D;. While updating an estima#e (v) to the maximal estimate that

from the budgetX’, with a probability of at least — p, wherep
is exponentially small in the expectatiof(K). Indeed, for val-
ues of K that are not too small, such & = Q(logn) (which
is still scalable), this implies constant approximation facteith
high probabilityrather than in expectation, where high probability
refers to probabilities that a@(1 — m).

In addition, we remark that better approximation factors can be
obtained by modifying the partition f to the setd;, as follows.
Foranyy € (0,1), and everyl <i <log,, n+1,

Di={veV|dv) e m/(1+y)n/0+7)""1}.

A respective modification of Theorem 8 now gives an approxima-
tion factor of3 = 2(14~) = 2+ 2+ for maximum coverage. This
implies that our algorithm exhibits a tradeoff between the approxi-
mation factor and the size of the messagéds), as summarized in
the next result.

THEOREM 10. For everyy > 0, there is an algorithm that
obtains in expectation 49,2 + 2v)-approximation to the maxi-
mum coverage problem, with a round complexitpPdRRs,-, ) and
O(logn - log, |, n) bits per message(v) of every node.

When using the partial information spreading algorithm from
Section 2 and plugging the round complexity of Theorem 3 along
with 6 = O(1/n) into Theorem 10 we obtain:

COROLLARY 11. For everyy > 0, there is an algorithm that
obtains in expectation 49,2 + 2v)-approximation to the maxi-
mum coverage problem, with a round complexitya)( (Ii‘;g(’g))
andO(logn - log, , ., n) bits per message:(v) of every node.

For graphs with a constant weak conductance, such as the barbell,

graph, this implies a scalable number of rounds.

Extensions:.If each edge: € F has a weighto(e), we modify
our algorithm to usev; = >-5;.._(, ;) w(e) instead of the degree
d; (which corresponds to the case of unit weights).

nodew receives is not affected by the lack of identities, summing
the valuesy_, ., b:(u), whereU is the set of nodes from which
receives a message, highly depends on having no duplicates.

We use the framework of Mosk-Aoyama and Shah [28] for com-
puting separable functions, and modify it to fit our partial informa-
tion spreading rather than the full information spreading assumed
there. Instead of sending the valugév), each node generates
exponential random variabldd’; (v) with rate b;(v) (and hence
meanl/b;(v)). However, such a value may be equal to 0. To
overcome this, ifb;(v) = 0 we replace it by a small but posi-
tive valueb;(v) = 1/2n. The idea is that the minimum of expo-
nential random variables is also an exponential random variable,
whose rate is the sum of their rates. Each node now takes the min-
imal valueW = min,cvW;(u) and taked /W as its estimate of
> weu bi(u). With some probability, this estimate is close to the
correct sum.

To obtain a close estimate wittigh probability each node gen-
erates and sendsvariablesW (v), wherel < j < r, with rate
bi(v). A nodew then calculates for every, 1 < j < r, the mini-
mumW? = min,cuy W/ (1) according to the set of received mes-
sagesU, and takesst(v) = r/(30,<;<, W7) as its estimate of
sumy(v) = Y., o bi(u). The motivation for generating more
random variables is to guarantee better bounds on the probability
of an estimate that is close to the correct sum; the chosen value of
r is determined below.

Formally, we say that an estimatet(v) is closeto the correct
sumsumy (v) if

est(v) € [(1 — €)sumy (v), (1 + €)sumy (v)],

for some parametel < ¢ < 1/2. Provided that the algorithm

Spro achieves the required spreading, we have that for a given node
the probability that the estimate ofis far from the correct sum

is:

Pr(est(v) & [(1 — €)sumu (v), (1 + €)sumy (v)])

<0E €M), @3)

Moreover, for the budgeted maximum coverage problem, where which forr = ©(e 2log ') is at most (see [28, Lemma 2]).

each node is associated with some non-negative egs), we can
obtain similar approximation factors by modifying the algorithm to
scale the probabilities(v) according to the costgv).

In the analysis of [28], this also implies that the estimates of
all nodes are within this range, since it assumes a full informa-
tion spreading algorithm and therefore all the nodes have the same



minimummin, ey W/ (u). We cannot use the same observationin 5.  DISCUSSION

our case, since different nodes calculate their estimate according to  Thjs paper studies partial information spreading and its useful-

different sets/ of received messages. Using the union bound t0 ness in solving optimization problems in distributed manner. The

simply sum these probabilities over all nodes results in a very weak ey concept of weak conductance of a graph is used as a tool for
bound on the total probability of good estimates. However, care- measuring the time needed for partial information spreading. We

ful inspection of our analysis of Algorithm 1 shows that we need pgjieve that weak conductance will turn out to be useful in analyz-

the estimate ofumy (v) = >, o, bi(u) to be close to the correct

ing other properties of graphs as well. An interesting avenue for

value only in a few cases, as described next, since other nodes upfyture research is to relate the weak conductance of a graph to its
date their estimate according to the maximal estimate they receive.a|gepraic properties, as an analogue to the bounds on the conduc-

We modify Lemma 5 as follows:

LEMMA 12. For everyi, 1 < ¢ < t + 1, with probability at
leastl — 26, the expected number of nodesiim that returntrue
is at most(3 + 6¢) K.

PROOF We only state the differences from the proof of
Lemma 5. With probability at least — §, the nodev™, which
obtains at least;/2 messages from nodes with(u) = 1, satis-
fies inequality (3) and therefore may now have an estimate as small
as(l —e)n;/2.

