
Rendezvous of Two Robots

with Constant Memory

Paola Flocchini1, Nicola Santoro2,
Giovanni Viglietta2, and Masafumi Yamashita3

1 EECS, University of Ottawa, Ottawa, Canada
flocchin@site.uottawa.ca

2 SCS, Carleton University, Ottawa, Canada
{santoro,viglietta}@scs.carleton.ca

3 Kyushu University, Fukuoka, Japan
mak@csce.kyushu-u.ac.jp

Abstract. We study the impact that persistent memory has on the
classical rendezvous problem of two mobile computational entities, called
robots, in the plane. It is well known that, without additional assump-
tions, rendezvous is impossible if the entities have no persistent memory,
even if the system is semi-synchronous and movements are rigid. It has
been recently shown that if each entity is endowed with O(1) bits of
persistent visible memory (called lights), they can rendezvous even if the
system is asynchronous.

In this paper we investigate the rendezvous problem in two weaker set-
tings in systems of robots endowed with visible lights: in FState, a robot
can only see its own light, while in FComm a robot can only see the other
robot’s light. Among other things, we prove that, with rigid movements,
finite-state robots can rendezvous in semi-synchronous settings, and finite-
communication robots are able to rendezvous even in asynchronous ones.
All proofs are constructive: in each setting, we present a protocol that al-
lows the two robots to rendezvous in finite time.

1 Introduction

1.1 Framework and Background

Rendezvous is the process of two computational mobile entities, initially dis-
persed in a spatial universe, meeting within finite time at a location, non known
a priori. When there are more than two entities, this task is known as Gather-
ing. These two problems are core problems in distributed computing by mobile
entities. They have been intensively and extensively studied when the universe
is a connected region of R2 in which the entities, usually called robots, can freely
move; see, for example, [1,3,4,8,9,11,14,15,16,17,18].

Each entity is modeled as a point, it has its own local coordinate system of
which it perceives itself as the centre, and has its own unit distance. Each entity
operates in cycles of Look, Compute, Move activities. In each cycle, an entity
observes the position of the other entities expressed in its local coordinate sys-
tem (Look); using that observation as input, it executes a protocol (the same

T. Moscibroda and A.A. Rescigno (Eds.): SIROCCO 2013, LNCS 8179, pp. 189–200, 2013.
c© Springer International Publishing Switzerland 2013



190 P. Flocchini et al.

for all robots) and computes a destination point (Compute); it then moves to
the computed destination point (Move). Depending on the activation sched-
ule and the synchronization level, three basic types of systems are identified in
the literature: a fully synchronous system (FSynch) is equivalent to a system
where there is a common clock and at each clock tick all entities are activated si-
multaneously, and Compute and Move are instantaneous; a semi-synchronous
system (SSynch) is like a fully synchronous one except that, at each clock tick,
only some entities will be activated (the choice is made by a fair scheduler);
in a fully asynchronous system (ASynch), there is no common notion of time,
each Compute and Move of each robot can take an unpredictable (but finite)
amount of time, and the interval of time between successive activities is finite
but unpredictable. The focus of almost all algorithmic investigations in the con-
tinuous setting has been on oblivious robots, that is when the memory of the
robots is erased at the end of each cycle, in other words the robots have no
persistent memory (e.g., for an overview see [10]).

The importance of Rendezvous in the continuous setting derives in part from
the fact that it separates FSynch from SSynch for oblivious robots. Indeed,
Rendezvous is trivially solvable in a fully synchronous system, without any ad-
ditional assumption. However, without additional assumptions, Rendezvous is
impossible for oblivious robots if the system is semi-synchronous [19]. Interest-
ingly, from a computational point of view, Rendezvous is very different from
the Gathering problem of having k � 3 robots meet in the same point; in fact,
Gathering of oblivious robots is always possible for any k � 3 even in ASynch

without any additional assumption other than multiplicity detection [3]. Fur-
thermore, in SSynch, k � 3 robots can gather even in spite of a certain number
of faults [1,2,7], and converge in spite of inaccurate measurements [5]; see also
[12]. The Rendezvous problem also shows the impact of certain factors. For exam-
ple, the problem has a trivial solution if the robots are endowed with consistent
compasses even if the system is fully asynchronous. The problem is solvable in
ASynch even if the local compasses have some degree of inconsistency of an
appropriate angle [13]; the solution is no longer trivial, but does exist.

