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Abstract. Consider a synchronized distributed system where each node
can only observe the state of its neighbors. Such a system is called self-
stabilizing if it reaches a stable global state in a finite number of rounds.
Allowing two different states for each node induces a cut in the net-
work graph. In each round, every node decides whether it is (locally)
satisfied with the current cut. Afterwards all unsatisfied nodes change
sides independently with a fixed probability p. Using different notions
of satisfaction enables the computation of maximal and minimal cuts,
respectively. We analyze the expected time until such cuts are reached
on several graph classes and consider the impact of the parameter p and
the initial cut.

1 Introduction

1.1 Motivation

In the language of distributed computing a system is called self-stabilizing if it
reaches a global state with some desired property in finite time, regardless of
the initialization. This implies that the system is able to stabilize even in the
presence of faults [2,4]. Such self-stabilizing processes have been investigated for
various graph problems like maximal matchings [11,15], independent sets [8], and
domination [6]. A lot of research effort has been spent on self-stabilizing vertex
coloring algorithms [7,9,12,13,14], motivated by code assignment problems in
wireless networks.

In this work we consider self-stabilizing algorithms for maximal and minimal
cuts in a synchronized distributed system. The network is given by an undirected
graph G = (V, E). As we do not make use of IDs for the nodes, we assume that
the network is anonymous. However, we assume that there is a central clock
synchronization. In each round every node has one out of two possible states,
which induces a cut of the network. In every round every node decides whether it
is satisfied with the current cut, judging from a local perspective, i. e., the state
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of its neighbors. Unsatisfied nodes strive to (locally) improve the cut by changing
sides. In order to break symmetries, we investigate a randomized algorithm where
in each round every unsatisfied node changes sides with a fixed probability p.

By different notions of satisfaction different types of cuts can be produced.
We say that a node is max-satisfied if at least half of its neighbors are on the
other side of the cut. If all nodes are max-satisfied, the current cut cannot be
increased by flipping a single node. Hence the current cut is maximal, i. e., locally
optimal w. r. t. the cut size (as opposed to maximum cuts representing global op-
tima). From a global perspective, the system may be viewed as a self-stabilizing
algorithm for maximal cuts.

The system may also be regarded from a local perspective. For example, the
problem can be seen as a relaxed code assignment problem where nodes are
forced to use different codes to communicate. In a cut where all nodes are max-
satisfied every node can communicate with a majority of neighbors, even if only
two codes are available. There are also connections to game theory where the
nodes represent players competing for services. If some players asking for the
same service are close to each other (are connected by an edge), then the benefit
of this service has to be split among all these players.

On the other hand, a node is min-satisfied if at least half of its neighbors
are on the same side of the cut. This notion of satisfaction results in minimal
cuts (as opposed to minimum cuts). Finding a minimum cut in a graph is an
important task in computer science with applications to clustering, chip design,
and network reliability. In our distributed and anonymous setting, however, we
are content with minimal cuts.

Using the above-mentioned two notions of satisfaction, we show that the sys-
tem self-stabilizes and then focus on the expected time until a stable cut is
obtained. We prove for both satisfaction models that planar graphs stabilize in
linear time for appropriate constant values of p. The choice of p is crucial since
using constant p on dense graphs results in exponential stabilization times for
the max-satisfaction model, with high probability. Finally, we investigate classes
of sparse graphs like rings, torus graphs, and hypercubes. On rings the expected
stabilization time is logarithmic for constant p. For some torus graphs, the choice
of the initial cut decides between linear and logarithmic expected stabilization
times.

1.2 Related Work

Our work is related to the design of distributed approximation algorithms [5]
since our algorithm approximates maximum and minimum cuts. This is espe-
cially interesting as Elkin [5] concludes in his survey that the distributed approx-
imability of maximum and minimum cut is still unsolved. However, the focus on
this work is different; due to the restrictions in our distributed model we only
settle for maximal and minimal cuts, i. e., local optima.

