
The Round Complexity of Distributed Sorting

[Extended Abstract]

Boaz Patt-Shamir∗
School of Electrical Engineering

Tel Aviv University
boaz@eng.tau.ac.il

Marat Teplitsky
School of Electrical Engineering

Tel Aviv University
marattep@tau.ac.il

ABSTRACT
We consider the model of fully connected networks, where

in each round each node can send an O(logn)-bit message

to each other node (this is the congest model with diame-

ter 1). It is known that in this model, min-weight spanning

trees can be found in O(log logn) rounds. In this paper we

show that distributed sorting, where each node has at most

n items, can be done in time O(log log n) as well. It is also

shown that selection can be done in O(1) time. (Using a con-

current result by Lenzen and Wattenhofer, the complexity of

sorting is further reduced to constant.) Our algorithms are

randomized, and the stated complexity bounds hold with

high probability.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distribu-

ted Systems; F.2.2 [Analysis of Algorithms and Prob-

lem Complexity]: Nonnumerical Algorithms and Prob-

lems

General Terms
Theory, Algorithms

Keywords
network algorithms, communication complexity, distributed

sorting, CONGEST model

1. INTRODUCTION
The round complexity of network algorithms can measure

either the locality of information required for decision mak-

ing (when the critical restriction is that messages progress

∗Supported in part by the Israel Science Foundation (grant
1372/09) and by Israel Ministry of Science and Technology.
Research done in part while visiting MIT CSAIL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

at the maximal rate of one hop per round), or it can also

measure the quantity of information required to solve the

given problem—when the throughput of communication link

is also restricted. The former model is called the local

model, and the latter is called the congest model [18]. In

the local model, all problems (functions) can be solved in

D rounds, where D is the diameter of the network. This is

because in D rounds, all input values can be made available

in all processors, allowing for local computation of all out-

puts. In the congest model, on the other hand, it is known

that there are problems (such as minimum-weight span-

ning tree [8, 15, 17] and stable marriage [10]) with classes

of instances whose graphs have small diameter but whose

worst-case round complexity is high. For example, finding

the minimum-weight spanning tree (abbreviated MST) of

graphs of diameter 3 graphs takes roughly Ω(n1/3) commu-

nication rounds in the worst case, where n is the number of

nodes in the network.1

One special case of the congest model is particularly

intriguing: The fully connected graph (a.k.a. clique), where

the diameter is 1. The point is that any piece of information

is within easy reach (at most one hop away), so locality is

not an issue. However, getting all input into a single node

(which allows any question to be answered at that node)

takes Ω(N/n) rounds, where N denotes the number input

items. It therefore seems that the fully-connected congest

model allows one to investigate the complexity of conges-

tion, in a model almost completely divorced from locality.

Unfortunately, the exact power of the fully-connected con-

gest model is unknown, except the fact that it admits an

ultra-fast algorithms in a few cases. In fact, the only per-

tinent result in this model is by Lotker et al. [14], where

it was shown that MST can be computed in this case in

O(log logn) rounds.

In this paper we do not resolve the mystery of the commu-

nication complexity of the fully-connected congest model.

Rather, we continue the exploration of this curious model,

and show that the basic task of sorting can also be accom-

plished by an ultra-fast algorithm, whose time complexity

is O(log logn) rounds (with high probability). To achieve

this time complexity, we need to carefully balance the work

1More precisely, the lower bound is Ω((n/B)1/3) rounds,
where B is the maximal number of bits in a message. Fol-
lowing the convention, we assume that B = O(logn) bits.

load over the nodes (and communication load over links).

We hope that the techniques developed in this paper will be

helpful in the next steps of understanding this model.

Related Work. Sorting is a classical computational prob-

lem, possibly one of the best studied ones, with many algo-

rithms and analyzes. Knuth [11] covers classical algorithms

in depth. Below we give a very brief summary of a few

highlights in parallel sorting.