In this paper, we are interested in determining what type and how much per-
sistent memory would allow the robots to rendezvous. What is known in this
regard is very little. On the one hand, it is well known that, in absence of addi-
tional assumptions, without persistent memory rendezvous is impossible even in
SSynch [19]. On the other hand, a recent result shows that rendezvous is pos-
sible even in ASynch if each robot has O(1) bits of persistent memory and can
transmit O(1) bits in each cycle and can remember (i.e., can persistently store)
the last received transmission [6] (see also [20] for size-optimal solutions). The
conditions of this result are overly powerful. The natural question is whether the
simultaneous presence of these conditions is truly necessary for rendezvous.

1.2 Main Contributions

In this paper we address this question by weakening the setting in two different
ways, and investigate the Rendezvous problem in these weaker settings. Even



Rendezvous of Two Robots with Constant Memory 191

though its use is very different, in both settings, the amount of persistent mem-
ory of a robot is constant.

We first examine the setting where the two robots have O(1) bits of internal
persistent memory but cannot communicate; this corresponds to the finite-state
(FState) robots model. Among other contributions, we prove that FState

robots with rigid movements can rendezvous in SSynch, and that this can be
done using only six internal states. The proof is constructive: we present a pro-
tocol that allows the two robots to rendezvous in finite time under the stated
conditions.

We then study the finite-communication (FComm) setting, where a robot can
transmit O(1) bits in each cycle and remembers the last received transmission,
but it is otherwise oblivious: it has no other persistent memory of its previ-
ous observations, computations and transmissions. We prove that two FComm

robots with rigid movements are able to rendezvous even in ASynch; this is
doable even if the different messages that can be sent are just 12. We also prove
that only three different messages suffice in SSynch. Also for this model all the
proofs are constructive.

Finally, we consider the situation when the movement of the robots is not
rigid, that is it can be interrupted by an adversary. The only constraint on the
adversary is that a robot moves at least a distance δ > 0 (otherwise, rendezvous
is clearly impossible). We show that, with knowledge of δ, three internal states
are sufficient to solve Rendezvous by FState robots in SSynch, and three pos-
sible messages are sufficient for FComm robots in ASynch.

These results are obtained modeling both settings as a system of robots en-
dowed with a constant number of visible lights : a FState robot can see only
its own light, while a FComm robot can see only the other robot’s light. Our
results seem to indicate that “it is better to communicate than to remember”.
In addition to the specific results on the Rendezvous problem, an important
contribution of this paper is the extension of the classical model of oblivi-
ous silent robots into two directions: adding finite memory, and enabling finite
communication.

Due to space limitations, several details and proofs are omitted; they can be
found in http://arxiv.org/abs/1306.1956.

2 Model and Terminology

The general model we employ is the standard one, described in [10]. The two
robots are autonomous computational entities modeled as points moving in R

2.
Each robot has its own coordinate system and its own unit distance, which may
differ from each other, and it always perceives itself as lying at the origin of its
own local coordinate system. Each robot operates in cycles that consist of three
phases: Look, Compute, and Move. In the Look phase it gets the position
(in its local coordinate system) of the other robot; in the Compute phase, it
computes a destination point; in the Move phase it moves to the computed
destination point, along a straight line. Without loss of generality, the Look

http://arxiv.org/abs/1306.1956


192 P. Flocchini et al.

phase is assumed to be instantaneous. The robots are anonymous and oblivious,
meaning that they do not have distinct identities, they execute the same algo-
rithm in each Compute phase, and the input to such algorithm is the snapshot
coming from the previous Look phase.