Gradinariu and Tixeuil [9] investigated a self-stabilizing coloring algorithms
that is similar to our model. In their work, a node agrees with its neighborhood if
it is colored with the maximal color value that is not used by any of its neighbors.
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In their distributed setting a node that disagrees with its neighborhood changes
its color with probability 1/2. It is shown that this strategy stabilizes with a
(B + 1)-coloring in expected time O((B − 1) log n) where B is a bound on the
maximal degree and n is the number of nodes. This work loosely relates to
our work as every 2-coloring represents a maximum cut. However, as typically
B + 1 > 2 colors may be used, vertex coloring and cut problems are quite
different.

1.3 Our Results

After presenting necessary definitions in Section 2, we start with general upper
bounds for the expected stabilization time in both min-satisfaction and max-
satisfaction models in Section 3. In particular, we derive an upper bound O(n/p)
for all planar graphs with n nodes if p ≤ 1/12. This bound suggests to choose p
large, but for dense graphs this may lead to exponential stabilization times. Sec-
tion 4 presents such examples for the max-satisfaction process on the complete
graph Kn and dense random graphs in the G(n, 1/2)-model. On Kn the expected
stabilization time is exponential for p = 1/2, but polynomial if p = O((log n)/n)
(and p ≥ n−O(1)). For sparse graphs the choice of p is less important. As shown
in Section 5, rings stabilize in expected time O((log n)/p) if p = 1 − Ω(1).
Moreover, the investigation of torus graphs shows that the initialization can be
crucial. With a worst-case initialization torus graphs stabilize in expected time
Ω(n/p), while random initialization yields a bound of O((log n)/p2) on certain
torus graphs. Section 6 finishes with conclusions and remarks on future work.
Due to space limitations proofs from Section 4 are omitted. An extended version
with these proofs is available as technical report [16].

2 Definitions

Let G = (V, E) be an undirected graph. For U, W ⊆ V let E(U, W ) be the set of
all edges between U and W and E(U) = E(U, U). For v ∈ V let deg(v) denote
the degree of v. Let Δ(G) = maxv∈V deg(v) be the maximum degree in G and
a(G) = maxU⊆V,|U|>1

⌈
|E(U)|
|U|−1

⌉
be the (edge) arboricity of G (see [1]). We use

a(G) as a measure of local density in the graph and observe that a(G) is small
iff G is “nowhere dense.” The number of nodes is always denoted by n.

At each point of time all nodes are either in state 0 or in state 1. In round t
let Vt(1) ⊆ V denote the set of nodes in state 1; Vt(0) = V \Vt(1) is the cor-
responding complementing set. We synonymously use the term coloring and
say that a node v is c-colored if v ∈ Vt(c), c ∈ {0, 1}. In this case we denote
deg+

t (v) = |E({v}, Vt(1 − c))| and deg−t (v) = deg(v) − deg+
t (v). We define two

notions of satisfaction mentioned before.

Definition 1. A node v is max-satisfied at time t if deg+
t (v) ≥ deg−t (v). A node

v is min-satisfied at time t if deg+
t (v) ≤ deg−t (v).
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Fixing one notion of satisfaction, let V sat
t denote the set of all nodes that are

satisfied at time t and V unsat
t := V \ V sat

t denote the set of unsatisfied nodes.
Given 0 < p < 1, the self-stabilizing cut algorithm is formally defined as follows.

Self-stabilizing cut algorithm

1: In round t execute the following rule simultaneously for all nodes v:
2: if v ∈ V unsat

t then
3: invert state of v for round t + 1 with probability p.

A cut where all nodes are satisfied is called stable. The stabilization time is
defined as the first round with a stable cut. We are interested in the expected
stabilization time, where the initial cut may be chosen uniformly at random or by
an adversary. In the latter case, we speak of the worst-case expected stabilization
time.

