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Exercise 7: Sample Solution

1 Deterministic Maximal Independent Set

a) Consider the graph consisting of a connected chain of k nodes v1, . . . , vk. We add i − 1
additional edges leading to i − 1 additional nodes at each node vi for all i ∈ {1, . . . , k − 1}
and k additional nodes and edges to node vk. The degree δ(v1) of v1 is 1 and for all other
nodes vi ∈ {2, . . . , k} we have that δ(vi) = i+ 1. All additional nodes have degree 1.

In the first round, all nodes except vk have a neighbor with a larger degree, thus only vk
joins the MIS. Afterwards, vk−1 can decide, then vk−2 and so on. Thus, after k time all
nodes v1, . . . , vk and also the additional nodes have decided to join or not to join the MIS.

The number of nodes in this graph is
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The time complexity is thus k ≥
√

2n− 1 ∈ Ω(
√
n).

b) We first show, that the above lower bound is tight. Assume a node v0 of degree δ(v0) that
is still undecided at time

√
n. This implies that there was a neighbor v1 at time

√
n − 1

that had a higher degree than v0, that is δ(v0) < δ(v1). However, v1 might have been
removed from the set of undecided nodes due to having a neighbor that joined the MIS. We
conclude that v1 had a undecided neighbor of higher degree at time

√
n− 1. Using the same

argument v2 had an undecided neighbor at time
√
n− 2 of higher degree, which in turn had

an undecided higher-degree neighbor v3 at time
√
n− 2. By induction it follows that there

are nodes v0, . . . , v2
√
n such that nodes vi and vi−1 are neighbors and δ(vi−1) < δ(vi). Since

we consider a tree, it is not possible that any two nodes among v0, . . . , v2
√
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neighbors (else there was a cycle and the graph not a tree). Thus there must be at least∑2
√
n

i=0 δ(vi)−1 nodes in the tree. We are interested in minimizing this sum and it is minimal
for δ(v0) = 1 and δ(vi−1) = δ(vi) + 1. This yields that there are
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Since our graph should have only n nodes, this is a contradiction to the assumption that
there is a graph such that the algorithm does not remove all nodes within time

√
n.

To construct a lower bound for general graphs we now consider a ring of k nodes v1, . . . , vk
instead of a chain. We use k− 1 additional nodes u1, . . . , uk−1 to increase the degrees of the
nodes vi: There is an edge {vi, uj} from all nodes vi to all nodes uj for which j ∈ {1, . . . , k−i}.
It is easy to see that the degree δ(vi) of node vi is k + 2− i, and that δ(uj) = k − j.
In the first round, only v1 joins the MIS. This means that all nodes u1, . . . , uk−1 and also v2
and vk can no longer join the MIS. Thus, in the second round, all these nodes broadcast to



all their neighbors that they will not join the MIS. In the third round, only v3 decides to join
the MIS because all other undecided nodes have an undecided neighbor with a larger degree.
Subsequently, only v4 decides (not to join the MIS) in round 4. Repeating this argument, we
get that the last node vk−1 makes its decision not before round k− 1. Since n = k+ (k− 1),
the time complexity is thus k − 1 = n−1

2 ∈ Ω(n).

2 (Local) Reductions

a) We use one of the fast MIS algorithms from the script on the line graph of G, i.e., the graph
L(G) = (E,F ) having the edges of G as nodes, where two nodes (edges of G) are connected
exactly if they are adjacent to each other in G (formally: F = {{e, f} ∈

(
E
2

)
| e ∩ f 6= ∅}).

Thus, a (node) coloring of L(G) is an edge coloring of G. Since L(G) has m ∈ O(n2) nodes
and maximum degree 2(∆ − 1) (an edge may be adjacent to ∆ − 1 others at each of its
nodes), the algorithm will need O(log n2) = O(log n) time and 2(∆− 1) + 1 = 2∆− 1 colors.

The line graph can be simulated locally, where nodes of the line graph (i.e., edges of G) are
simulated by one of their incident nodes. The nodes simulating adjacent edges are connected
by them and therefore at most 2 hops away from each other. Thus, two rounds and (at most)
two messages are required to simulate one round of communication and one message on the
line graph, respectively. Hence, the time complexity is doubled, but still in O(log n).

If we do not have edge orientations or identifiers, the decision which of the nodes plays the
part of the edge can, e.g., be made w.h.p. in a single round by exchanging random bit strings
of size O(log n) between neighbors.

b) First, we 3-color the ring by means of Algorithm Six-2-Three (or its uniform variant from
the first exercise sheet). Next, all nodes with color 0 join the dominating set and inform
their neighbors. Then, all nodes with color 1 having no neighbor of color 0 join the set and
inform their neighbors. Finally, still uncovered nodes with color 2 join the dominating set.

Obviously, the resulting set is a dominating set and the algorithm has a time complexity
of O(log∗ n). However, the constructed set is also a (maximal) independent set, as no two
neighbors join. An independent set in a ring cannot have more than n/2 nodes, while a dom-
inating set must contain at least n/3 nodes (each node covers itself and its two neighbors).
In other words, the computed set is at most a factor of 3/2 larger than any dominating set
and hence also than a minimum dominating set.

c) Again we use one of the fast MIS algorithms to compute a maximal independent set I within
O(log n) time. It is also a dominating set (because a node without a neighbor in I could be
added) and we claim that it is at most C times larger than a minimum dominating set M .

To prove this, consider a node v ∈ I. Since M is a dominating set, there must be at least
one node in (N(v)∪ {v})∩M , i.e., a node from the optimal solution is in v’s neighborhood.
For each v ∈ I, we count such a node. Because the graph is of bounded independence, no
node m ∈M is counted more than C times, because there cannot be more than that many
independent neighbors of m. Therefore, |I| ≤ C|M |.
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