We study two settings; both can be described as restrictions of the model of
visibile lights introduced in [6]. In that model, each robot carries a persistent
memory of constant size, called light; the value of the light is called color or state,
and it is set by the robot during each Compute phase. Other than their own
light, the robots have no other memory of past snapshots and computations.

In the first setting, that of silent finite-state (FState) robots, the light of a
robot is visible only to the robot itself; i.e., the colored light merely encodes an
internal state. In the second setting, of oblivious finite-communication (FComm)
robots, the light of a robot is visible only to the other robot; i.e., they can com-
municate with the other robot through their colored light, but by their next
cycle they forget even the color of their own light (since they do not see it). The
color a robot sees is used as input during the computation.

In the asynchronous (ASynch) model, the robots are activated independently,
and the duration of each Compute, Move and inactivity is finite but unpre-
dictable. As a consequence, the robots do not have a common notion of time,
they can be seen while moving, and computations can be made based on obsolete
observations. In the semi-synchronous (SSynch) model the activationsof robots
can be logically divided into global rounds; in each round, one or both robots
are activated, obtain the same snapshot, compute, and perform their move. It is
assumed that the activation schedule is fair, i.e., each robot is activated infinitely
often.

Depending on whether or not the adversary can stop a robot before it reaches
its computed destination, the movements are called non-rigid and rigid, respec-
tively. In the case of non-rigid movements, there exists a constant δ > 0 such
that if the destination point’s distance is smaller than δ, the robot will reach
it; otherwise, it will move towards it by at least δ. Note that, without this as-
sumption, an adversary could make it impossible for any robot to ever reach its
destination, following a classical Zenonian argument.

The two robots solve the Rendezvous problem if, within finite time, they move
to the same point (not determined a priori) and do not move from there. A ren-
dezvous algorithm for SSynch (resp., ASynch) is a protocol that allows the
robots to solve the Rendezvous problem under any possible schedule in SSynch

(resp., ASynch). A particular class of algorithms, denoted by L, is that where
each robot may only compute a destination point of the form λ · other.position,
for some λ ∈ R obtained as a function only of the light of which the robot is
aware (i.e., its internal state in the FState model, or the other robot’s color
in the FComm model). The algorithms of this class are of interest because they
operate also when the coordinate system of a robot is not self-consistent (i.e., it
can unpredictably rotate, change its scale or undergo a reflection).



Rendezvous of Two Robots with Constant Memory 193

3 Finite-State Robots

We fist consider FState robots and we start by identifying a simple impossibility
result for algorithms in L.
Theorem 1. In SSynch, Rendezvous of two FState robots is unsolvable by
algorithms in L, regardless of the amount of their internal memory.

Thus the computation of the destination must take into account more than just
the lights (or states) of which the robot is aware.

The approach we use to circumvent this impossibility result is to have each
robot use its own unit of distance as a computational tool; recall that the two
robots might have different units, and they are not known to each other. We
propose Algortihm 1 for Rendezvous in SSynch. Each robot has six internal
states, namely Sstart, S1, S

left
2 , Sright

2 , S3, and Sfinish. Both robots are assumed
to begin their execution in Sstart. Each robot lies in the origin of its own local
coordinate system and the two robots have no agreement on axes orientations or
unit distance. Intuitively, the robots try to reach a configuration in which they
both observe the other robot at distance not lower than 1 (their own unit). From
this configuration, they attempt to meet in the midpoint. If they never meet
because they are never activated simultaneously, at some point one of them
notices that its observed distance is lower than 1. This implies a breakdown
of symmetry that enables the robots to finally gather. In order to reach the
desired configuration in which they both observe a distance not lower than 1,
the two robots first try to move farther away from each other if they are too
close. If they are far enough, they memorize the side on which they see each
other (left or right), and try to switch positions. If only one of them is activated,
they gather; otherwise they detect a side switch and they can finally apply the
above protocol. This is complicated by the fact that the robots may disagree
on the distances they observe. To overcome this difficulty, they use their ability
to detect a side switch to understand which distance their partner observed. If
the desired configuration is not reached because of a disagreement, a breakdown
of symmetry occurs, which is immediately exploited to gather anyway. As soon
as the two robots coincide at the end of a cycle, they never move again, and
Rendezvous is solved.

