
Chapter 13

Peer-to-Peer Computing

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of [sorting and] searching!”

– Donald E. Knuth, The Art of Computer Programming

13.1 Introduction

Unfortunately, the term peer-to-peer (P2P) is ambiguous, used in a variety of
different contexts, such as:

• In popular media coverage, P2P is often synonymous to software or proto-
cols that allow users to “share” files, often of dubious origin. In the early
days, P2P users mostly shared music, pictures, and software; nowadays
books, movies or tv shows have caught on. P2P file sharing is immensely
popular, currently at least half of the total Internet traffic is due to P2P!

• In academia, the term P2P is used mostly in two ways. A narrow view
essentially defines P2P as the “theory behind file sharing protocols”. In
other words, how do Internet hosts need to be organized in order to deliver
a search engine to find (file sharing) content efficiently? A popular term
is “distributed hash table” (DHT), a distributed data structure that im-
plements such a content search engine. A DHT should support at least a
search (for a key) and an insert (key, object) operation. A DHT has many
applications beyond file sharing, e.g., the Internet domain name system
(DNS).

• A broader view generalizes P2P beyond file sharing: Indeed, there is a
growing number of applications operating outside the juridical gray area,
e.g., P2P Internet telephony à la Skype, P2P mass player games on video
consoles connected to the Internet, P2P live video streaming as in Zattoo
or StreamForge, or P2P social storage such as Wuala. So, again, what is
P2P?! Still not an easy question... Trying to account for the new applica-
tions beyond file sharing, one might define P2P as a large-scale distributed
system that operates without a central server bottleneck. However, with

135

136 CHAPTER 13. PEER-TO-PEER COMPUTING

this definition almost everything we learn in this course is P2P! More-
over, according to this definition early-day file sharing applications such
as Napster (1999) that essentially made the term P2P popular would not
be P2P! On the other hand, the plain old telephone system or the world
wide web do fit the P2P definition...

• From a different viewpoint, the term P2P may also be synonymous for
privacy protection, as various P2P systems such as Freenet allow publish-
ers of information to remain anonymous and uncensored. (Studies show
that these freedom-of-speech P2P networks do not feature a lot of content
against oppressive governments; indeed the majority of text documents
seem to be about illicit drugs, not to speak about the type of content in
audio or video files.)

In other words, we cannot hope for a single well-fitting definition of P2P, as
some of them even contradict. In the following we mostly employ the academic
viewpoints (second and third definition above). In this context, it is generally
believed that P2P will have an influence on the future of the Internet. The P2P
paradigm promises to give better scalability, availability, reliability, fairness,
incentives, privacy, and security, just about everything researchers expect from
a future Internet architecture. As such it is not surprising that new “clean slate”
Internet architecture proposals often revolve around P2P concepts.

One might naively assume that for instance scalability is not an issue in
today’s Internet, as even most popular web pages are generally highly available.
However, this is not really because of our well-designed Internet architecture,
but rather due to the help of so-called overlay networks: The Google website for
instance manages to respond so reliably and quickly because Google maintains a
large distributed infrastructure, essentially a P2P system. Similarly companies
like Akamai sell “P2P functionality” to their customers to make today’s user
experience possible in the first place. Quite possibly today’s P2P applications
are just testbeds for tomorrow’s Internet architecture.

13.2 Architecture Variants

Several P2P architectures are known:

• Client/Server goes P2P: Even though Napster is known to the be first P2P
system (1999), by today’s standards its architecture would not deserve the
label P2P anymore. Napster clients accessed a central server that managed
all the information of the shared files, i.e., which file was to be found on
which client. Only the downloading process itself was between clients
(“peers”) directly, hence peer-to-peer. In the early days of Napster the
load of the server was relatively small, so the simple Napster architecture
made a lot of sense. Later on, it became clear that the server would
eventually be a bottleneck, and more so an attractive target for an attack.
Indeed, eventually a judge ruled the server to be shut down, in other
words, he conducted a juridical denial of service attack.

• Unstructured P2P: The Gnutella protocol is the anti-thesis of Napster,
as it is a fully decentralized system, with no single entity having a global
picture. Instead each peer would connect to a random sample of other

13.3. HYPERCUBIC NETWORKS 137

peers, constantly changing the neighbors of this virtual overlay network
by exchanging neighbors with neighbors of neighbors. (In such a system
it is part of the challenge to find a decentralized way to even discover a
first neighbor; this is known as the bootstrap problem. To solve it, usu-
ally some random peers of a list of well-known peers are contacted first.)
When searching for a file, the request was being flooded in the network
(Algorithm 11 in Chapter 3). Indeed, since users often turn off their client
once they downloaded their content there usually is a lot of churn (peers
joining and leaving at high rates) in a P2P system, so selecting the right
“random” neighbors is an interesting research problem by itself. However,
unstructured P2P architectures such as Gnutella have a major disadvan-
tage, namely that each search will cost m messages, m being the number
of virtual edges in the architecture. In other words, such an unstructured
P2P architecture will not scale.

