
What Can Be Decided Locally Without Identifiers?

Pierre Fraigniaud
CNRS and University Paris Diderot

pierre.fraigniaud@
liafa.univ-paris-diderot.fr

Mika Göös
Department of Computer Science

University of Toronto
mika.goos@mail.utoronto.ca

Amos Korman
CNRS and University Paris Diderot

amos.korman@
liafa.univ-paris-diderot.fr

Jukka Suomela
Helsinki Institute for Information Technology HIIT

Department of Computer Science
University of Helsinki

jukka.suomela@cs.helsinki.fi

ABSTRACT
Do unique node identifiers help in deciding whether a network
G has a prescribed property P? We study this question in
the context of distributed local decision, where the objective
is to decide whether G has property P by having each node
run a constant-time distributed decision algorithm. In a yes-
instance all nodes should output yes, while in a no-instance
at least one node should output no.

Recently, Fraigniaud et al. (OPODIS 2012) gave several
conditions under which identifiers are not needed, and they
conjectured that identifiers are not needed in any decision
problem. In the present work, we disprove the conjecture.

More than that, we analyse two critical variations of the
underlying model of distributed computing:

(B): the size of the identifiers is bounded by a function
of the size of the input network,

(¬B): the identifiers are unbounded,

(C): the nodes run a computable algorithm,

(¬C): the nodes can compute any, possibly uncomputable
function.

While it is easy to see that under (¬B,¬C) identifiers are not
needed, we show that under all other combinations there are
properties that can be decided locally if and only if identifiers
are present.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; F.1.2 [Computation by Abstract Devices]:
Modes of Computation

Keywords
distributed complexity, local decision, identifiers, computabil-
ity theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

1. INTRODUCTION
In this work we ask and answer a simple question: Do we

need unique node identifiers when locally deciding a graph
property? While this question is a natural one, our answers
are somewhat artificial—but only necessarily so.

Local Decision
A property of graphs P is locally decidable if there is a
distributed algorithm A (in the usual LOCAL model; see
Section 1.2) with a constant running time t = O(1) that
when run on a graph G can decide whether G ∈ P in the
following sense:

• if G ∈ P, then A outputs yes on every node of G, and

• if G /∈ P, then A outputs no on at least one node of G.

Here, the output of A on a node v ∈ V (G) can only depend
on the information that is available to within t steps of v
in G. This includes not only the radius-t neighbourhood
topology around v, but also—as is often assumed—numerical
identifiers Id(u) for each node u in the neighbourhood. The
assignment Id: V (G)→ N is one-to-one.

Do We Need Identifiers?
Recently, Fraigniaud et al. [2] asked if it makes any difference
in this context to have A’s output depend on the identifiers
Id(v). After all, whether G has the property P does not
depend on how the nodes of G are labelled with identifiers,
and moreover, the usual challenge of local symmetry breaking
does not arise in the context of decision problems.

They conjectured that for any local algorithm A that
decides a property P there is an equivalent Id-oblivious local
algorithm A∗ that decides P and that does not use identifiers
in the sense that the output of A∗ on a node v ∈ V (G) does
not change if we reassign the identifiers, i.e., A∗(G, Id, v) =
A∗(G, Id′, v) for any two assignments Id, Id′ : V (G)→ N.

In this work, we disprove the conjecture. We show that
there are graph properties whose local decision requires the
output of a constant-time algorithm to depend on the iden-
tifier assignment—if the details of the underlying model of
distributed computation are set up in a particular way.

Assumptions
To understand what our question entails on a technical level,
we need to make explicit two critical assumptions about the
model of computing.

157

Size of identifiers. It is commonly assumed that the identi-
fiers are given as O(logn)-bit labels in a graph with n nodes.
It is debatable whether it is natural to require bounded iden-
tifiers in our case of constant-time algorithms; in any case,
we consider both alternatives:

(B) The size of identifiers is bounded by a function of n.

(¬B) The size of identifiers is unbounded.

Note that, since a local algorithm operates on a graph
component-wise, there is no distinction between (B) and
(¬B) if we allow all disconnected graphs as input: in either
case there will be no bound on Id(v) as a function of the size
of v’s component. Thus, in what follows, we will assume that
the input graph is connected. We will show that whether
identifiers help in local decision depends on which of the
assumptions (B) or (¬B) we adopt.

Computability. Second, should we restrict the power of
local computations? We have two alternatives:

(C) The nodes run a computable algorithm.

(¬C) The nodes can compute any function, possibly un-
computable.

For many questions in distributed computing, the distinction
between (C) and (¬C) is inconsequential. However, we will
show that whether identifiers help in local decision depends
on which of the assumptions (C) or (¬C) we adopt.