Theorem 2. In SSynch, Rendezvous of two FState robots is solvable with
six internal states. This result holds even without unit distance agreement.

4 Finite-Communication Robots

4.1 Asynchronous

It is not difficult to see that algorithms in L are not sufficient to solve the
problem.

Theorem 3. In ASynch, Rendezvous of two FComm robots is unsolvable by
algorithms in L, regardless of the amount of colors employed.



194 P. Flocchini et al.

Algorithm 1. Rendezvous for rigid SSynch with no unit distance agreement
and six internal states
1: dist← ‖other.position‖
2: if dist = 0 then
3: terminate
4: if other.position.x > 0 then
5: dir ← right
6: else if other.position.x < 0 then
7: dir ← left
8: else if other.position.y > 0 then � other.position.x = 0
9: dir ← right
10: else
11: dir ← left
12: if me.state = Sstart then
13: if dist < 1 then
14: me.state← S1

15: me.destination← other.position · (1− 1/dist)
16: else
17: me.state← Sdir

2

18: me.destination← other.position

19: else if me.state = S1 then
20: if dist � 1 then
21: me.state← Sfinish

22: me.destination← (0, 0)
23: else
24: me.state← Sdir

2

25: me.destination← other.position

26: else if me.state = Sd
2 then

27: if dir = d then
28: me.state← Sfinish

29: me.destination← other.position
30: else if dist < 1/2 then � side switch detected
31: me.state← Sfinish

32: me.destination← (0, 0)
33: else
34: me.destination← other.position/2
35: if dist < 1 then
36: me.state← S3

37: else if me.state = S3 then
38: me.state← Sfinish

39: if dist < 1/4 then
40: me.destination← (0, 0)
41: else � 1/4 � d < 1/2
42: me.destination← other.position

43: else � me.state = Sfinish

44: if dist � 1 then
45: me.destination← (0, 0)
46: else
47: me.destination← other.position



Rendezvous of Two Robots with Constant Memory 195

We now describe an algorithm (which is not in L) that solves the problem.
Also this algorithm uses the local unit distance as a computational tool, but in a
rather different way since a robot cannot remember and has to infer information
by observing the other robot’s light.

> Moving Away

Test

Me > 1

Approaching

Me < 1

Both < 1 You Moved

Coming

Waiting

Both = 2StayHalted

d=0 d=2d<2

d>2

>d>1

>d>1

d<1

d<1 d>0

d>0
d=0

Fig. 1. State transitions in Algorithm 2

Intuitively, the two robots try to reach a configuration in which both robots
see each other at distance lower than 1. To do so, they first communicate to
the other whether or not the distance they observe is smaller than 1 (recall
that they may disagree, because their unit distances may differ). If one robot
acknowledges that its partner has observed a distance not smaller than 1, it
reduces the distance by moving toward the midpoint.

The process goes on until both robots observe a distance smaller than 1. At
this point, if they have not gathered yet, they try to compare their distance
functions, in order to break symmetry. They move away from each other in such
a way that their final distance is the sum of their respective unit distances.
Before proceeding, they attempt to switch positions. If, due to asynchrony, they
failed to be in the same state at any time before this step, they end up gathering.
Instead, if their execution has been synchronous up to this point, they finally
switch positions. Now, if the robots have not gathered yet, they know that their
distance is actually the sum of their unit distances. Because each robot knows
its own unit, they can tell if one of them is larger. If a robot has a smaller unit,
it moves toward its partner, which waits.