Multi-processor sorting was also the target of much re-

search, starting with Batcher’s odd-even sorting network

[3]. There is an O(logn) time algorithms for sorting in an

O(n)-processor PRAM due to Cole [5], and the celebrated

AKS O(logn)-depth sorting network [2] (extended in a non-

uniform way by Chvátal [4]). Valiant proved that finding

the maximum of n items using n parallel comparisons in a

round requires Θ(log logn) rounds [19].

PRAM abstract data access completely (every read and

every write may use the shared memory in a single compu-

tational cycle). This critical drawback is addressed by later

models, such as the BSP model [20] and the LogP model [6].

In the BSP model, each processor can send and receive at

most h messages in each communication round (this model

abstracts away a major difficulty of our model, in that it

allows a processor to send h distinct messages to another

processor in a single round). It is known [9] that sorting can

be done in the BSP model in O(logN
log(h+1)

) communication

rounds for the case of N keys, n processors and h = Θ
(
N
n

)
.

Recently, Lenzen and Wattenhofer [12] considered a similar

model, where in each communication round, each node can

send and receive O(nε) bits, for a constant ε > 0. They show

that any algorithm that runs in T rounds, using less than nε

bits of memory, over networks of polylogarithmic maximal

degree in the local model, can be emulated in the globally

restricted model in time O(log T+T (log logn/ logn)), which

means that any problem with a log-time algorithm in the

polylog-bounded-degree congest model has an O(log log n)

time algorithm in the globally-restricted model. (We note

that our a part of algorithm can be used to emulate this

model: see Section 5).

Our Results. In this paper we give a randomized algo-

rithm that sorts n2 items in O(log log n) rounds over a fully-

connected n-node graph, where each link can carry O(logn)

bits in each round. We also show how to solve the selection

(and median finding) problem in this model, in constant

number of rounds.

Paper Organization. The remainder of this paper is or-

ganized as follows. In Section 2 we formalize the compu-

tational model and the problem statement. In Section 3

we describe our algorithm, and we analyze it in Section 4.

Some extensions are outlined in Section 5, and we conclude

in Section 7.

Remark: Later developments. After the initial submis-

sion of this work, we have learned that concurrently and

independently, Lenzen and Wattenhofer [13] have showed

that in the same model, N messages can be routed to their

destinations in time O(s+r
n

) w.h.p., where s is the maxi-

mal number of messages originating at any node, and r is

the maximal number of messages destined to any node. A

direct consequence of the result of [13] is that sorting n2

items can be performed in O(1) rounds in this model, as we

explain in Section 6.

2. MODEL AND PROBLEM STATEMENT
In this section we define the main problem we study. In a

nutshell, we use the fully-connected network topology under

the congest model [18], and we assume that in each pro-

cessor there are n input values, called keys, that need to be

globally sorted. A full specification is given below.

We are given a set of n processors, where each proces-

sor is a randomized state machine. We refer to processors

also as nodes and denote them as V = {v1, . . . , vn}. Each

processor has some input registers and corresponding output

registers. The value of the input registers may be an inte-

ger or a special symbol signifying “no input.” The values

of the input registers are initially set by the environment

(users). Upon termination of the computation, the output

registers in each processor indicate the ranks of the input

values, i.e., the output register corresponding to the largest

value should be “1,” the output register corresponding to the

second largest value should be “2” and so on.

To compute this input, the processors execute a protocol

that proceeds in synchronous rounds: in each round each

processor may send O(logn) bits to each other processor.2

Formally, each round consists of three steps:

(1) Receive messages from the previous round. There may

be at most n− 1 such messages: one from every processor.

(2) Perform local computation. This step may read from a

tape (sequence) of random bits.

(3) Send messages to other processors. Each other processor

may be sent an O(logn) bits message.

Execution starts when input is injected to the processors:

We assume that n or less input values called keys are placed

in the input registers of each processor (this may be viewed

as receiving messages from round 0). We assume that all

input values are encoded using O(logn) bits. The execu-

tion terminates when all processors enter a special halting

state. The round complexity of the protocol is the number

of rounds until the protocol terminates. We say that the

protocol solves the problem with high probability in time T

if with probability 1− n−Ω(1), for any input values, after T

rounds the protocol has terminated with the correct values

in its output registers (probability is taken over the space of

random bit tapes).