Id-Oblivious Simulation
Our results are best motivated by the observation that identi-
fiers are not needed under (¬B,¬C). Indeed, if A is a t-time
algorithm deciding a property P, we can simulate A by an
Id-oblivious t-time algorithm A∗.

Id-oblivious simulation A∗: For each local neigh-
bourhood (G′, v), G′ ⊆ G, algorithm A∗ checks
whether there is a local assignment Id′ : V (G′)→
N that makes the output A(G′, Id′, v) be no. If
such an assignment exists, we let A∗ output no
on v, too; otherwise, we let A∗ output yes on v.

We first note that, even though A∗ is well-defined, it is
not obvious how to compute it, since finding out whether
Id′ exists might involve an exhaustive search over an infinite
domain. For example, even if A was computable to start with,
our A∗ is now deciding, a priori, a computably enumerable
predicate. However, under (¬C), this is not a problem.

To see that A∗ correctly decides P, we note that A∗ outputs
no on some node in G, if and only if there is some global
assignment Id: V (G)→ N (i.e., extension of Id′) that makes
A output no on some node. The identifiers in the assignment
Id may be very large, but under (¬B) this is not a problem.
Thus, (G, Id) is a valid input for A, and the correctness of
A∗ now follows from that of A.

Our main result in this work is showing that there is no
general Id-oblivious simulation in case one of the assumptions
(B) or (C) is imposed.

1.1 Our Results
We show that identifiers are necessary in local decision

under (B), and under (C).

Theorem 1. Assume (B) or (C). There is a locally de-
cidable property P that cannot be decided with an Id-oblivious
local algorithm.

In particular, this separates the classes LD and LD∗ that
were previously conjectured to be equal under (¬B,C) by
Fraigniaud et al. [2]. Here, LD is the class of locally decidable
properties, and LD∗ ⊆ LD is the class of properties decidable
with an Id-oblivious local algorithm.

We prove the separation LD∗ 6= LD assuming (B,¬C)
in Section 2, and again assuming (C) in Section 3. For
the latter, more involved separation, we end up using ideas
from classical (sequential) computability theory. The use of
these techniques should not come as a surprise given that
LD∗ = LD under (¬B,¬C) as discussed above. We collect
the relationships between LD∗ and LD in the following table:

(C) (¬C)

(B) 6= 6= → Section 2

(¬B) 6= =

�

Section 3

Finally, we note that the property P that witnesses LD 6=
LD∗ under (C) becomes decidable with an Id-oblivious algo-
rithm if we allow randomness.

Corollary 1. Property P can be decided (w.h.p.) with
an Id-oblivious randomised local algorithm.

Randomised local decision was previously studied by Fraigni-
aud et al. [3, 4]. The corollary above indicates, in particular,
that in the Id-oblivious model, the threshold result [4, Theo-
rem 3.3] that pertains to so-called hereditary properties (see
Section 1.3) does not hold in general.

1.2 Local Decision in the LOCAL Model
A labelled graph is a pair (G,x), where G = (V (G), E(G))

is a simple undirected graph and function x associates a label
or a local input, denoted x(v), with each node v ∈ V (G).

A labelled graph property is a collection P of labelled
graphs that is closed under graph isomorphism. That is,
if (G,x) ∈ P, and (G′,x′) is isomorphic to (G,x), then
(G′,x′) ∈ P. Examples of labelled graph properties include
the following:

• “proper 3-colouring”: (G,x) ∈ P if x is a proper 3-
colouring of G,

• “maximal independent set”: (G,x) ∈ P if the nodes
with x(v) = 1 form a maximal independent set in G,

• “planar graphs”: (G,x) ∈ P if G is a planar graph (and
x is arbitrary).

In particular, all graph properties can be interpreted as
labelled graph properties. If P is a property, we say that any
pair (G,x) ∈ P is a yes-instance and any pair (G,x) /∈ P is
a no-instance.

An input is a triple (G,x, Id), where (G,x) is a labelled
graph and Id: V (G)→ N is a one-to-one function. We say
that Id(v) is the unique identifier of node v ∈ V (G).

Local Algorithms
Let B(v, t) ⊆ V (G) consist of the nodes that are within
distance t from v in graph G. We write (G,x, Id) � B(v, t)
for the restriction of the structure (G,x, Id) to B(v, t). In
other words, this is the radius-t neighbourhood of node v in
graph G.

158

We will now formally define what we mean by a local
algorithm and its local horizon. For our purposes, a local
algorithm is easiest to define as a function that maps local
neighbourhoods to local outputs. To this end, let A be a
function that associates a local output

A(G,x, Id, v) ∈ {yes,no}

with each node v ∈ V for any input (G,x, Id). We say that
A is a local algorithm with local horizon t if

A(G,x, Id, v) = A(G′,x′, Id′, v)

whenever (G,x, Id) � B(v, t) = (G′,x′, Id′) � B(v, t). That
is, in a local algorithm the local output of node v depends
only on the information that is available in the radius-t
neighbourhood of node v.