Otherwise, if their units are equal, they apply a simple protocol: as soon as
a robot wakes up, it moves toward the midpoint and orders its partner to stay
still. If both robots do so, they gather in the middle. If one robot is delayed due
to asynchrony, it acknowledges the order to stay still and tells the other robot
to come.

Theorem 4. In ASynch, Rendezvous of two FComm robots is solvable with
12 colors. This result holds even without unit distance agreement.



196 P. Flocchini et al.

Algorithm 2. Rendezvous for rigid ASynch with no unit distance agreement
and 12 externally visible states

1: dist← ‖other.position‖
2: if other.state = (Test) then � testing distances
3: if dist � 1 then
4: me.state← (Me � 1)
5: else
6: me.state← (Me < 1)

7: else if other.state = (Me � 1) then � reducing distances
8: me.state← (Approaching)
9: me.destination← other.position/2
10: else if other.state = (Approaching) then � test distances again
11: me.state← (Test)
12: else if other.state = (Me < 1) then
13: if dist � 1 then
14: me.state← (Me � 1)
15: else
16: me.state← (Both < 1)

17: else if other.state = (Both < 1) then
18: if dist = 0 then � we have gathered
19: me.state← (Halted)
20: else
21: me.state← (Moving Away)
22: if dist < 1 then � moving away by 1− dist/2
23: me.destination← other.position · (1/2− 1/dist)

24: else if other.state = (Moving Away) then
25: me.state← (You Moved)
26: else if other.state = (You Moved) then
27: me.state← (Coming)
28: me.destination← other.position
29: else if other.state = (Coming) then
30: me.state← (Waiting)
31: else if other.state = (Waiting) then
32: if dist > 2 then � my unit is smaller
33: me.state← (Stay)
34: me.destination← other.position
35: else if dist = 2 then � our units are equal
36: me.state← (Both = 2)
37: else � my unit is bigger or we have gathered
38: me.state← (Halted)

39: else if other.state = (Both = 2) then
40: me.state← (Stay)
41: if dist = 2 then � moving to the midpoint
42: me.destination← other.position/2

43: else if other.state = (Stay) then
44: me.state← (Halted)
45: else � other.state = (Halted)
46: if dist = 0 then � we have gathered
47: me.state← (Halted)
48: terminate
49: else � maintain position while I come
50: me.state← (Stay)
51: me.destination← other.position



Rendezvous of Two Robots with Constant Memory 197

Proof. We show that Algorithm 2, also depicted in Figure 1, correctly solves
Rendezvous . Both robots start in state (Test), and then update their state to
(Me � 1) or (Me < 1), depending if they see each other at distance greater or
lower than 1 (they may disagree, because their distance functions may be differ-
ent). If robot r sees robot s set to (Me � 1), it starts approaching it by moving
to the midpoint, in order to reduce the distance. No matter if r approaches s
several times before s is activated, or both robots approach each other at differ-
ent times, one of them eventually sees the other set to (Approaching). When
this happens, their distance has reduced by at least a half, and at least one robot
turns (Test) again, thus repeating the test on the distances. At some point, both
robots see each other at distance lower than 1 during a test, and at least one of
them turns (Both < 1). If they have not gathered yet, they attempt to break
symmetry by comparing their distance functions. To do so, when a robot sees
the other set to (Both < 1), it turns (Moving Away) and moves away by its
own unit distance minus half their current distance. This move will be performed
at most once by each robot, because if one robot sees the other robot still set to
(Both < 1), but it observes a distance not lower than 1, then it knows that it
has already moved away, and has to wait. When a robot sees its partner set to
(Moving Away), it shares this information by turning (You Moved). If only
one robot turns (You Moved), while the other is still set to (Moving Away),
then the second robot turns (Coming) and reaches the other robot, which just
turns (Waiting) and stays still until they gather. Otherwise, if both robots see
each other set to (You Moved), they both turn (Coming) and switch positions.
At least one of them then turns (Waiting). Now, if a robot sees its partner set to
(Waiting) and they have not gathered yet, it knows that their current distance
is the sum of their unit distances. If such distance is greater than 2, then the
robot knows that its partner’s unit distance is bigger, and it moves toward it,
while ordering it to stay still. Vice versa, if the distance observed is smaller than
2, the observing robot stays still and orders its partner to come. Finally, if the
distance observed is exactly 2, the observing robot knows that the two distance
functions are equal, and turns (Both = 2). In this case, a simple protocol allows
them to meet. If a robot sees the other set to (Both = 2) at distance 2, it turns
(Stay) and moves to the midpoint. If both robots do so, they eventually gather.
Indeed, even if the first robot reaches the midpoint while the other is still set to
(Both = 2), it now sees its partner at distance 1, and knows that it has to wait.
On the other hand, whenever a robot sees its partner set to (Stay), it turns
(Halted), which tells its partner to reach it. This guarantees gathering even if
only one robot attempts to move to thee midpoint.