Observe that for bipartite graphs one can easily switch between the two models
of satisfaction. Given a bipartition V = U ∪W of the graph G = (V, E), flipping
(inverting) all nodes in U turns every cut edge into a non-cut edge and vice versa.
Thereby, the meaning of deg+

t (v) and deg−t (v) is exchanged and a node becomes
min-satisfied iff it has been max-satisfied before. In particular, a stable cut for
one model becomes a stable cut for the other model after this transformation.

More precise, let the function h on the state space {0, 1}n be such a transfor-
mation, then the following holds. Consider the algorithm applied to both models.
If the max-satisfaction model starts in state x0 and the min-satisfaction model
starts in state y0 = h(x0), then at any point of time t for any state xt the prob-
ability that the max-satisfaction model is in state xt equals the probability that
the min-satisfaction model is in state yt = h(xt). This symmetrical behavior
implies that the random stabilization times for the two models have the same
probability distribution. It therefore suffices to focus on one model when dealing
with bipartite graphs.

In the max-satisfaction model, shortly max-model, a stable configuration rep-
resents a maximal cut, i. e., a cut that cannot be enlarged by changing a single
node. This is because a local improvement implies an unsatisfied node. The same
holds for the min-model and minimal cuts. In a non-distributed setting one may
easily obtain maximal and minimal cuts by local search, simply changing a single
unsatisfied node in each round. The number of cut edges is then strictly increas-
ing over time, implying that at most |E| iterations are needed in order to find
a maximal or minimal cut. The self-stabilizing cut algorithm can simulate an
iteration of local search if exactly one specific unsatisfied node is flipped, which
happens with probability p · (1−p)|V

unsat
t |−1 > 0. Hence, there is a positive prob-

ability that the algorithm simulates a whole run of local search ending with a
stable cut.

Proposition 1. In both the max-model and the min-model, the self-stabilizing
cut algorithm stabilizes in finite time with probability 1.
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In the following, we will present more precise results, i. e., we prove bounds be-
tween logarithmic, polynomial, and exponential orders for different graph classes.
As we are especially interested in the impact of the parameter p, we state our
results w. r. t. n and p.

3 A General Upper Bound

In this section we derive general upper bounds for both the max-model and
the min-model. Thereby, we exploit that under certain conditions there is a
probabilistic tendency to increase the cut size in the max-model and to decrease
the cut size in the min-model, respectively.

Theorem 1. On any graph G = (V, E), if p ≤ 1/(4a(G)), the expected stabi-
lization time for both the max-model and the min-model is bounded from above
by 2|E|/p.

Proof. It suffices to consider the max-model as the arguments for the min-
model are symmetric. Let Pt = (Vt(0), Vt(1)) and let f(Pt) be the number of
cut edges in Pt. Consider one round of the algorithm and let V flip

t be the set of
nodes changing sides (flipping) in round t. If v is the only node to be flipped in
round t, this operation increases the cut size by deg−t (v) − deg+

t (v) ≥ 1. If V flip
t

is an independent set, the total increase of the cut size is
∑

v∈V flip
t

(deg−t (v) −
deg+

t (v)) ≥ |V flip
t |. However, if two changing nodes share an edge, this edge is

counted wrongly for both nodes. This implies

f(Pt+1) − f(Pt) ≥
∑

v∈V flip
t

(deg−t (v) − deg+
t (v)) − 2|E(V flip

t )|

≥ |V flip
t | − 2|E(V flip

t )|.

The expected gain in cut size is at least

E (f(Pt+1) − f(Pt)) ≥ p|V unsat
t | − 2p2|E(V unsat

t )|.

Observe |E(V unsat
t )| ≤ a(G)·(|V unsat

t |−1) < a(G)· |V unsat
t | by definition of a(G).

Along with the assumption p ≤ 1/(4a(G)), we arrive at

E (f(Pt+1) − f(Pt)) ≥ p|V unsat
t | − 2p2 · a(G) · |V unsat

t | ≥ p/2 · |V unsat
t |.