We assume that processors are numbered 1 through n.

This assumption does not restrict generality when speaking

of computations that succeed with high probability, because

2The choice of logn as the number of bits in a message is
motivated similarly to the choice of logn to be the number of
bits in a computer word: the idea is that values polynomial
in the input length can be stored in a single unit. In the
context of network algorithms, the essential assumption is
that a message may contain a constant number of node and
link IDs, counters, and input items.

in our model each processor can choose an ID of O(logn)

bits and broadcast it to all its neighbors in the first round,

and then take the rank of its ID to be their number. This

little pre-processing procedure adds just one round to the

time complexity, and a term of n−Ω(1) to the probability of

failure.

3. THE ALGORITHM
In this section we describe the algorithm for the sorting

problem described in Section 2. Analysis is provided in Sec-

tion 4.

Overview. The basic idea underlying the algorithm is to

partition the input keys into n disjoint ranges, gather all

keys of each range in a distinct node, and sort them lo-

cally. It turns out that the bottleneck in this approach is

the“gathering” step: it may be the case that a node needs to

send multiple keys to another node, something that cannot

be implemented by the primitive send operation in a single

round. We therefore develop a simple “scatter-gather” pro-

cedure that allows any single sender to send n items to any

set of receivers, using intermediate nodes. However, since

there are n parallel senders, the link between an intermedi-

ate node and a destination node might also get congested.

To overcome this difficulty we employ a simple but subtle

control mechanism, that first takes care of the less loaded

destinations, and then of the heavily loaded ones.

Pseudo-code of the high-level algorithm is given in Algo-

rithm 1. We now elaborate on the way it is implemented.

Assigning keys to nodes. The idea is as follows. Let ai be

the number of keys at node vi, and let N
def
=
∑n
i=1 ai be the

total number of keys. We first order all keys in an arbitrary

order (not necessarily sorted) as follows. Locally, each node

vi orders its ai keys arbitrarily ki1 , . . . , kiai
. This induces a

global order, obtained by concatenating the local node or-

ders in the natural way: the key kij indexed locally at node

i is the key whose global index is
∑i−1
l=1 al + kij . From this

global indexation, n − 1 keys kr2 , . . . , krn are chosen inde-

pendently and uniformly at random from {1, . . . , N} (Step

1). These keys serve as “range delimiters,” in the sense that

all keys in the range [kri , kri+1 −1] are associated with node

vi for 1 ≤ i ≤ n, where kr1 = −∞ and krn+1 = ∞ by

convention (Step 2).

The implementation is as follows. Each node vi broadcasts

to all other nodes the number ai of keys it has. This allows

each node to compute the global index of each of its keys

as explained above. Node v1, which will be the designated

“leader” for the remainder of the algorithm, chooses n −
1 indices r2, , . . . , rn uniformly at random from {1, . . . , N},
and for each 2 ≤ i ≤ n, v1 sends ri to node vi. Node vi then

broadcasts ri to all other nodes. This way, after 3 rounds, all

nodes know all ri values. Using the known global ranking,

each node that holds kri sends it to node i (a node may

send more than a single value, but to different destinations).

Finally, each node i broadcasts to all the value of kri , and,

as a result, all nodes know, for each key k, what is d(k), i.e.,

which node is the destination of each key.

Next, we route each key k to its destination d(k) in two

Algorithm 1 sort

(1) Choose n− 1 keys kr2 , . . . , krn uniformly at random.

// delimiter keys

(2) Define, for 1 ≤ i ≤ n, range i Ri
def
= [kri , kri+1 − 1],

where kr1
def
= −∞ and krn+1

def
= ∞.

Define, for each key k, d(k) = i if kri ∈ Ri.
// key k needs to get to node d(k)

(3) Let c(i) = | {k : d(k) = i} |. A node i is called active

destination only if c(i) < 2n ln lnn. A key k is active

only if d(k) is an active destination.

(4) repeat

(4a) Each node picks a random intermediate destina-

tion m(k) for each active key k it has.

