Principles of Distributed Computing
Exercise 10: Sample Solution

1 Concurrent Ivy

a) The three nodes are served in the order \(v_2, v_3, v_1\).

b) Figure 1 depicts the structure of the tree after the requests have been served. Since \(v_1\) is served last, it is the holder of the token at the end.

![Figure 1: Tree after the requests have been served.](image)

2 Tight Ivy

In order to show that the bound of \(\log n\) steps on average is tight, we construct a special tree which is defined recursively as follows. The tree \(T_0\) consists of a single node. The tree \(T_i\) consists of a root together with \(i\) subtrees, which are \(T_0, \ldots, T_{i-1}\), rooted at the \(i\) children of the root, see Figure 2.

First, we will show that the number of nodes in the tree \(T_i\) is \(2^i\). This obviously holds for \(T_0\). The induction hypothesis is that it holds for all \(T_0, \ldots, T_{i-1}\). It follows that the number of nodes of \(T_i\) is \(n = 1 + \sum_{j=0}^{i-1} 2^j = 2^i\).

We will show now that the radius of the root of \(T_i\) is \(R(T_i) = i\). Again, this is trivially true for \(T_0\). It is easy to see that \(R(T_i) = R(T_{i-1}) + 1\), because \(T_{i-1}\) is the child with the largest radius. Inductively, it follows that \(R(T_i) = i\).

By definition, when cutting of the subtree \(T_{i-1}\) from \(T_i\), the resulting tree is again \(T_{i-1}\). Let \(C : T_i \rightarrow T_{i-1}\) denote this cutting operation. For all \(i > 0\), we thus have that \(C(T_i) = T_{i-1}\). We will now start a request at the single node \(v\) with a distance of \(i\) from the root in \(T_i\). On its path to...
the root, the request passes nodes that are roots of the trees $\mathcal{T}_1, \ldots, \mathcal{T}_i$. All of those nodes become children of the new root v according to the Ivy protocol. The new children lose their largest “child” subtree in the process, thus the children of node v have the structures $C(\mathcal{T}_1), \ldots, C(\mathcal{T}_i) = \mathcal{T}_0, \ldots, \mathcal{T}_{i-1}$. Hence, the structure of the tree does not change due to the request and all subsequent requests can also cost i steps. Since $n = 2^i$, each request costs exactly $\log n$.

Figure 2: The trees $\mathcal{T}_0, \ldots, \mathcal{T}_i$.