• Hybrid P2P: The synthesis of client/server architectures such as Napster
and unstructured architectures such as Gnutella are hybrid architectures.
Some powerful peers are promoted to so-called superpeers (or, similarly,
trackers). The set of superpeers may change over time, and taking down
a fraction of superpeers will not harm the system. Search requests are
handled on the superpeer level, resulting in much less messages than in
flat/homogeneous unstructured systems. Essentially the superpeers to-
gether provide a more fault-tolerant version of the Napster server, all
regular peers connect to a superpeer. As of today, almost all popular
P2P systems have such a hybrid architecture, carefully trading off relia-
bility and efficiency, but essentially not using any fancy algorithms and
techniques.

• Structured P2P: Inspired by the early success of Napster, the academic
world started to look into the question of efficient file sharing. The pro-
posal of hypercubic architectures lead to many so-called structured P2P
architecture proposals, such as Chord, CAN, Pastry, Tapestry, Viceroy,
Kademlia, Koorde, SkipGraph, SkipNet, etc. In practice structured P2P
architectures are not yet popular, apart from the Kad (from Kademlia)
architecture which comes for free with the eMule client.

13.3 Hypercubic Networks

In this section we will introduce some popular families of network topologies.
These topologies are used in countless application domains, e.g., in classic paral-
lel computers or telecommunication networks, or more recently (as said above)
in P2P computing. Similarly to Chapter 4 we employ an All-to-All communi-
cation model, i.e., each node can set up direct communication links to arbitrary
other nodes. Such a virtual network is called an overlay network, or in this
context, P2P architecture. In this section we present a few overlay topologies
of general interest.

The most basic network topologies used in practice are trees, rings, grids or
tori. Many other suggested networks are simply combinations or derivatives of
these. The advantage of trees is that the routing is very easy: for every source-
destination pair there is only one possible simple path. However, since the root

138 CHAPTER 13. PEER-TO-PEER COMPUTING

of a tree is usually a severe bottleneck, so-called fat trees have been used. These
trees have the property that every edge connecting a node v to its parent u has
a capacity that is equal to all leaves of the subtree routed at v. See Figure 13.1
for an example.

2

1

4

Figure 13.1: The structure of a fat tree.

Remarks:

• Fat trees belong to a family of networks that require edges of non-uniform
capacity to be efficient. Easier to build are networks with edges of uniform
capacity. This is usually the case for grids and tori. Unless explicitly
mentioned, we will treat all edges in the following to be of capacity 1. In
the following, [x] means the set {0, . . . , x− 1}.

Definition 13.1 (Torus, Mesh). Let m, d ∈ N. The (m, d)-mesh M(m, d) is a
graph with node set V = [m]d and edge set

E =

{

{(a1, . . . , ad), (b1, . . . , bd)} | ai, bi ∈ [m],

d
∑

i=1

|ai − bi| = 1

}

.

The (m, d)-torus T (m, d) is a graph that consists of an (m, d)-mesh and addi-
tionally wrap-around edges from nodes (a1, . . . , ai−1,m, ai+1, . . . , ad) to nodes
(a1, . . . , ai−1, 1, ai+1, . . . , ad) for all i ∈ {1, . . . , d} and all aj ∈ [m] with j 6= i.
In other words, we take the expression ai−bi in the sum modulo m prior to com-
puting the absolute value. M(m, 1) is also called a line, T (m, 1) a cycle, and
M(2, d) = T (2, d) a d-dimensional hypercube. Figure 13.2 presents a linear
array, a torus, and a hypercube.

Remarks:

• Routing on mesh, torus, and hypercube is trivial. On a d-dimensional
hypercube, to get from a source bitstring s to a target bitstring d one only
needs to fix each “wrong” bit, one at a time; in other words, if the source
and the target differ by k bits, there are k! routes with k hops.

13.3. HYPERCUBIC NETWORKS 139

011010

110

100

000 001

101

111

M(2,3)

0 1 2

M(,1)m

−1m

01

02

00 10

11

12

03

20

21

22

13

30

31

32

23 33

(4,2)T

Figure 13.2: The structure of M(m, 1), T (4, 2), and M(2, 3).

• The hypercube can directly be used for a structured P2P architecture. It
is trivial to construct a distributed hash table (DHT): We have n nodes,
n for simplicity being a power of 2, i.e., n = 2d. As in the hypercube, each
node gets a unique d-bit ID, and each node connects to d other nodes,
i.e., the nodes that have IDs differing in exactly one bit. Now we use a
globally known hash function f , mapping file names to long bit strings;
SHA-1 is popular in practice, providing 160 bits. Let fd denote the first d
bits (prefix) of the bitstring produced by f . If a node is searching for file
name X, it routes a request message f(X) to node fd(X). Clearly, node
fd(X) can only answer this request if all files with hash prefix fd(X) have
been previously registered at node fd(X).

• There are a few issues which need to be addressed before our DHT works,
in particular churn (nodes joining and leaving without notice). To deal
with churn the system needs some level of replication, i.e., a number of
nodes which are responsible for each prefix such that failure of some nodes
will not compromise the system. We give some more details in Section
13.4. In addition there are other issues (e.g., security, efficiency) which
can be addressed to improve the system. These issues are beyond the
scope of this lecture.