(4b) At each node i: For j = 1, . . . , n, let Pi(j) =

{k | k is active and m(k) = j}; If Pi(j) 6= ∅, pick

a random k ∈ Pi(j) and send k to j. // source

to intermediate

(4c) At each node j: For l = 1, . . . , n, let Qj(l) =

{k | m(k) = j and d(k) = l}. If Qj(l) 6= ∅, pick

a random k ∈ Qj(l) and send it to l. Mark k

inactive. All other keys are sent back to their

sources. // intermediate to destination

until all active keys have reached their destination.

(5) Cleanup stage: Repeat Steps 1–4 only with keys that

did not reach their destinations.

(6) Each node sorts all keys associated with it, and deter-

mines their global rank.

(7) Ranks are routed back by reversing the routes taken

by the keys.

stages as follows. In the first stage, only keys whose destina-

tion is the destination of at most 2n ln lnn keys are routed

(Step 3). To implement this distinction, each node vi sends

to each other node vj the number of keys vi whose destina-

tion is vj . Each node vj thus finds the total number of keys

destined to it, and vj broadcast this number to all. (We

note that the size of all ranges is recorded by all nodes, so

that local ranking of the keys in a range can be translated

to the global ranking later in Step 6.)

Routing the keys. In Step 4, we solve the following prob-

lem. We have n nodes, each with n or less keys, where each

key has a destination in {v1, . . . , vn} so that no node is the

destination of more than 2n log logn keys. The difficulty

stems from the fact that each link can carry at most one key

in each round, while the number of keys that initially reside

at the same node and share the same destination node may

be Ω(n). We solve this problem using the Valiant an Breb-

ner paradigm of random intermediate destination [21] as fol-

lows. We run a sequence of phases (phases are iterations of

the loop in Step 4). In each phase, each node first selects

a random intermediate destination for each of its remaining

undelivered keys. Then the node selects a random single key

for each possible intermediate destination, i.e., congestion

conflicts in source-to-intermediate links are resolved at the

source nodes. After resolving the conflicts, the keys are sent

to their intermediate destination in a single round. Next,

each node (now playing as an intermediate destination) picks

one key for each final destination and sends it over, i.e., con-

gestion conflicts on the intermediate-to-destination links are

resolved at the intermediate node. In the following round,

keys that were not sent to their final destination (due to

congestion in the intermediate-to-destination link) are sent

back to their origin, where they are ready for the next phase.

We shall show that with high probability, all keys arrive at

their destination within O(log log n) phases.

We are then left with the keys associated with large ranges

(and were therefore not routed in the first routing stage).

This case is in fact easier to handle than the original in-

stance because, as we show, only about a 1
logn

fraction of

the keys remain, and applying Steps 1–4 again will deliver

all of them to their destinations in O(log log n) additional

rounds, because now, w.h.p., all ranges have size only O(n).

Finally, when we know the rank of each key in its range,

the global ranks can be computed as the size (and ordering)

of all ranges is known from Step 3. To comply with the

problem requirement, these computed ranks are routed back

to the source nodes, using the reverse of routing schedule

that brought the keys in.

4. ANALYSIS
In this section we analyze the algorithm specified in Sec-

tion 3. We start by analyzing the partition into ranges, and

then analyze the routing procedure.

4.1 Partition Into Ranges
Partition into ranges (Steps 1–2) is done twice during the

execution of the algorithm. We analyze them in order.

4.1.1 The First Stage
We first analyze the partition of the key set into ranges

in the first stage. We start with a technical lemma, that

analyzes the following scenario. Order the N keys by value,

and partition them into dn/ ln lnne segments of about the

same size (N/n) ln lnn (rounded up and down as necessary;

we’ll ignore rounding for simplicity of exposition). Now,

call a segment selected if one of the keys it contains was

selected in Step 1 (of the first stage) as a delimiter. Then

the following holds true.3

Lemma 4.1. With high probability, the number of non-

selected segments is at most 2n
lnn ln lnn

.