As long as the current cut is not stable, |V unsat
t | ≥ 1, hence the expected increase

in cut size is at least p/2.
We now use drift analysis arguments from He and Yao [10, Lemma 1]. Consider

a Markov chain with states X0, X1, . . . for domain R
+
0 . Let α, δ > 0 and assume

we are interested in the first time until the Markov chain first reaches a value
at least α. If δ is a lower bound for the expected increase in one step, i. e.,
E (Xt+1 − Xt | Xt) ≥ δ for Xt < α, the expected first hitting time for a value at
least α is at most α/δ. Symmetrically, if E (Xt − Xt+1 | Xt) ≥ δ for Xt > 0, the
expected time to reach value 0 starting with α is at most α/δ.
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We apply these statements to the random cut size and finish our considera-
tions prematurely if a maximal cut is reached. Hence, the expected time until a
cut of size |E| is reached or a maximal cut is found beforehand is bounded by
|E|/(p/2) = 2|E|/p. �

Section 5 contains examples where this bound is asymptotically tight. Note that
the simple strategy of choosing p = 1/(2n) is oblivious of the graph at hand and,
nevertheless, yields a polynomial bound of 4|E|n rounds. This also proves that
the expected stabilization time can be polynomial for any graph if the parameter
p is chosen appropriately.

From Theorem 1 one can easily derive a handy upper bound for all planar
graphs. The arboricity of a planar graph is known to be at most 3. A proof
follows by contradiction. If there is a set U ⊆ V with |U | > 1 such that a(G) ≥
|E(U)|
|U|−1 > 3, this implies |E(U)| > 3|U | − 3. However, this contradicts the fact
that the number of edges in a planar graph with k nodes is at most 3k − 6 (see,
e. g., [3]). Therefore a(G) ≤ 3 holds if G is planar.

Corollary 1. On any planar graph G = (V, E), if p ≤ 1/12, the expected stabi-
lization time for the max-model and the min-model is bounded by 2|E|/p ≤ 6n/p.

4 Dense Graphs

The upper bounds from the previous section grow with 1/p, suggesting to always
choose p large. In this section, however, we prove for the max-model that in dense
graphs large values for p may result in exponentially large stabilization times.
The complete graph Kn is the simplest dense graph. For even n, a cut is maximal
(and maximum in this case) if |Vt(0)| = n/2. However, if p is chosen too large, it
may happen that too many nodes change sides simultaneously and a majority of
0-nodes is turned into a similarly large majority of 1-nodes, and so forth. This
may result in a non-stable equilibrium that is hard to overcome. The following
result shows that for large p the max-model needs exponential time to stabilize.
Due to space limitations, proofs for the following theorems are placed in an
extended version of this work [16].

Theorem 2. Consider the complete graph Kn, n even, with n−1/3 ≤ p ≤ 1/2
and an arbitrary, non-stable initialization. Then the stabilization time of the
max-model is at least 1

2 exp(np3

192 ) with probability 1 − o(1).

On the other hand, the effect of too many flipping nodes decreases with de-
creasing p. The following result shows that if p = O((log n)/n) (and, of course,
p ≥ n−O(1)) the expected stabilization time is polynomial.

Theorem 3. Consider the complete graph Kn, n even, with an arbitrary initial-
ization. Then the expected stabilization time of the max-model is bounded above
by 1/p · (1 − p)−n/2.
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Negative results for an unlucky initialization can also be shown for random
graphs of a probability space G(n, p′) defined as follows. The random graph
consists of n nodes and between any pair of nodes, an edge occurs independently
with probability p′. The case p′ = 1/2 is especially interesting as G ∈ G(n, 1/2)
is a uniform sample among all graphs with n nodes.

Theorem 4. Consider a graph G in G(n, 1/2), n even, and assume that initially
20
32n ≤ |V0(0)| ≤ 23

32n. Then the stabilization time of the max-model with p = 1
2 is

exp(Ω(n)) with probability 1 − exp(−Ω(n)) (w. r. t. the randomized construction
of G and the randomized self-stabilizing cut algorithm).