• The hypercube has many derivatives, the so-called hypercubic networks.
Among these are the butterfly, cube-connected-cycles, shuffle-exchange,
and de Bruijn graph. We start with the butterfly, which is basically a
“rolled out” hypercube (hence directly providing replication!).

Definition 13.2 (Butterfly). Let d ∈ N . The d-dimensional butterfly BF (d)
is a graph with node set V = [d+ 1]× [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(i, α), (i+ 1, α)} | i ∈ [d], α ∈ [2]d}

and

E2 = {{(i, α), (i+ 1, β)} | i ∈ [d], α, β ∈ [2]d, α and β differ

only at the ith position} .

A node set {(i, α) | α ∈ [2]d} is said to form level i of the butterfly. The
d-dimensional wrap-around butterfly W-BF(d) is defined by taking the BF (d)
and identifying level d with level 0.

140 CHAPTER 13. PEER-TO-PEER COMPUTING

Remarks:

• Figure 13.3 shows the 3-dimensional butterfly BF (3). The BF (d) has
(d+1)2d nodes, 2d · 2d edges and degree 4. It is not difficult to check that
combining the node sets {(i, α) | i ∈ [d]} into a single node results in the
hypercube.

• Butterflies have the advantage of a constant node degree over hypercubes,
whereas hypercubes feature more fault-tolerant routing.

• The structure of a butterfly might remind you of sorting networks from
Chapter 4. Although butterflies are used in the P2P context (e.g.
Viceroy), they have been used decades earlier for communication switches.
The well-known Benes network is nothing but two back-to-back butter-
flies. And indeed, butterflies (and other hypercubic networks) are even
older than that; students familiar with fast fourier transform (FFT) will
recognize the structure without doubt. Every year there is a new applica-
tion for which a hypercubic network is the perfect solution!

• Indeed, hypercubic networks are related. Since all structured P2P archi-
tectures are based on hypercubic networks, they in turn are all related.

• Next we define the cube-connected-cycles network. It only has a degree
of 3 and it results from the hypercube by replacing the corners by cycles.

000 100010 110001 101011 111

1

2

0

3

Figure 13.3: The structure of BF(3).

Definition 13.3 (Cube-Connected-Cycles). Let d ∈ N . The cube-connected-
cycles network CCC(d) is a graph with node set V = {(a, p) | a ∈ [2]d, p ∈ [d]}
and edge set

E =
{

{(a, p), (a, (p+ 1)mod d)} | a ∈ [2]d, p ∈ [d]
}

∪
{

{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], a = b except for ap
}

.

13.3. HYPERCUBIC NETWORKS 141

000 001 010 011 100 101 110 111

2

1

0

(110,1)

(011,2)

(101,1)

(001,2)

(001,1)

(001,0)(000,0)

(100,0)

(100,1)

(100,2)

(000,2)

(000,1)

(010,1)

(010,0)

(010,2)

(110,2)

(110,0) (111,0)

(111,1)

(111,2)

(011,1)

(011,0)

(101,2)

(101,0)

Figure 13.4: The structure of CCC(3).

Remarks:

• Two possible representations of a CCC can be found in Figure 13.4.

• The shuffle-exchange is yet another way of transforming the hypercubic
interconnection structure into a constant degree network.

Definition 13.4 (Shuffle-Exchange). Let d ∈ N . The d-dimensional shuffle-
exchange SE(d) is defined as an undirected graph with node set V = [2]d and
an edge set E = E1 ∪ E2 with

E1 = {{(a1, . . . , ad), (a1, . . . , ād)} | (a1, . . . , ad) ∈ [2]d, ād = 1− ad}

and
E2 = {{(a1, . . . , ad), (ad, a1, . . . , ad−1)} | (a1, . . . , ad) ∈ [2]d} .

Figure 13.5 shows the 3- and 4-dimensional shuffle-exchange graph.

000 001

100

010

101

011

110 111 0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

SE(3) SE(4)

E

E

1

2

Figure 13.5: The structure of SE(3) and SE(4).

Definition 13.5 (DeBruijn). The b-ary DeBruijn graph of dimension d
DB(b, d) is an undirected graph G = (V,E) with node set V = {v ∈ [b]d}
and edge set E that contains all edges {v, w} with the property that w ∈
{(x, v1, . . . , vd−1) : x ∈ [b]}, where v = (v1, . . . , vd).

142 CHAPTER 13. PEER-TO-PEER COMPUTING

010

100

001

110

1111100

01

000
101

011

10

Figure 13.6: The structure of DB(2, 2) and DB(2, 3).

Remarks:

• Two examples of a DeBruijn graph can be found in Figure 13.6. The
DeBruijn graph is the basis of the Koorde P2P architecture.