Proof: Let Yi to be binary indicator variable, taking the

value 1 if segment i is not selected and 0 otherwise. Then

Pr[Yi = 1] =

(
1− ln lnn

n

)n
≤ e− ln lnn =

1

lnn
,

and therefore, E[
∑
Yi] ≤ n

lnn ln lnn
. Now, it is easy to see

that the vector of Yi random variables is negatively associ-

3We note that the constants in Lemma 4.2 can be improved;
we make no attempt to optimize them here.

ated ([7], and see also [16]). Therefore we may apply the

Chernoff-Hoeffding bound and conclude that

Pr

[∑
Yi >

2n

lnn ln lnn

]
< e

−n
3 lnn ln lnn < n−Ω(1)

for all n > 1.

We can now deduce the following.

Lemma 4.2. Suppose that the number of keys is at most

n2. Then, with high probability, the number of ranges with

more than 2n ln lnn keys is at most 2n/(lnn · ln lnn).

Proof: First, note that since N ≤ n2 by assumption, seg-

ment size is at most n ln lnn keys. Therefore, a range with

2n ln lnn keys or more must contain a complete segment that

is not selected. It follows that the number of non-selected

segments is an upper bound on the number of ranges of size

at least 2n ln lnn, and by Lemma 4.1 this number is, with

high probability, bounded by 2n
lnn ln lnn

.

4.1.2 Cleanup Stage
We need to show that one more iteration of steps 1–3 is

enough to sort all remaining keys. To this end, we apply

Lemma 4.1 once again as follows.

Lemma 4.3. W.h.p, the number of keys remaining to the

cleanup at most 4n2

lnn
.

Proof: Since each range that is deferred to the cleanup stage

contains at least 2n ln lnn keys, each such range must con-

tain a run of non-selected segments. It follows that the total

number of keys in ranges that are deferred to the cleanup

stage is at most 2n ln lnn times the number of non-selected

ranges. Applying Lemma 4.1 once again, we conclude that

w.h.p., the number of keys in the cleanup stage is at most

2n ln lnn · 2n

lnn · ln lnn
=

4n2

lnn
.

Lemma 4.3 implies the following.

Lemma 4.4. In the cleanup stage, with high probability,

all ranges are of size O(n).

Proof: By Lemma 4.3, the number of remaining keys is at

most 4n2/ lnn. Similarly to the analysis of the range selec-

tion in the first stage, we partition the keys in segments of

length 12n (say). The probability that a particular segment

is unselected is at most (1− 3 lnn/n)n ≤ n−3, and hence

the probability that all segments are selected (implying that

the size of all ranges is bounded by 24n) is at least 1− 2 lnn
n2 .

4.2 Analysis of Routing
Routing keys to their destination nodes is done in both

stages by Step 4. It is immediate from the code that each

iteration takes O(1) rounds; it remains to analyze the num-

ber of iterations taken in Step 4.

We distinguish between two cases: “heavily loaded” desti-

nations and “lightly loaded” ones. For the first case, we have

the following lemma.

Lemma 4.5. Suppose that there are m ≥ n active keys

with destination vi at the beginning of an iteration of Step 4.

Then with high probability, at least n/9 keys will be delivered

at vi in that iteration.

Proof: It may be helpful to note that we have a classical

balls-and-bins type of situation here, where keys are balls

and intermediate destinations are bins. So, keeping this in-

tuition in mind, consider first the choice of intermediate des-

tinations at the source nodes.

The probability that an intermediate destination is unique

at a source node (i.e., was chosen for exactly one key at that

source) is at least 1/e, because there are at most n keys

at the source, and there are exactly n intermediate random

choices for each. It therefore follows from standard balls-and

bins results (see [7]) that with high probability, at least n/3

(say) nodes will receive, as intermediate destinations, keys

whose final destination is vi.

Next, consider the situation at an intermediate destina-

tion v∗: if there is any key at v∗ whose final destination is

vi, then vi will receive some key from v∗ in the next round.

Applying [7] once again, we may conclude that with high

probability, if there are m ≥ n keys destined to vi, then at

least n/9 of them (say) will be delivered at vi.