5 Ring Graphs, Torus Graphs, and Hypercubes

We now consider commonly used network topologies like ring graphs (and other
graphs with maximum degree 2), torus graphs, and hypercubes.

5.1 Ring Graphs

Consider a graph G = (V, E) with maximum degree 2. Theorem 1 yields an
upper bound O(n/p) if p ≤ 1/8. We improve upon this result exploiting that on
these topologies satisfied nodes cannot become unsatisfied again.

Definition 2. A set of nodes S ⊆ V is called stable w. r. t. the current cut
Pt if all nodes in S are satisfied and will remain so in all future rounds with
probability 1. A node v is called stable if it is contained in a stable set; otherwise,
v is called unstable.

Isolated nodes are trivially stable, hence we assume that G does not contain
isolated nodes. Then in the max-model (min-model) a node v is satisfied iff it
has at least one neighbor w on the other side of the cut (on the same side of
the cut). This condition also implies that w is satisfied. Even stronger, v and w
will remain satisfied forever since the edge {v, w} will never be touched again.
Therefore, on graphs with maximum degree 2 all satisfied nodes are stable.

Theorem 5. The expected stabilization time for the max-model and the min-
model on a graph G = (V, E) with Δ(G) ≤ 2 is O((log n)/(p(1 − p))).

Proof. Consider a node v that is unsatisfied in round t and the random de-
cision whether to flip v or not. At least one decision makes v satisfied in
round t + 1. The “right” random decision for v is made with probability at least
q := min{p, 1 − p}. In expectation q|V unsat

t | nodes become satisfied (and there-
fore stable), hence E

(
|V unsat

t+1 | | |V unsat
t |

)
≤ (1 − q) · |V unsat

t | for any V unsat
t ⊆ V .

Using the law E
(
|V unsat

t+1 |
)

= E
(
E

(
|V unsat

t+1 |
)

| |V unsat
t |

)
and a trivial induction

yields E (|V unsat
t |) ≤ (1 − q)t · |V unsat

0 | ≤ (1 − q)t · n.
Choosing T :=

⌈
log(1−q)

1
2n

⌉
yields E (|V unsat

T |) ≤ 1/2. By Markov’s inequal-

ity Pr (|V unsat
T | ≥ 1) ≤ 1/2. Hence after T rounds all nodes are satisfied with
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probability at least 1/2, regardless of the initial cut. If this is not the case, we
consider another period of T rounds and repeat the argumentation. The ex-
pected number of periods is at most 2, hence the expected stabilization time is
bounded by

2T ≤ 2
(

log(1−q)
1
2n

)
+ 2 =

2 ln(2n)

ln
(

1
1−q

) + 2 ≤ 2 ln(2n)
q

+ 2 = O

(
log n

q

)

where the second inequality follows from 1/(1 − x) ≥ ex for x < 1. The theorem
follows since q = Θ(p(1 − p)). �

5.2 Torus Graphs

We denote by Gr×s = (V, E) for r, s ≥ 4 both even a two-dimensional torus
graph, defined by

V = {(x, y) | 0 ≤ x ≤ r − 1, 0 ≤ y ≤ s − 1} and
E = {(x1, y1), (x2, y2) | (x2 = x1 ∧ y2 = (y1 + 1) mod s) ∨

(x2 = (x1 + 1) mod r ∧ y2 = y1)}.

Gr×s thus consists of r rows and s columns (see Figure 1). Note that due to the
assumptions on r and s all torus graphs are bipartite and regular as all nodes
have degree 4. Recall that the max-model can be transferred into an equivalent
min-model by inverting states of all nodes in one set of the bipartition. The
visualization is easier for the min-model where large monochromatic areas in
the torus are “good.” Hence we will argue with the min-model in the following;
however, all results also hold for the max-model.

In the min-model we can derive an intuitive characterization of stable nodes,
referring to states synonymously as colors. A sufficient condition for a c-colored
node v to be stable is that v belongs to a cycle of c-colored nodes. Moreover, v
is stable if it belongs to a path connecting two such cycles. The following lemma
shows that these two conditions are also necessary for stability.