• There are some data structures which also qualify as hypercubic networks.
An obvious example is the Chord P2P architecture, which uses a slightly
different hypercubic topology. A less obvious (and therefore good) exam-
ple is the skip list, the balanced binary search tree for the lazy programmer:

Definition 13.6 (Skip List). The skip list is an ordinary ordered linked list
of objects, augmented with additional forward links. The ordinary linked list is
the level 0 of the skip list. In addition, every object is promoted to level 1 with
probability 1/2. As for level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next level with probability
1/2. A special start-object points to the smallest/first object on each level.

Remarks:

• Search, insert, and delete can be implemented in O(log n) expected time
in a skip list, simply by jumping from higher levels to lower ones when
overshooting the searched position. Also, the amortized memory cost of
each object is constant, as on average an object only has two forward
pointers.

• The randomization can easily be discarded, by deterministically promoting
a constant fraction of objects of level i to level i + 1, for all i. When
inserting or deleting, object o simply checks whether its left and right
level i neighbors are being promoted to level i + 1. If none of them is,
promote object o itself. Essentially we establish a MIS on each level, hence
at least every third and at most every second object is promoted.

• There are obvious variants of the skip list, e.g., the skip graph. Instead
of promoting only half of the nodes to the next level, we always promote
all the nodes, similarly to a balanced binary tree: All nodes are part of
the root level of the binary tree. Half the nodes are promoted left, and
half the nodes are promoted right, on each level. Hence on level i we have
have 2i lists (or, more symmetrically: rings) of about n/2i objects. This
is pretty much what we need for a nice hypercubic P2P architecture.

• One important goal in choosing a topology for a network is that it has a
small diameter. The following theorem presents a lower bound for this.

13.4. DHT & CHURN 143

Theorem 13.7. Every graph of maximum degree d > 2 and size n must have
a diameter of at least ⌈(log n)/(log(d− 1))⌉ − 2.

Proof. Suppose we have a graph G = (V,E) of maximum degree d and size
n. Start from any node v ∈ V . In a first step at most d other nodes can be
reached. In two steps at most d · (d−1) additional nodes can be reached. Thus,
in general, in at most k steps at most

1 +

k−1
∑

i=0

d · (d− 1)i = 1 + d ·
(d− 1)k − 1

(d− 1)− 1
≤

d · (d− 1)k

d− 2

nodes (including v) can be reached. This has to be at least n to ensure that v
can reach all other nodes in V within k steps. Hence,

(d− 1)k ≥
(d− 2) · n

d
⇔ k ≥ logd−1((d− 2) · n/d) .

Since logd−1((d − 2)/d) > −2 for all d > 2, this is true only if k ≥
⌈(log n)/(log(d− 1))⌉ − 2.

Remarks:

• In other words, constant-degree hypercubic networks feature an asymp-
totically optimal diameter.

• There are a few other interesting graph classes, e.g., expander graphs (an
expander graph is a sparse graph which has high connectivity properties,
that is, from every not too large subset of nodes you are connected to
a larger set of nodes), or small-world graphs (popular representations of
social networks). At first sight hypercubic networks seem to be related to
expanders and small-world graphs, but they are not.

13.4 DHT & Churn

As written earlier, a DHT essentially is a hypercubic structure with nodes having
identifiers such that they span the ID space of the objects to be stored. We
described the straightforward way how the ID space is mapped onto the peers
for the hypercube. Other hypercubic structures may be more complicated: The
butterfly network, for instance, may directly use the d+1 layers for replication,
i.e., all the d + 1 nodes with the same ID are responsible for the same hash
prefix. For other hypercubic networks, e.g., the pancake graph (see exercises),
assigning the object space to peer nodes may be more difficult.

In general a DHT has to withstand churn. Usually, peers are under control of
individual users who turn their machines on or off at any time. Such peers join
and leave the P2P system at high rates (“churn”), a problem that is not existent
in orthodox distributed systems, hence P2P systems fundamentally differ from
old-school distributed systems where it is assumed that the nodes in the system
are relatively stable. In traditional distributed systems a single unavailable
node is a minor disaster: all the other nodes have to get a consistent view of the
system again, essentially they have to reach consensus which nodes are available.

144 CHAPTER 13. PEER-TO-PEER COMPUTING

In a P2P system there is usually so much churn that it is impossible to have a
consistent view at any time.

Most P2P systems in the literature are analyzed against an adversary that
can crash a fraction of random peers. After crashing a few peers the system
is given sufficient time to recover again. However, this seems unrealistic. The
scheme sketched in this section significantly differs from this in two major as-
pects. First, we assume that joins and leaves occur in a worst-case manner. We
think of an adversary that can remove and add a bounded number of peers; it
can choose which peers to crash and how peers join. We assume that a joining
peer knows a peer which already belongs to the system. Second, the adversary
does not have to wait until the system is recovered before it crashes the next
batch of peers. Instead, the adversary can constantly crash peers, while the sys-
tem is trying to stay alive. Indeed, the system is never fully repaired but always
fully functional. In particular, the system is resilient against an adversary that
continuously attacks the “weakest part” of the system. The adversary could for
example insert a crawler into the P2P system, learn the topology of the system,
and then repeatedly crash selected peers, in an attempt to partition the P2P
network. The system counters such an adversary by continuously moving the
remaining or newly joining peers towards the sparse areas.