4.2 Semi-Synchronous

In SSynch the situation is radically different from the ASynch case. In fact,
it is possible to find a simple solution in L that uses the minimum number of
colors possible, and operates correctly without unit distance agreement, starting
from any arbitrary color configuration, and with interruptable movements (see
Algorithm 3).



198 P. Flocchini et al.

Algorithm 3. Rendezvous for non-rigid SSynch with three externally visible
states
1: if other.state = A then
2: me.state← B
3: me.destination← other.position/2
4: else if other.state = B then
5: me.state← C
6: else � other.state = C
7: me.state← A
8: me.destination← other.position

Theorem 5. In SSynch, Rendezvous of two FComm robots is solvable by an
algorithm in L with only three distinct colors. This result holds even if starting
from an arbitrary color configuration, without unit distance agreement, and with
non-rigid movements.

Note that the number of colors used by the algorithm is optimal. This follows
as a corollary of the impossibility result when lights are visible to both robots:

Lemma 1. [20] In SSynch, Rendezvous of two robots with persistent memory
visible by both of them is unsolvable by algorithms in L that use only two colors.

5 Movements: Knowledge vs. Rigidity

In this section, we consider the Rendezvous problem when the movement of the
robots can be interrupted by an adversary; previously, unless otherwise stated,
we have considered rigid movements, i.e., in each cycle a robot reaches its com-
puted destination point. Now, the only constraint on the adversary is that a
robot, if interrupted before reaching its destination, moves by at least δ > 0
(otherwise, rendezvous is clearly impossible). We prove that, for rendezvous with
lights, knowledge of δ has the same power as rigidity of the movements. Note
that knowing δ implies also that the robots can agree on a unit distance.

5.1 FState Robots

Both robots start in state A. If a robot sees its partner at distance lower than
δ/2, it moves in the opposite direction, to the point at distance δ/2 from its
partner. On the other hand, if the distance observed is not lower than δ, it
moves toward the point located δ/4 before the midpoint.

It is easy to see that after sufficiently many turns, the robots find themselves
at a distance in the interval [δ/2, δ), and both in state A. From now on, all their
movements are rigid.

Theorem 6. In non-rigid SSynch, Rendezvous of two FState robots with
knowledge of δ is solvable with three colors.



Rendezvous of Two Robots with Constant Memory 199

5.2 FComm Robots

The idea of the Algorithm is simple. Both robots begin their execution in state
Start, and attempt to position themselves at a distance in the interval (δ, 2δ].
To do so, they adjust their position by moving by δ/2 at each step. When a
robot sees its partner at the desired distance, it turns Ready and stops. It is
easy to show that, even if its partner is still moving, it will end its move at a
distance in the interval (δ, 2δ]. When a robot sees its partner set to Ready, it
turns Come and moves to the midpoint; the midpoint is eventually reached,
because the distance traveled is not greater than δ.
We can conclude that:

Theorem 7. In non-rigid ASynch, Rendezvous of two FComm robots with
knowledge of δ is solvable with three colors.