Lemma 1. Consider the min-model for Gr×s. A c-colored node v, c ∈ {0, 1},
is stable iff v belongs to a cycle of c-colored nodes or v is on a path of c-colored
nodes connecting two such cycles.

Proof. Consider the subgraph Gc = (Vc, Ec) induced by all c-colored nodes.
On a cycle C ⊆ Vc all u ∈ C are satisfied, hence they will remain so forever.
Consider a path P ⊆ Vc connecting two cycles C1, C2 ⊆ Vc. As all nodes in
C1 ∪ C2 remain satisfied, all u ∈ P remain satisfied as well.

On the other hand, if v is neither on a cycle nor on a path connecting two
cycles, then v cannot be stable. Assume that v is satisfied since otherwise the
claim is trivial. Let S be the union of all cycles in Vc, then v ∈ Vc \ S. Let T be
the connected component of Vc \S that contains v. As T does not contain cycles,
T is a tree. Consider v as the root of T , then v has at least two subtrees in T
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Fig. 1. Torus graphs G8×8 (left) and G4×16 (right). The coloring shows worst-case ini-
tial cuts in the min-model, where only the end nodes of the black paths are unsatisfied.
All white nodes are stable by Lemma 1.

since v is satisfied. As v does not lie on a path connecting two cycles, at most
one of v’s subtrees is connected to S. In a subtree not connected to S every leaf
is unsatisfied. If the next subsequent rounds only flip leaves of T , all subtrees
of v (except one, if v is connected to S) are gradually eliminated, leaving v
unsatisfied. We conclude that v cannot be stable. �

We first consider the worst-case expected stabilization time. It is easy to see that
we can color the nodes in Gr×s such that all 1-nodes form a path of length Ω(n)
where every 1-node is adjacent to at most two other 1-nodes and all 0-nodes
are stable. Figure 1 gives two examples. In such a cut only the two ends of the
path are unsatisfied. As long as the path has length at least 2, this property is
preserved since flipping an end node renders its neighbor on the path unsatisfied.
The algorithm is thus forced to flip the nodes on this path one after another,
starting from both ends simultaneously. It is then easy to prove the following
lower bound.

Theorem 6. The worst-case expected stabilization time for both the max-model
and the min-model on Gr×s is Ω(n/p).

An upper bound can be shown using that unsatisfied nodes have a good chance
to become part of a cycle of equally colored nodes.

Lemma 2. Consider the torus graph Gr×s. If the current cut contains an un-
satisfied node v, the probability that v becomes stable within the next two rounds
is at least p2(1 − p)5.

Proof. W. l. o. g. v is 1-colored and we consider the min-model. We name nodes
around v according to their direction from v and identify nodes with their cor-
responding colors. First consider the case deg+(v) = 0, implying vN = vE =
vS = vW = 0. If any node from {vNW , vNE , vSE , vSW } is 0-colored, say vNW ,
flipping v and not flipping vN , vW , and vNW creates a cycle. As vNW is sat-
isfied, the probability for such an event is at least p(1 − p)2. Now, assume
vNW = vNE = vSE = vSW = 1. Then flipping vN and vE creates a cycle of
1-nodes. The probability for this to happen is at least p2.
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Let deg+(v) = 1 and w. l. o. g. assume that vN is 1-colored. If vSW or vSE is
0-colored, a 0-cycle is created with probability at least p(1 − p)2. Hence, assume
vSW = vSE = 1. If vNW or vNE is 1-colored, say vNW , then vW is unsatisfied
and flipping it and not flipping vNW creates a 1-cycle, with probability p(1− p).
The only remaining case is vNW = vNE = 0. If the next round flips v and doesn’t
flip vW , vNW , vE , and vNE , then vN becomes unsatisfied in the following round.
Flipping vN and not flipping vNW creates a cycle. The probability for these two
rounds to be successful is at least p2(1 − p)5. �

The expected time to decrease the number of unstable nodes is bounded above
by 1/(p2(1 − p)5) = O(1/p2) if, say, p ≤ 1/2, hence the following theorem is
immediate.