Clearly, we cannot allow the adversary to have unbounded capabilities. In
particular, in any constant time interval, the adversary can at most add and/or
remove O(log n) peers, n being the total number of peers currently in the sys-
tem. This model covers an adversary which repeatedly takes down machines by
a distributed denial of service attack, however only a logarithmic number of ma-
chines at each point in time. The algorithm relies on messages being delivered
timely, in at most constant time between any pair of operational peers, i.e., the
synchronous model. Using the trivial synchronizer this is not a problem. We
only need bounded message delays in order to have a notion of time which is
needed for the adversarial model. The duration of a round is then proportional
to the propagation delay of the slowest message.

In the remainder of this section, we give a sketch of the system: For sim-
plicity, the basic structure of the P2P system is a hypercube. Each peer is part
of a distinct hypercube node; each hypercube node consists of Θ(log n) peers.
Peers have connections to other peers of their hypercube node and to peers of
the neighboring hypercube nodes.1 Because of churn, some of the peers have to
change to another hypercube node such that up to constant factors, all hyper-
cube nodes own the same number of peers at all times. If the total number of
peers grows or shrinks above or below a certain threshold, the dimension of the
hypercube is increased or decreased by one, respectively.

The balancing of peers among the hypercube nodes can be seen as a dynamic
token distribution problem on the hypercube. Each node of the hypercube has a
certain number of tokens, the goal is to distribute the tokens along the edges of
the graph such that all nodes end up with the same or almost the same number
of tokens. While tokens are moved around, an adversary constantly inserts and
deletes tokens. See also Figure 13.7.

In summary, the P2P system builds on two basic components: i) an algo-
rithm which performs the described dynamic token distribution and ii) an in-

1Having a logarithmic number of hypercube neighbor nodes, each with a logarithmic num-
ber of peers, means that each peers has Θ(log2 n) neighbor peers. However, with some addi-
tional bells and whistles one can achieve Θ(logn) neighbor peers.

13.5. STORAGE AND MULTICAST 145

Figure 13.7: A simulated 2-dimensional hypercube with four nodes, each con-
sisting of several peers. Also, all the peers are either in the core or in the
periphery of a node. All peers within the same node are completely connected
to each other, and additionally, all peers of a node are connected to the core
peers of the neighboring nodes. Only the core peers store data items, while the
peripheral peers move between the nodes to balance biased adversarial changes.

formation aggregation algorithm which is used to estimate the number of peers
in the system and to adapt the dimension of the hypercube accordingly:

Theorem 13.8 (DHT with Churn). We have a fully scalable, efficient P2P
system which tolerates O(log n) worst-case joins and/or crashes per constant
time interval. As in other P2P systems, peers have O(log n) neighbors, and the
usual operations (e.g., search, insert) take time O(log n).

Remarks:

• Indeed, handling churn is only a minimal requirement to make a P2P
system work. Later studies proposed more elaborate architectures which
can also handle other security issues, e.g., privacy or Byzantine attacks.

• It is surprising that unstructured (in fact, hybrid) P2P systems dominate
structured P2P systems in the real world. One would think that structured
P2P systems have advantages, in particular their efficient logarithmic data
lookup. On the other hand, unstructured P2P networks are simpler, in
particular in light of non-exact queries.

13.5 Storage and Multicast

As seen in the previous section, practical implementations often incorporate
some non-rigid (flexible) part. In a system called Pastry, prefix-based overlay
structures similar to hypercubes are used to implement a DHT. Peers main-
tain connections to other peers in the overlay according to the lengths of the
shared prefixes of their respective identifiers, where each peer carries a d-bit
peer identifier. Let β denote the number of bits that can be fixed at a peer
to route any message to an arbitrary destination. For i = {0, β, 2β, 3β, . . .}, a
peer chooses, if possible, 2β − 1 neighbors whose identifiers are equal in the i

146 CHAPTER 13. PEER-TO-PEER COMPUTING

most significant bits and differ in the subsequent β bits by one of 2β − 1 pos-
sibilities. If peer identifiers are chosen uniformly at random, the length of the
longest shared prefix is bounded by O(log n) in an overlay containing n peers;
thus, only O(log n(2β − 1)/β) connections need to be maintained. Moreover,
every peer reaches every other peer in O(logn

β
) hops by repetitively selecting

the next hop to fix β more bits toward the destination peer identifier, yielding
a logarithmic overlay diameter.

The advantage of prefix-based over more rigid DHT structures is that there
is a large choice of neighbors for most prefixes. Peers are no longer bound to
connect to peers exactly matching a given identifier. Instead peers are enabled to
connect to any peer matching a desired prefix, regardless of subsequent identifier
bits. In particular, among half of all peers can be chosen for a shared prefix of
length 0. The flexibility of such a neighbor policy allows the optimization of
secondary criteria. Peers may favor peers with a low-latency and select multiple
neighbors for the same prefix to gain resilience against churn. Regardless of
the choice of neighbors, the overlay always remains connected with a bounded
degree and diameter.