To analyze the lightly-loaded destination case, we use a

fundamental fact proven in [1]. Consider the following itera-

tive balls-and-bins process. There are n balls at start, and in

each round, all remaining balls are thrown (independently,

randomly) into n bins. In each round, each bin accepts only

one of the balls thrown into (if any), and all other balls are

thrown again in the next round, until all balls are placed in

bins.

Lemma 4.6. Suppose that there are at most n active keys

with destination vi. Then with high probability, all keys are

delivered in O (log log n) iterations.

Proof: Follows from the fact that Step 4 is implemented like

the algorithm threshold(1) in [1], wherein it is shown that

in O(log log n) rounds suffice with probability 1 − n−Ω(1).

4.3 Summary

Theorem 4.7. With high probability, Algorithm sort solves

the sorting problem and terminates in O (log log n) commu-

nication rounds.

Proof: Correctness is immediate from the Union Bound: all

statements hold with high probability, and there is only a

polynomial number of times a failure may occur. Consider

now the round complexity. Steps 1–3 take O(1) rounds. Re-

garding Step 4, in the first stage, all destinations have at

most O(n log log n) keys routed to them. By Lemma 4.5,

w.h.p., after O(log log n) rounds, for each destination there

are at most n keys that are still undelivered, and there-

fore, by Lemma 4.6, after O(log log n) additional rounds, the

first stage is over. In the cleanup stage, there are at most

O(n) keys to be routed to each destination, and therefore, by

Lemmas 4.5 and 4.6, in O(log log n) additional rounds, the

cleanup stage is over as well. Step 6 is communication-free,

and Step 7 just doubles the overall complexity.

5. EXTENSIONS AND APPLICATIONS
In this section we outline two simple extensions of the

algorithm. One is for a small number of input keys, and

the other is for the median problem. But let us first point

out an application to models with global restriction on the

communication that can be delivered in a round.

Application: global restriction on communication.

We note that the routing step of our algorithm can be used

to emulate the model used by Lenzen and Wattenhofer in

[12]. Specifically, the model considered in [12] allows for

the global exchange of O(nε) bits in each round (for some

constant parameter 0 < ε ≤ 1), without any other restric-

tion on communication. Let us call this model G(ε). In our

fully-connected congest model, we only restrict the num-

ber of bits exchanged by any pair of nodes in a round to be

O(logn) (but the total number of bits moving in a round

can be as high as O(n2 logn)). Clearly, algorithms for the

G(ε) model cannot be run directly on the fully connected

congest model, because in the G(ε) model, it may be the

case that nε bits may need to move from one node to an-

other in a single round. However, our analysis implies that

any algorithm running in time T on the G(ε) model can be

emulated (w.h.p.) on our model in time O(T) for any ε ≤ 1.

This can be done in a round-by-round emulation as follows.

First, we break the model G(ε) messages to packets of size

O(logn) bits. Then we run Step 4 of the algorithm, us-

ing the actual destinations of the packets instead of ranges.

Since by assumption all node are the destination of at most

O(nε) bits, Lemma 5.2 ensures (w.h.p.) that all O(n/ logn)

packets will be delivered in O(1) time.

A small number of input items. The algorithm specified

in Section 3 works when the number of input keys is at most

the square of the number of processors, i.e., N ≤ n2. It

should be noted that if the number of keys is smaller than

n2/ log2 n, then the time complexity drops to O(1): this

follows from the following facts.

Lemma 5.1. Suppose we have K ≤ (n/ logn)2 ordered

elements, and we choose uniformly at random n elements.

Then with high probability, the longest gap between two con-

secutive chosen elements is O(n/ logn).

Proof: As in the proof of Lemma 4.1, we partition the

elements into n segments of length n/ log2 n each (up to

rounding). The probability that a segment remains unse-

lected (i.e., no delimiter is contained in it) after Step 1 is

(1 − 1
n

)n < e−1, and thus the probability that logn seg-

ments or more are unselected is n−Ω(1). The claim follows

from the fact that a gap of n/ logn is possible only if there

are logn− 1 unselected segments.

