1 Scale Free Networks

Different studies of the structures of social networks have reported that the degree distribution of the underlying connectivity graphs asymptotically follow a power law, i.e., the probability of a node in a social network to have degree k is given by:

$$Pr[k] = ck^{-\alpha}$$

where c is a normalization constant.

a) Is the diameter of two graphs with the same node-degree distribution equal (not necessarily power law graphs)?

b) Remember the the rumor game from the lecture: Two players choose a node on the graph, where they start their rumor. The player that is closer to a node in the graph can spread its rumor to the node. Winner is the player who can spread his rumor to more nodes. In a power law network, is it the optimal strategy to always choose the node with the highest degree?

For the following problems you may use the Chernoff bound:

Theorem 1 (Chernoff Bound)

Let $X := \sum_{i=1}^{n} X_i$ be the sum of n independent $0-1$ random variables X_i. Then the following holds:

$$Pr[X \leq (1 - \delta)\mathbb{E}[X]] \leq e^{-\mathbb{E}[X]\delta^2/2}$$

for all $0 < \delta \leq 1$

2 Greedy Routing in the Augmented Grid

Recall the network from the lecture where nodes were arranged in a grid and each node had an additional directed link to a randomly chosen node. Consider the case where $\alpha = 2$, i.e., the random link of node u connects it to node w with probability $d(u, w)^{-2}/\sum_{v \in V \setminus \{u\}} d(u, v)^{-2}$. In the lecture, we saw that for this α, with probability $\Omega(1/\log n)$, in each step we get to the next phase when we employ greedy routing. Hence, the expected number of steps is in $O(\log^2 n)$. Prove that the same bound on the number of steps holds w.h.p.!
3 Diameter of the Augmented Grid

Now consider $\alpha = 0$, i.e., the targets of the random links are chosen completely uniformly at random. In the lecture, a proof of the fact that such a network has diameter $O(\log n)$ w.h.p. was sketched. We will now fill in the details.

a) Show that $\Theta(n/ \log n)$ many nodes are enough to guarantee with high probability that at least one of their random links connects to a given set of $\Omega(\log^2 n)$ nodes. Prove this (i) by direct calculation and (ii) using Chernoff bound.

Hint: Use that $1 - p \leq e^{-p}$ for any p.

Hint: Use that you can choose the constant in the O-notation for the $O(n/ \log n)$ many nodes!

b) Suppose for some node set S we have that $|S| \in \Omega(\log^2 n) \cap o(n)$ and denote by H the set of nodes hit by their random links. Prove that H and together with its grid neighbors contains w.h.p. $(5-o(1))|S|$ nodes!

Hint: Observe that independently of all previous random choices, each new link has at least a certain probability p of connecting to a node whose complete neighborhood has not been reached yet. Then use Chernoff bound on the sum of $|S|$ many variables.

c) Infer from b) that starting from $\Omega(\log^2 n)$ nodes, with each hop the number of reached nodes w.h.p. more than doubles, as long as we have still $O(n/ \log n)$ nodes (regardless of the constants in the O-notation).

Hint: Play with the constant c in the definition of w.h.p. and use the union bound $(\Pr[a \wedge b] \leq \Pr[a] + \Pr[b])$.

d) Conclude that the diameter of the network is w.h.p. in $O(\log n)$.