Moreover, we say that local algorithm A is Id-oblivious if

A(G,x, Id, v) = A(G,x, Id′, v)

for any two assignments Id, Id′ : V (G)→ N. That is, renum-
bering the identifiers does not change the output of an Id-
oblivious algorithm. Indeed, we may write the output simply
as A(G,x, v).

While in the above description we have specified a local
algorithm as a mapping from local neighbourhoods to local
outputs, we could equally well specify a local algorithm from
the perspective of networked state machines that exchange
messages with each other: graph G is the structure of the
network, each node is a computer, each edge is a communi-
cation link, all nodes run the same algorithm, and a node
v ∈ V (G) initially knows only x(v) and Id(v). In essence, a
local algorithm with local horizon t is equivalent to a distrib-
uted algorithm that runs in t±1 synchronous communication
rounds in the LOCAL model [16,20].

Assumptions
Under assumption (B), we require that there is a function f
such that Id(v) < f(|V (G)|) for any input (G,x, Id).

Under assumption (C), we require that local algorithm A
is a computable function of the local neighbourhood. Put
otherwise, we require that there is a Turing machine MA

such that for any input (G,x, Id) and any node v ∈ G,
given a string that encodes node v and the local neighbour-
hood (G,x, Id) � B(v, t), machine MA halts and outputs
A(G,x, Id, v).

Local Decision
Local algorithm A decides a property P if the following holds
for any input (G,x, Id):

• if (G,x) ∈ P, then A(G,x, Id, v) = yes for every node
v ∈ V (G),

• if (G,x) /∈ P, then A(G,x, Id, v) = no for at least one
node v ∈ V (G).

If there is a local algorithm that decides P, we say that P is
in class LD. If there is an Id-oblivious local algorithm that
decides P, we say that P is in class LD∗.

Promise Problems
While our constructions do not make use of promise problems,
we will refer to them in some introductory examples. If we
say that we have promise P ′, then we are only interested in
inputs (G,x, Id) with (G,x) ∈ P ′.

In particular, if (G,x, Id) is an input that violates the
promise, we do not put any requirements on A(G,x, Id, v).
Even if we work under assumption (C), we do not require
that machine MA halts for inputs that violate the promise.
Put otherwise, A can be a partial function, undefined for
inputs that violate the promise.

1.3 Related Work
The question of how to locally decide (or verify) properties

has been gaining attention in recent years [1, 2, 4, 9, 11–14].
While the original focus was on the LOCAL model [4], re-
cent work has taken the first steps towards a computational
complexity theory in various other contexts of distributed
computing [5–7].

Local Decision
Fraigniaud et al. [4] define three classes of decision prob-
lem: LD, NLD and BPLD. Class NLD is a nondeterministic
version of LD, and class BPLD is a randomised version of
LD. Informally, classes LD, NLD and BPLD are distributed
analogues of classes P, NP and BPP.

One of the main results of the paper [4] pertains to heredi-
tary properties—in essence, these are graph properties that
are closed under vertex deletion. It is shown that for heredi-
tary properties there exists a sharp threshold for randomisa-
tion, above which randomisation does not help.

Identifiers and Local Decision
More recently, Fraigniaud et al. [2] defined the Id-oblivious
model, and the corresponding class LD∗, aiming to better
understand the role of identities in local decision. They also
conjectured that LD∗ = LD. Informally, the conjecture states
that for constant time computations, identities do not play
any role except for allowing nodes to identify their local
neighbourhoods.

Several positive evidences were given supporting this con-
jecture [2]. Specifically, it is shown that LD∗ = LD holds
for hereditary properties and for graph problems defined on
paths, with a finite set of input values. Moreover, it was
shown that equality holds in the non-deterministic setting,
i.e., NLD∗ = NLD.

Identifiers and Local Construction
The role of identifiers is different in local algorithms that need
to construct a solution. From the perspective of construction
tasks, it is easy to see that the usual LOCAL model is much
stronger than the Id-oblivious model: there are many tasks
that are trivial in LOCAL and impossible to solve with an
Id-oblivious algorithm (examples: finding an orientation of
the edges; 2-colouring a 1-regular graph).

Therefore to ask meaningful questions related to the role of
unique identifiers in construction tasks, we usually compare
the LOCAL model with models that retain some symmetry-
breaking information. Two such models are OI, order-invari-
ant algorithms, and PO, port numbering and orientation.
Informally, we can characterise the models as follows (see,
e.g., Göös et al. [8] for more details).

• In the OI model [18], the output of an algorithm is not
allowed to change if we reassign the identifier while
preserving their relative order.