Lemma 5.2. If n/ logn balls are thrown into n bins, the

maximal number of balls in a bin is O(1) with high probabil-

ity.

Proof: Follows from the Chernoff Bound.

Corollary 5.3. If the number of keys is N = O(n2/ log2 n)

then sorting on the fully connected n-clique can be done in

O(1) rounds.

Proof: Algorithm 1 works. Lemma 5.1 implies that w.h.p.,

all nodes are active, and Lemma 5.2 implies that the routing

can be done in O(1) rounds.

Finding the median (and general selection). In the

selection problem, we are asked to output the kth largest key,

where k is part of the input. The median problem is a special

case of selection, where k = N/2 (N is the number of input

keys). It turns out that a minor modification in Algorithm 1

yields a simple O(1) selection algorithm. First, we run Steps

1–3 to figure out what is exactly the range the contains the

kth largest key. This is easy because after Step 3 each node

knows what is the number of keys in each range. We then

apply the sorting algorithm with input that consists of the

keys of this range only (this is also easy because after Step

2 each key knows what is its range). When the algorithm

terminates, we can identify exactly what is the kth largest

requested key. To analyze the time complexity, we need the

following straightforward fact.

Lemma 5.4. With high probability, no range defined by

the delimiters chosen in Step 1 contains more than O(n logn)

keys.

Now, the following holds with high probability. First, Steps

1–3 take O(1) rounds. Also, by Lemma 5.4, the invocation

of Algorithm sort has only O(n logn) keys as input, and

therefore Corollary 5.3 ensures that sort will terminate in

O(1) rounds as well. We therefore have the following.

Corollary 5.5. The Selection problem can be solved in

the fully-connected congest model in O(1) rounds, with

high probability.

6. POSTSCRIPT: SORTING IN O(1) ROUNDS
Concurrently to our work, Lenzen and Wattenhofer proved

the following result.

Theorem 6.1. [13] Suppose there are O(n) messages

in each node, and that the number of messages destined

to each node is O(n). Then routing all messages to their

destinations can be done in O(1) rounds with probability

1− n−Ω(1).

Using this result, we propose the following algorithm for

sorting.

(1) Select each key with probability 1
log2 n

. Let S denote

the set of selected keys.

(2) Apply Algorithm 1 to S. For an integer 1 ≤ i ≤ |S|,
let kS(i) denote the key ranked i in S.

(3) Define delimiters l(0), . . . , l(n) by

l(i) =

{
−∞ if i = 0

ks(
⌈
|S| i

n

⌉
) if 0 < i ≤ n ,

and set the destination of each key k to be d(k)
def
= i if

l(i− 1) < k ≤ l(i).
(4) Send each key k to destination d(k) using the routing

implied by Theorem 6.1.

(5) Locally sort all received keys and send back their ranks.

To see why this procedure works, we first note that by

the Chernoff Bound, the set S selected at Step 1 has size

O(n/ log2 n) w.h.p., and therefore, by Corollary 5.3, Step 2

ends in O(1) rounds. Finding the delimiters takes O(1) time.

The key to the success of the algorithm is that with high

probability, for all 1 ≤ i ≤ n, the number of keys in the range

[li−1+1, li] (which are all destined to node i) is bounded from

above by O(n). This fact can be shown to follow from the

Chernoff bound as well. We can therefore conclude with the

following theorem.

Theorem 6.2. The sorting problem can be solved in O(1)

communication rounds with high probability.

7. CONCLUSION
In this paper we have given more evidence that the fully-

connected congest model allows for ultra-fast algorithms

for basic problems. Specifically, it turns out that sorting

can be solved in constant time with high probability. Many

very interesting problems remain open for this problem and

this model. Regarding sorting, it may be the case that good

deterministic algorithms exist. Regarding the model, we see

two main directions that complement each other: One is to

come up with a non-trivial lower bound for some natural

problem in this model, and the other is to come up with

ultra-fast algorithms for key problems in this model (e.g.,

weighted matching).

Acknowledgment
We thank the anonymous referees, and Christoph Lenzen

and Roger Wattenhofer for providing us with a preprint and

an explanation of [13].