Such overlay structures are not limited to distributed storage. Instead, they
are equally well suited for the distribution of content, such as multicasting of
radio stations or television channels. In a basic multicasting scheme, a source
with identifier 00...0 may forward new data blocks to two peers having identi-
fiers starting with 0 and 1. They in turn forward the content to peers having
identifiers starting with 00, 01, 10, and 11. The recursion finishes once all peers
are reached. This basic scheme has the subtle shortcoming that data blocks
may pass by multiple times at a single peer because a predecessor can match a
prefix further down in its distribution branch.

The subsequent multicasting scheme M avoids this problem by modifying
the topology and using a different routing scheme. For simplicity, the neighbor
selection policy is presented for the case β = 1. In order to use M, the peers
must store links to a different set of neighbors. A peer v with the identifier
bv0 . . . b

v
d−1 stores links to peers whose identifiers start with bv0b

v
1 . . . b

v
i−1b

v
i b

v
i+1

and bv0b
v
1 . . . b

v
i−1b

v
i b

v
i+1 for all i ∈ {0, . . . , d− 2}. For example, the peer with the

identifier 0000 has to maintain connections to peers whose identifiers start with
the prefixes 10, 11, 010, 011, 0010, and 0011. Pseudo-code for the algorithm is
given in Algorithm 54.

The parameters are the length π of the prefix that is not to be modified and
at most one critical predecessor vc. If β = 1, any node v tries to forward the
data block to two peers v1 and v2. The procedure is called at the source v0 with
arguments π := 0 and vc := ∅, resulting in the two messages forward(1, v0) to
v1 and forward(1, ∅) to v2. The peer v1 is chosen locally such that the prefix its
identifier shares with the identifier of v is the shortest among all those whose
shared prefix length is at least π + 1. This value ℓ(v1, v) and v itself are the
parameters included in the forward message to peer v1, if such a peer exists.
The second peer is chosen similarly, but with respect to vc and not v itself. If no
suitable peer is found in the routing table, the peer vc is queried for a candidate
using the subroutine getNext which is described in Algorithm 55. This step is
required because node v cannot deduce from its routing table whether a peer
v2 with the property ℓ(v2, vc) ≥ π + 1 exists. In the special case when vc = ∅,
v2 is chosen locally, if possible, such that ℓ(v2, v) = π. In Figure 13.8, a sample

13.5. STORAGE AND MULTICAST 147

Algorithm 54 M: forward(π, vc) at peer v.

1: S := {v′ ∈ Nv | ℓ(v′, v) ≥ π + 1}
2: choose v1 ∈ S: ℓ(v1, v) ≤ ℓ(ṽ, v) ∀ṽ ∈ S
3: if v1 6= ∅ then

4: forward(ℓ(v1, v), v) to v1
5: end if

6: if vc 6= ∅ then

7: choose v2 ∈ Nv: ℓ(v2, vc) = π + 1
8: if v2 = ∅ then

9: v2 := getNext(v) from vc
10: end if

11: if v2 6= ∅ then

12: forward(ℓ(v2, vc), vc) to v2
13: end if

14: else

15: choose v2 ∈ Nv: ℓ(v2, v) = π
16: if v2 6= ∅ then

17: forward(π + 1, vc) to v2
18: end if

19: end if

spanning tree resulting from the execution of M is depicted.

Algorithm 55 getNext(vs) at peer v

1: S := {v′ ∈ Nv | ℓ(v′, v) > ℓ(vs, v)}
2: choose vr ∈ S: ℓ(vr, v) ≤ ℓ(ṽ, v) ∀ṽ ∈ S
3: send vr to vs

The presented multicasting scheme M has the property that, at least in a
static setting, wherein peers neither join nor leave the overlay, all peers can be
reached and each peer receives a data block exactly once as summarized by the
following theorem:

Theorem 13.9. In a static overlay, algorithm M has the following properties:

(a) It does not induce any duplicate messages (loop-free), and

(b) all peers are reached (complete).

Remarks:

• The multicast scheme M benefits from the same overlay properties as
DHTs; there is a bounded diameter and peer degree. Peers can maintain
backup neighbors and favor low-latency, high-bandwidth peers as neigh-
bors. Most importantly, intermediate peers have the possibility to choose
among multiple (backup) neighbors to forward incoming data blocks.
This, in turn, allows peers to quickly adapt to changing network conditions
such as churn and congestion. It is not necessary to rebuild the overlay
structure after failures. In doing so, a system can gain both robustness
and effiency.

148 CHAPTER 13. PEER-TO-PEER COMPUTING

v
0

v
1

v
2

v
3

v
4

v
6

v
7

(1,v)
0

(1,0)

(2,v)
0

(2,v)
2

(2,v)
1 (2,0)

0000

0101 1010

100 110110010 0 1 01

Figure 13.8: The spanning tree induced by a forward message initiated at peer
v0 is shown. The fixed prefix is underlined at each peer, whereas prefixes in
bold print indicate that the parent peer has been constrained to forward the
packet to peers with these prefixes.

• In contrast, for more rigid data structures, such as trees, data blocks are
forced to travel along fixed data paths, rendering them susceptible to any
kind of failure.