Theorem 7. The worst-case expected stabilization time for both the max-model
and the min-model on Gr×s is O(n/p2) if p ≤ 1/2.

We believe that with random initialization the expected stabilization time is
much smaller. It is very unlikely that random initialization creates long paths of
unstable 1-nodes. However, such paths of length Θ(log n) are still quite likely.
Using the same arguments leading to Theorem 6, a lower bound of Ω((log n)/p)
can be shown. An upper bound is more difficult. We present a bound that is
of order O((log n)/p2) if the number of rows (or, symmetrically, the number of
columns) is constant (and p ≤ 1/2).

Theorem 8. After random initialization, the expected stabilization time for both
the max-model and the min-model on Gr×s is O((log n) · 2r/p2) if p ≤ 1/2.

Proof. Let Li := {(x, i) | 0 ≤ x ≤ r − 1}, 1 ≤ i ≤ s, be the nodes in the i-th
column in the graph and note |Li| = r. The probability that all nodes in Li are
initialized zero (or initialized one) is exactly 2−r+1. In this case, Li is a stable
set. The probability that there is no stable set among the consecutive columns
Li, Li+1, . . . , Li+γ−1, where γ = 2 · 2r−1 · ln n for a fixed i is

(
1 − 2−r+1)γ

=
(
1 − 2−r+1)2·2r−1·lnn ≤ n−2.

Dividing the torus into blocks containing γ consecutive columns each, the prob-
ability that each block contains at least one stable column is at least 1 − n−1.
Assume that every block contains a stable column and denote by S the set of
stable nodes after initialization. Then G\S consists of connected components,
each of which consists of at most 2rγ nodes. Consider one component C. If two
subsequent rounds turn an unsatisfied node in C into a stable node, we speak
of a success. Unless C is stable, there is at least one unsatisfied node in C and
by Lemma 2 the success probability in two rounds is at least q := p2(1 − p)5.
We now argue that with high probability C becomes stable within 2T rounds,
T := 4rγ/q. Imagine a sequence of coin flips where each coin shows heads with
probability q. By the Chernoff bound the probability that less than 2rγ out of
T coins show heads is at most

exp(−qT/8) = exp(−rγ/2) ≤ n−2
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as r ≥ 2. As |C| ≤ 2rγ, the probability that C does not become stable within
2T rounds is at most n−2. Taking the union bound over at most n components,
the whole graph is stable after 2T rounds with probability at least 1 − n−1.

The unconditional probability that the bound 2T holds is at least 1 − 2n−1.
In case there is a block without stable column or in case the system has not
stabilized after 2T rounds, we use the upper bound O(n/p2) by Theorem 7 to
estimate the remaining stabilization time. As this is only necessary with prob-
ability at most 2n−1, the unconditional expected stabilization time is bounded
by 2T + O(1/p2) = O((log n) · 2r/p2). �

The bound from Theorem 8 depends crucially on r. However, we do not believe
that the stabilization time is significantly affected by the aspect ratio of the torus.
Instead, we conjecture that an upper bound O((log n)k/pk) for some k = O(1)
holds for all torus graphs.

5.3 Hypercubes

Recall that the node set of a d-dimensional hypercube is given by {0, 1}d and
edges are between nodes which differ in exactly one coordinate. We are interested
in the worst-case expected stabilization time on hypercubes. For torus graphs
we identified paths of unstable 1-nodes that delay the stabilization process. As
nodes in the d-dimensional hypercube have larger degree if d > 4, we identify
larger structures of unstable nodes.

Theorem 9. The worst-case expected stabilization time for both the max-model
and the min-model on a d-dimensional hypercube with n = 2d nodes, d ≥ 4 even,
is Ω(n1/2 + 1/p).