6 Open Problems

Our results, showing that rendezvous is possible in SSynch for FState robots
and in ASynch for FComm robots, seem to indicate that “it is better to com-
municate than to remember”. However, determining the precise computational
relationship between FState and FComm is an open problem. To settle it, it
must be determined whether or not it is possible for FState robots to ren-
dezvous in ASynch.

Although minimizing the amount of constant memory was not the primary
focus of this paper, the number of states employed by our algorithms is rather
small. An interesting research question is to determine the smallest amount of
memory necessary for the robots to rendezvous when rendezvous is possible, and
devise optimal solution protocols.

The knowledge of δ in non-rigid scenarios is quite powerful and allows for
simple solutions. It is an open problem to study the Rendezvous problem for
FState and FComm robots when δ is unknown or not known precisely.

This paper has extended the classical models of oblivious silent robots into
two directions: adding finite memory, and enabling finite communication. It thus
opens the investigation in the FState and FComm models of other classical
robots problems (e.g., Pattern Formation, Flocking, etc.); an exception is Gath-
ering because, as mentioned in the introduction, it is already solvable without
persistent memory and without communication [3].

Acknowledgments. This work has been supported in part by NSERC, and by
Prof. Flocchini’s URC.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM Journal on Computing 36, 56–82 (2006)

2. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple
crash faults. In: Proceedings of 33rd IEEE International Conference on Distributed
Computing Systems, ICDCS (2013)



200 P. Flocchini et al.

3. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM Journal on Computing 41(4), 829–879 (2012)

4. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM Journal on Computing 34, 1516–1528 (2005)

5. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 549–560. Springer, Heidelberg (2006)

6. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of
lights: synchronizing asynchronous robots using visible bits. In: Proceedings of the
32nd International Conference on Distributed Computing Systems (ICDCS), pp.
506–515 (2012)

7. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-
stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167,
pp. 46–60. Springer, Heidelberg (2006)

8. Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P.,
Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In: Proceedings of 23rd ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pp. 139–148 (2011)

9. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detec-
tion. Theoretical Computer Science 428(13) (2012)

10. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mo-
bile Robots. Morgan & Claypool (2012)

11. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theo. Comp. Sci. 337(1-3), 147–168 (2005)

12. Izumi, T., Bouzid, Z., Tixeuil, S., Wada, K.: Brief Announcement: The BG-
simulation for Byzantine mobile robots. In: Peleg, D. (ed.) Distributed Computing.
LNCS, vol. 6950, pp. 330–331. Springer, Heidelberg (2011)

13. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Defago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM Journal on Computing 41(1), 26–46 (2012)

14. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gath-
ering from symmetric configurations without global multiplicity detection. In:
Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161.
Springer, Heidelberg (2011)

15. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. parts
1 and 2. SIAM Journal on Control and Optimization 46(6), 2096–2147 (2007)

16. Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching. In: Even, G.,
Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 315–326. Springer,
Heidelberg (2012)

17. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theoretical Computer Science 384(2-3), 222–231 (2007)

18. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to
gather memory-less mobile robots with limited visibility. ACM Transactions on
Autonomous and Adaptive Systems 4(1), 1–27 (2009)

19. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28, 1347–1363 (1999)

20. Viglietta, G.: Rendezvous of two robots with visible bits. Technical Report
arXiv:1211.6039 (2012)


	Rendezvous of Two Robots with Constant Memory
	1 Introduction
	1.1 Framework and Background
	1.2 Main Contributions

	2 Model and Terminology
	3 Finite-State Robots
	4 Finite-Communication Robots
	4.1 Asynchronous
	4.2 Semi-Synchronous

	5 Movements: Knowledge vs. Rigidity
	5.1 FState Robots
	5.2 FComm Robots

	6 OpenProblems
	References