• Conversely, unstructured and more random overlay networks lack the
structure to immediately forward incoming data blocks. Instead, such
systems have to rely on the exchange of periodic notifications about avail-
able data blocks and requests and responses for the download of missing
blocks, significantly increasing distribution delays. Furthermore, the lack
of structure makes it hard to maintain connectivity among all peers. If the
neighbor selection is not truly random, but based on other criertia such
as latency and bandwidth, clusters may form that disconnect themselves
from the remaining overlay.

There is a varierty of further flavors and optimizations for prefix-based overlay
structures. For example, peers have a logarithmic number of neighbors in the
presented structure. For 100, 000 and more peers, peers have at least 20 neigh-
bors. Selecting a backup neighbor doubles the number of neighbors to 40. Using
M further doubles their number to 80. A large number of neighbors accrues
substantial maintenance costs. The subsequent variation limits the number of
neighbors with a slight adjustment of the overlay structure. It organizes peers
into disjoint groups G0,G1, . . . ,Gm of about equal size. The introduction of
groups is motivated by the fact that they will enable peers to have neighboring
connections for a subset of all shared prefixes while maintaining the favorable
overlay properties. The source, feeding blocks into the overlay, joins group G0.
The other peers randomly join groups. Let g(v) denote the function that assigns
each peer v to a group, i.e., v ∈ Gg(v).

Peers select neighboring peers based not solely on shared prefixes but also on
group membership. A peer v with the identifier bv0 . . . b

v
d−1 stores links to neigh-

boring peers whose identifiers start with bv0b
v
1 . . . b

v
i−1b

v
i and belong to group

g(v) + 1 mod m for all i ∈ {g(v), g(v) +m, g(v) + 2m, g(v) + 3m, . . .}. Further-
more, let f denote the first index i where no such peer exists. As fallback, peer
v stores further links to peers from arbitrary groups whose identifiers start with
bv0b

v
1 . . . b

v
k−1b

v
k for all k ≥ f −m + 1. The fallback connections allow a peer to

revert to the regular overlay structure for the longest shared prefixes where only
few peers exist.

BIBLIOGRAPHY 149

As an example, a scenario with m = 4 groups is considered. A peer with
identifier 00 . . . 0 belonging to group G2 has to maintain connections to peers
from group G3 that share the prefixes 001, 0000001, 00000000001, etc. In an
overlay with 100 peers, the peer is unlikely to find a neighbor for a prefix length
larger than log(100), such as prefix 00000000001. Instead, he further maintains
fallback connections to peers from arbitrary groups having identifiers starting
with the prefixes 00000001, 000000001, 000000001, etc. (if such peers exist).

Remarks:

• By applying the presented grouping mechanism, the total number of neigh-
bors is reduced to 2 logn

m
+c with constant c for fallback connections. (Note

that peers have both outgoing neighbors to the next group and incoming
neighbors from the previous group, doubling the number of neighbors.)

• Setting the number of groups m = log n gives a constant number of neigh-
bors regardless of the overlay size.

Chapter Notes

The paper of Plaxton, Rajaraman, and Richa [PRR97] laid out a blueprint for
many so-called structured P2P architecture proposals, such as Chord [SMK+01],
CAN [RFH+01], Pastry [RD01], Viceroy [MNR02], Kademlia [MM02], Koorde
[KK03], SkipGraph [AS03], SkipNet [HJS+03], or Tapestry [ZHS+04]. Also the
paper of Plaxton et. al. was standing on the shoulders of giants. Some of
its eminent precursors are: linear and consistent hashing [KLL+97], locating
shared objects [AP90, AP91], compact routing [SK85, PU88], and even earlier:
hypercubic networks, e.g. [AJ75, Wit81, GS81, BA84].

Furthermore, the techniques in use for prefix-based overlay structures are
related to a proposal called LAND, a locality-aware distributed hash table pro-
posed by Abraham et al. [AMD04].

More recently, a lot of P2P research focussed on security aspects, describing
for instance attacks [LMSW06, SENB07, Lar07], and provable countermeasures
[KSW05, AS09, BSS09]. Another topic currently garnering interest is using
P2P to help distribute live streams of video content on a large scale [LMSW07].
There are several recommendable introductory books on P2P computing, e.g.
[SW05, SG05, MS07, KW08, BYL08].

Some of the figures in this chapter have been provided by Christian Schei-
deler.

Bibliography

[AJ75] George A. Anderson and E. Douglas Jensen. Computer Interconnec-
tion Structures: Taxonomy, Characteristics, and Examples. ACM
Comput. Surv., 7(4):197–213, December 1975.

[AMD04] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. LAND: stretch
(1 + epsilon) locality-aware networks for DHTs. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’04, pages 550–559, Philadelphia, PA, USA, 2004. Society for
Industrial and Applied Mathematics.

150 CHAPTER 13. PEER-TO-PEER COMPUTING

[AP90] Baruch Awerbuch and David Peleg. Sparse Partitions (Extended
Abstract). In FOCS, pages 503–513, 1990.