Proof. As the hypercube is bipartite, it suffices to argue for the min-model.
Given a graph G′ = (V ′, E′), a snake-in-box in G′ is a sequence of connected
nodes s′1, . . . , s

′
� such that {s′i, s

′
j} ∈ E′ implies j = i ± 1 (identifying s′�+1 with

s′1 and s′0 with s′�). It is known how to construct a snake-in-box with length
5/24 · 2d − 44 in the d-dimensional hypercube [17]. Let s1, . . . , s� be a snake-
in-box in the (d/2)-dimensional hypercube with � ≥ 5/24 · 2d/2 − 44 and let
S = {s1, . . . , s�−1}. Let v[i] ∈ {0, 1} denote the value of the i-th coordinate of v
and define an initial cut as follows:

v ∈ V0(1) ⇔ (v[1]v[2] . . . v[d/2] ∈ S) ∧ (v[d − 1]v[d] = 00).

Each 0-node with v[d − 1]v[d] = 00 is satisfied since flipping one of the last d/2
bits results in a 0-neighbor. All other 0-nodes are satisfied since flipping one of
the first d−2 ≥ d/2 bits leads to a 0-neighbor. We conclude that all 0-nodes are
satisfied and, therefore, stable. Dividing all 1-nodes into layers, layer i contains
all 1-nodes v with v[1] . . . v[d/2] = si. For a 1-node v flipping a bit at position
i ∈ {d/2+1, . . . , d−2} results in a 1-neighbor. Due to the snake-in-box property
of S, v has at most two additional 1-neighbors obtained by flipping single bits
among the first d/2 positions. More precise, after initialization all 1-nodes in
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layers 1 and �− 1 are unsatisfied with a 1-degree (i. e. number of 1-neighbors) of
d/2−1 while every other 1-node has 1-degree d/2 and thus is satisfied. If such an
unsatisfied node flips, all its 1-neighbors with 1-degree d/2 become unsatisfied.

A layer is called satisfied w. r. t. the current cut if it only contains satisfied
1-nodes. Observe that in every round all satisfied layers are connected in the
subgraph of all 1-nodes. We focus on the outermost satisfied layers and define as
potential the minimum difference α − β for α ≤ β such that for every satisfied
layer i we have α < i < β. Layers α and β therefore “surround” all satisfied
layers. The initial potential equals � − 2 and a potential of 0 is necessary for a
stable cut. Layers α and β both contain unsatisfied 1-nodes and a round flipping
one of these nodes decreases β or −α by 1, respectively. The probability of
decreasing the potential by 1 or 2 in one round is at most δ := min{1, 2d/2−1 · p},
taking the union bound over at most 2d/2−1 unsatisfied 1-nodes in layers α and β.
The expected waiting time for such an event is bounded below by 1/δ, hence
the expected time until the potential has decreased to 0 is bounded below by
1/δ · (� − 2)/2 = Ω(n1/2 + 1/p). �

6 Conclusions and Future Work

We investigated a self-stabilizing algorithm for maximal and minimal cuts in a
restricted distributed environment. The time until the system stabilizes depends
on the model of satisfaction, the underlying network, the parameter p, and the
initial cut. Surprisingly, the expected stabilization time can range from loga-
rithmic to exponential values. While sparse graphs such as planar graphs, rings,
and torus graphs stabilize in expected time O(n/pO(1)) (or even in logarithmic
time) for max- and min-models, on many dense graphs the stabilization time for
the max-model is exponential with high probability if p is constant. Moreover,
we have seen for certain torus graphs that there is an exponential gap between
random and worst-case initialization.

Several open questions remain, for example a tight bound on the expected
stabilization time for all torus graphs and hypercubes with random initialization.
Our models use a fixed probability p for flipping unsatisfied nodes. One may
also think of other, local strategies, for example flipping an unsatisfied node v
with probability proportional to 1/ deg(v) or depending on the degrees of v’s
neighbors.
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