
Distributed
 Computing

FS 2013 Prof. R. Wattenhofer
Michael König

Principles of Distributed Computing

Exercise 13: Sample Solution

1 Pancake Networks

Generally, observe that N = |V (Pn)| = n! ∈ O(nn)⇒ n ∈ O(logN
log logN).

a) See Figure 1. For drawing Pn, first draw n copies of Pn−1, each of which will have some
j ∈ {1, . . . , n} fixed as the last vertex. The edges corresponding to reversing prefixes of length
n− 1 or less are the links within such a copy of Pn−1. The other links connect Pn−1|v1 with
Pn−1|vn. Fixing v1 and vn, there are (n− 2)! links between Pn−1|v1 and Pn−1|vn, as in each
copy of Pn we have |Sn−2| = (n− 2)! many nodes whose first and last component are v1 and
vn, respectively, and each of the links in question connects two of them.

1234

21433412

4312 1243

1342 4213

24133142

1324 4231

24313124

2134 3421

2314

3214

4132

1432

2341

3241

1423

4123

4321

213

312

132

231

321

123

12 21

P

P

P
2

3

4

Figure 1: Pancake graphs for n = 2, 3, 4.

b) Let us look at the second, more intuitive definition (Eq. (1)). Basically, it states that for
every node, there exists exactly one edge for every distinct prefix reversal. So the node
degree of Pn can be stated as follows: how many non-trivial prefix reversals are there for a
sequence of n nodes? Answer: n− 1 with edges e2, . . . , en. Succinctly,

deg(v) = n− 1 ∀v ∈ V (Pn).

Thus the degree of an N -node pancake graph is in O(logN/ log logN).

c) To give an upper bound on the diameter, we need to determine in how many steps, at most,
we can go from one node to any other node. Say we want to get from node v = (v1, . . . , vn)
to node w = (w1, . . . , wn). As with all hypercube-like graphs, we will proceed by correcting
one “coordinate” at a time. In this case, we start at the back. Since the nodes are all
permutations, there will exist a vj such that vj = wn. We bring vj to the front by taking
v’s edge on level j and then to the back by taking the level n edge of the corresponding
node, leading to node v1 = (vn, . . . , vj+1, v1, . . . , vj−1, vj) = (vn, . . . , vj+1, v1, . . . , vj−1, wn).
We proceed inductively by applying the same procedure to the prefix of length n− 1 of v1,
resulting in the node v2 where also v2n−1 = wn−1, then the prefix of length n− 2 of v2, and
so on. Thus, after traversing 2(n − 1) edges (because the remaining index is automatically
correct) we reach w. Therefore,

D(Pn) ≤ 2(n− 1)

that is, the diameter of Pn is in O(logN/ log logN).

Gates and Papadimitriou [1] have also shown that this is asymptotically optimal,1 that is,

D(Pn) ≥ n.

d) To show that Pn is Hamiltonian, we proceed by induction on n. We will actually show the
following stronger claim: In Pn, there exists a Hamiltonian path from (1, . . . , n) to (n, . . . , 1)
(the cycle then is completed by the level n edge of these nodes). Observe that since in Pn

the graph looks the same from every vertex, this also holds for any given vertex v.

We have seen in a) that P3 is a cycle, i.e., we have the path (1, 2, 3)→ (2, 1, 3)→ (3, 1, 2)→
(1, 3, 2)→ (2, 3, 1)→ (3, 2, 1) and the final edge (3, 2, 1)→ (1, 2, 3).

Assume that Pn−1 has such a Hamiltonian path Hn−1(v) from any node v = (v1, . . . , vn−1)
to (vn−1, . . . , v1). Then we can construct a Hamiltonian path in Pn by concatenating the
Hamiltonian paths of the n Pn−1 subgraphs as follows. Taking all indices mod n, define for
i ∈ {0, . . . , n} that ai := (1− i, 2− i, . . . , n− i) and bi := (n− i, n− 1− i, . . . , 1− i). We can
see that bi+1 can be obtained from ai by reversing its prefix of length n− 1. Therefore, the
following Hamiltonian path exists between a0 = (1, . . . , n) and bn = (n, . . . , 1):

Hn−1(a0)◦(b1 → a1)◦Hn−1(a1)◦(b2 → . . .→ ai)◦Hn−1(ai)◦(bi+1 → . . .→ an−1)◦Hn−1(an−1),

where the paths Hn−1(ai) from ai to bi+1 through Pn−1 exist by the induction hypothesis.
We complete the cycle with the edge bn → a0.

e) In distributed hash tables, data items are hashed and the first d bits of their hash codes
determine which peers are responsible for them. For example, if the node set is V = [2]d,
the first d bits of the hash code can be interpreted as the ID of the node where it is stored.
If only a subset of all (2d) possible IDs is used, we can use a virtual ring to determine where
data is stored: Each node v has a link to the node w with the next larger ID in the network
and the node with the largest ID is connected to the node with the smallest ID.2 If the first
d bits of the hash of a data item are in the range [v, w), then v is responsible for this data
item.3

If we want to store data on the pancake graph Pn, we can use the fact that Pn is Hamiltonian!
Thus, if we use, e.g., the Hamiltonian path from (1, . . . , n) to (n, . . . , 1) constructed in d) as
the ring, a unique peer can be determined just like for hypercubic networks. A file is then
looked up by simply routing on the pancake to the responsible node.

References

[1] W. H. Gates, C. H. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math. 27,
(1979), 47–57.

1We know this also from the lecture: Since degrees are n − 1 ∈ O(logN/ log logN), the diameter of the graph
must be at least logn−1 N = logN/ log(n− 1) ∈ Ω(logN/ log logN).

2If these edges are not part of the edge set E, we could simply add these edges to E, which would only increase
the degree of each peer by at most 2.

3For example, the hash code 1010 is in the range [1001, 1110). Thus, the node with the ID 1001 is responsible
for the corresponding data item.

2