[AP91] Baruch Awerbuch and David Peleg. Concurrent Online Tracking of
Mobile Users. In SIGCOMM, pages 221–233, 1991.

[AS03] James Aspnes and Gauri Shah. Skip graphs. In SODA, pages 384–
393, 2003.

[AS09] Baruch Awerbuch and Christian Scheideler. Towards a Scalable and
Robust DHT. Theory Comput. Syst., 45(2):234–260, 2009.

[BA84] L. N. Bhuyan and D. P. Agrawal. Generalized Hypercube and Hy-
perbus Structures for a Computer Network. IEEE Trans. Comput.,
33(4):323–333, April 1984.

[BSS09] Matthias Baumgart, Christian Scheideler, and Stefan Schmid. A
DoS-resilient information system for dynamic data management. In
Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, SPAA ’09, pages 300–309, New York,
NY, USA, 2009. ACM.

[BYL08] John Buford, Heather Yu, and Eng Keong Lua. P2P Networking
and Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[GS81] J.R. Goodman and C.H. Sequin. Hypertree: A Multiprocessor
Interconnection Topology. Computers, IEEE Transactions on, C-
30(12):923–933, dec. 1981.

[HJS+03] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin
Theimer, and Alec Wolman. SkipNet: a scalable overlay network
with practical locality properties. In Proceedings of the 4th con-
ference on USENIX Symposium on Internet Technologies and Sys-
tems - Volume 4, USITS’03, pages 9–9, Berkeley, CA, USA, 2003.
USENIX Association.

[KK03] M. Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-
Optimal Distributed Hash Table. In IPTPS, pages 98–107, 2003.

[KLL+97] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina
Panigrahy, Matthew S. Levine, and Daniel Lewin. Consistent Hash-
ing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In STOC, pages 654–663, 1997.

[KSW05] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A Self-
Repairing Peer-to-Peer System Resilient to Dynamic Adversarial
Churn. In 4th International Workshop on Peer-To-Peer Systems
(IPTPS), Cornell University, Ithaca, New York, USA, Springer
LNCS 3640, February 2005.

[KW08] Javed I. Khan and Adam Wierzbicki. Introduction: Guest edi-
tors’ introduction: Foundation of peer-to-peer computing. Comput.
Commun., 31(2):187–189, February 2008.

BIBLIOGRAPHY 151

[Lar07] Erik Larkin. Storm Worm’s virulence may change tac-
tics. http://www.networkworld.com/news/2007/080207-black-hat-
storm-worms-virulence.html, Agust 2007. Last accessed on June 11,
2012.

[LMSW06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Watten-
hofer. Free Riding in BitTorrent is Cheap. In 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, California, USA, November
2006.

[LMSW07] Thomas Locher, Remo Meier, Stefan Schmid, and Roger Watten-
hofer. Push-to-Pull Peer-to-Peer Live Streaming. In 21st Inter-
national Symposium on Distributed Computing (DISC), Lemesos,
Cyprus, September 2007.

[MM02] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric. In Revised Papers
from the First International Workshop on Peer-to-Peer Systems,
IPTPS ’01, pages 53–65, London, UK, UK, 2002. Springer-Verlag.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scal-
able and dynamic emulation of the butterfly. In Proceedings of the
twenty-first annual symposium on Principles of distributed comput-
ing, PODC ’02, pages 183–192, New York, NY, USA, 2002. ACM.

[MS07] Peter Mahlmann and Christian Schindelhauer. Peer-to-Peer Net-
works. Springer, 2007.

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa.
Accessing Nearby Copies of Replicated Objects in a Distributed
Environment. In SPAA, pages 311–320, 1997.

[PU88] David Peleg and Eli Upfal. A tradeoff between space and efficiency
for routing tables. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, STOC ’88, pages 43–52, New
York, NY, USA, 1988. ACM.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pages 329–350, November 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. SIGCOMM
Comput. Commun. Rev., 31(4):161–172, August 2001.

[SENB07] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Exploit-
ing KAD: possible uses and misuses. SIGCOMM Comput. Commun.
Rev., 37(5):65–70, October 2007.

[SG05] Ramesh Subramanian and Brian D. Goodman. Peer to Peer Com-
puting: The Evolution of a Disruptive Technology. IGI Publishing,
Hershey, PA, USA, 2005.

152 CHAPTER 13. PEER-TO-PEER COMPUTING

[SK85] Nicola Santoro and Ramez Khatib. Labelling and Implicit Routing
in Networks. Comput. J., 28(1):5–8, 1985.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. SIGCOMM Comput. Commun. Rev.,
31(4):149–160, August 2001.

[SW05] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and
Applications, volume 3485 of Lecture Notes in Computer Science.
Springer, 2005.

[Wit81] L. D. Wittie. Communication Structures for Large Networks of
Microcomputers. IEEE Trans. Comput., 30(4):264–273, April 1981.

[ZHS+04] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, An-
thony D. Joseph, and John Kubiatowicz. Tapestry: a resilient
global-scale overlay for service deployment. IEEE Journal on Se-
lected Areas in Communications, 22(1):41–53, 2004.