8. REFERENCES
[1] Micah Adler, Soumen Chakrabarti, Michael

Mitzenmacher, and Lars Rasmussen. Parallel

randomized load balancing. In Proceedings of the

twenty-seventh annual ACM symposium on Theory of

computing, STOC ’95, pages 238–247, New York, NY,

USA, 1995. ACM.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn)

sorting network. In Proc. 15th Ann. ACM Symp. on

Theory of Computing (STOC), pages 1–9. ACM Press,

May 1983.

[3] K. E. Batcher. Sorting networks and their

applications. In Proc. 1968 Spring Joint Computer

Conference, pages 307–314, Reston, VA, 1968. AFIPS

Press.

[4] V. Chvátal. Lecture notes on the new AKS sorting

network. Technical Report DCS-TR-294, Computer

Science Department, Rutgers University, 1992.

[5] Richard Cole. Parallel merge sort. In Proc. 27th Ann.

Symp. on Foundations of Computer Science, pages

511–516, October 1986.

[6] David E. Culler, Richard M. Karp, David Patterson,

Abhijit Sahay, Eunice E. Santos, Klaus Erik Schauser,

Ramesh Subramonian, and Thorsten von Eicken.

LogP: A practical model of parallel computation.

Comm. ACM, 39:78–85, November 1996.

[7] Devdatt Dubhashi and Desh Ranjan. Balls and bins: a

study in negative dependence. Random Struct.

Algorithms, 13:99–124, September 1998.

[8] Micheal Elkin. An unconditional lower bound on the

time-approximation tradeoff for the minimum

spanning tree problem. SIAM Journal on Computing,

36(2):463–501, 2006.

[9] Michael T. Goodrich. Communication-efficient parallel

sorting (preliminary version). In Proc. 28th Ann.

ACM Symp. on Theory of Computing (STOC), pages

247–256, New York, NY, USA, 1996. ACM.

[10] Alex Kipnis and Boaz Patt-Shamir. A note on

distributed stable matching. In Proc. 29th

International Conf. on Distributed Computing Systems

(ICDCS), June 2009.

[11] Donald E. Knuth. Sorting and Searching, volume 3 of

The Art of Computer Programming. Addison-Wesley,

2nd edition, 1998.

[12] Christoph Lenzen and Roger Wattenhofer. Brief

announcement: Exponential speed-up of local

algorithms using non-local communication. In Proc.

29th ACM Symp. On Principles of Distributed

Computing (PODC), pages 295–296, 2010.

[13] Christoph Lenzen and Roger Wattenhofer. Tight

Bounds for Parallel Randomized Load Balancing. In

Proc. 43rd ACM Symposium on Theory of Computing

(STOC), 2011. To appear.

[14] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and

David Peleg. Minimum-weight spanning tree

construction in O(log log n) communication rounds.

SIAM Journal on Computing, 35(1):120–131, 2005.

[15] Zvi Lotker, Boaz Patt-Shamir, and David Peleg.

Distributed MST for constant diameter graphs.

Distributed Computation, 18(6):453–460, 2006.

[16] Colin McDiarmid. On the method of bounded

differences. In Surveys in Combinatorics, pages

148–188. Cambridge University Press, Cambridge,

UK, 1989.

[17] D. Peleg and V. Rubinovich. Near-tight lower bound

on the time complexity of distributed MST

construction. SIAM Journal on Computing,

30:1427–1442, 2000.

[18] David Peleg. Distributed Computing: A

Locality-Sensitive Approach. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2000.

[19] Leslie G. Valiant. Parallelism in comparison problems.

SIAM Journal on Computing, 4(3):348–355, 1975.

[20] Leslie G. Valiant. A bridging model for parallel

computation. Commun. ACM, 33:103–111, August

1990.

[21] Leslie G. Valiant and G. J. Brebner. Universal schemes

for parallel communication. In Proceedings of the 13th

Annual ACM Symposium on Theory of Computing

(STOC), pages 263–277, Milwaukee, WI, May 1981.