In addition, all the nodes il receive each other's messages,
and therefore we apply the bound in inequality (3) only once to get
that with probabilityl — & everyv € A% hasn;(v) > (1 — ).

This implies that the expected number of nodes that reftuin
inasetD; isatmost(2/(1 —¢) + 1/(1 —¢))K < (3 + 6¢)K,
sincel/(1—¢e) <1+4+2efor0<e<1/2. O

Notice that applying Lemma 12 far= ¢ andi = h implies that
this adds a term of at mos# to our probability of failing to achieve
the desired approximation, in addition to thé& by the guarantees
of Spra.

We adjust the definition of to be the minimal index such that
ne > 2K /(1 — €), and the definition of. to be the minimal index
such thaf U?=e+1 Bad;| > K/(1 — ¢€). This induces a bound of
(2(3+6€) +2(1+2¢)+ (1+2¢€)) K = (9+ 18¢) K in Theorem 6.

For the lower bound on the number of covered edges, we adjust
the definition ofs to be the minimal value for which J;_, D;| >
K/(1 + ¢) (instead ofK). Now, in the proof of Lemma 7 we use
the setsd? and A5 for bothi = s — 1 andi = s. Fori = s — 1
this implies that every node in Uj;} Dj hasns—1(v) < (1 +
€) - s_1 < K, and therefore returns-ue. There arei,_; such
nodes. Foi = s this implies that every nodein D, hasns(v) <
(1+¢)-ns. Plugging this into the calculation gives that the number
of nodes that returtrue in | J5_, D; is at leasti(/(1 + ¢). This
implies another factor fl +¢) in the approximation of Theorem 8.

Notice that this adds another term 4§ to the probability of
failing to achieve the desired approximation, hence we have a
probability of at leastl — 116 for our algorithm to obtain a
(9 + 18¢,2(1 4+ v)(1 + €))-approximation for maximum coverage.
As before, we choos& = O(1/n), which gives:

THEOREM 13. If the nodes in the network do not have iden-
tities, there is an algorithm that yields in expectation(@& +
18¢,2(1 + v)(1 + €))-approximation for the maximum coverage
problem, with a round complexity 6f( Rs,., ), andO (e 2-log? n-
log, ., n) bits per message:(v) of every node.

The smaller we take, the better the approximation guarantee.
However, the cost is in having a largewhich blows up the size of
messages sent. If we take a small constam get that the approx-
imation factorsa, 8 are still constants, and the size of a message
m(v) remains polylogarithmic im.

We remark that for simplicity of presentation the above analysis
only aims to show a constant approximation factor, and that the
approximation factors may be improved.

tance,1 — 2¢(G) < A <1 -—
eigenvalue of the transition matrix [32].

%G)r“, where)\; is the second

We showed how partial information spreading can be embedded

in an approximation algorithm for solving the problem of maxi-
mum coverage. It is an open question whether better algorithms
exist for this problem.

In addition, as a further research direction we propose the ques-

tion of achieving other types of partial information spreading,
which can be useful in designing distributed algorithms for solv-
ing other problems.
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APPENDI X
A. PROOFOF LEMMA1

Recall that for every grap¥, ®(G) is the conductance accord-
ing to the symmetric transition matrik where

g~ if (i,5) € E
Pyj=(1—-g% ifi=j
0 otherwise

and®(G) is the conductance according to the transition mafttjx

where
B {gl if (i,5) € E

otherwise



Lemmal [restated] For every graphG = (V, E), ®(G) >
d(G).

PrRoOOF Recall that the stationary distributior is uniform,
hencerp (i) = 1/n for every node. This implies that

. ZieS,jeV\S m(i) P,
min
SCV,m(S)<1/2 w(S)

3(G) =

1 1
. Zies,jEV\s (- dmaw)
min 1
SCV,|S|<n/2 ||+
i EGVAS)]
scvisi<n/2  |S|dmax

whereE(S,V\S)={e€ Ele=(i,5),i € S,j € V\S}is
the set of edges of the c(f, ' \ S).

On the other hand, the stationary distributiary satisfies
w5(2) = di/2m for every node;, wherem = |E|. This implies
that

~ . . (2 Pl‘,‘
(@) = min ZZGS’JEV\S (P
SCV,m(S)<1/2 w(S)

di |1
min Yiesjens (a5 " 70)
SCV.Eics di<m Sies o
[E(S,V\ 9)
SCV,Siegdism D cqdi

Therefore, to prove thak(G) > ®(G), we need to prove

pin  PGV\S)
SCV.3 s di<m Zies di
1B(5,V\ 9)]

> m
~scvsi<n/z |S|dmas

4)
It is easy to see that for any given s£tC V we have
[E(S, VAS)| o [E(S,V\S)|
ZiES dz - ‘S‘dmaac

but it is not necessarily the case that the minimum in both expres-
sions in inequality (4) is taken over the same gets V. However,

if there is a setS C V for which ), o di < m but|S| > n/2,

then forS = V' \ S we have|S| < n/2, and in addition:

BSVAS) B,V \S)

Diesdi N m
[E(S, VS| o [E(S,V\S)|
- Zies"di - |S|dmax

where the first two inequalities follow from the fact t@es d; <

m. This completes our proof since for every seC V taken in the
left-hand side of inequality (4) there is a set taken in the right-hand
side whose value is at least as small]