• In the PO model [17], there is an ordering on the
incident edges, and all edges carry an orientation.

159

Note that the OI model is stronger than the Id-oblivious
model: in the Id-oblivious model, A∗(G, Id, v) = A∗(G, Id′, v)
for any two assignments Id, Id′ : V (G)→ N, while in the OI
model, we only require this for assignments that satisfy
Id(u) < Id(v) ⇐⇒ Id′(u) < Id′(v). This difference makes
the OI model much stronger.

Indeed, it turns out that from the perspective of strictly
local algorithms, for many graph problems models LOCAL
and OI are equally strong: Naor and Stockmeyer [18] prove
that for problems whose decision version can be solved locally,
construction is possible in LOCAL if and only if it is possible
in OI. More recently, Göös et al. [8] show that there is also
a general class of optimisation problems for which LOCAL,
OI and PO are equally expressive.

The results of Naor and Stockmeyer [18] and Göös et al. [8]
focus on bounded-degree graphs. They also make a subtle
technical assumption: each node produces a local output
from a constant-size set. This is necessary: Hasemann et
al. [10] give an example of a natural problem that violates
this assumption—and separates LOCAL and OI.

Bounds on n

It turns out that in decision problems, unique identifiers are
helpful for one reason, and for one reason only: obtaining an
estimate on n, the number of nodes. Indeed, by prior work
we already know that LD∗ = LD holds assuming that every
node knows an upper bound on the total number of nodes
in the input graph [2].

Of course we can interpret a decision problem as a very spe-
cial kind of construction problem, and therefore the present
work also shows that some construction problems can exploit
numerical identifiers to learn about n. However, this is a
highly atypical example. For classical graph problems this
information does not help a local algorithm—the identifiers
are typically used for local symmetry breaking and their
numerical magnitude is inconsequential.

However, if we step outside the field of strictly local al-
gorithms, it is common to assume that all nodes know the
same upper bound on n. This is a convenient assumption
that often simplifies algorithm design. Korman et al. [15]
show that in many cases it is merely a convenience—the
knowledge of an upper bound on n is not essential.

2. SEPARATION UNDER BOUNDED
IDENTIFIERS

In this section we work under assumption (B,¬C) and
exhibit a locally decidable property P that cannot be decided
with an Id-oblivious local algorithm.

Let f : N→ N be such that Id(v) < f(n) for all v ∈ V (G),
where G is a connected input graph. The reason identifiers
are useful is that they leak information about n. For example,
if a node is given an identifier i, it can deduce that n > f−1(i),
where we denote by f−1(i) the smallest j such that f(j) ≥ i.

Promise Problem
As an illustration, we first describe a simple promise problem
in LDr LD∗.

Promise problem: The instances are labelled graphs
(G, r), where G is an n-cycle and r ∈ N is a con-
stant input label. We promise that either n = r
or n = f(r).

We have a yes-instance if n = r and a no-instance
if n = f(r).

Note that r-cycles and f(r)-cycles cannot be told apart by an
Id-oblivious algorithm as they are locally indistinguishable
topology-wise when r is large. However, we can solve the
problem using identifiers: the f(r)-cycles can be rejected,
because there is a node with identifier at least f(r), which
is too large to be found in the r-cycle. (We can exploit
assumption (¬C) here if f is uncomputable.)

It is not much harder to design a promise-free example in
LDr LD∗—we do this next.

Promise-Free Problem
Define R(r) := f(2r+1 + 1). The key idea is that

• if the instance is a complete depth-r binary tree, all
identifiers are smaller than R(r),

• if the instance is a complete depth-R(r) binary tree,
there is an identifier at least R(r).

Intuitively, we can use identifiers to accept “small” instances
and reject “large” instances. The nontrivial part is to make
sure that we can also reject instances that are neither small
nor large.

A layered depth-k tree is a complete binary tree of depth
k where, in addition, nodes at each level are connected by a
path in the natural order; see Figure 1. Denote by Tr the
labelled graph consisting of a layered depth-R(r) tree. Each
node of Tr is labelled with (r, x, y), where the coordinates
(x, y) indicate the position of the node in the binary tree.

Write H ≤r Tr if a labelled graph H is an induced subgraph
of the labelled graph Tr, and the topology of H is a layered
depth-r tree. Call u ∈ V (H) a border node if u has a
neighbour in V (Tr)rV (H). We define H+ to be H together
with a new node (pivot node) that is adjacent to all the border
nodes of H; see Figure 1. We collect Hr := {H+ : H ≤r Tr}.
We are now ready to define

P :=
⋃
r≥0

Hr, P ′ := P ∪ {Tr : r ≥ 0}.

We will refer to labelled graphs in P as “small” instances and
graphs in P ′ r P as “large” instances. Of course instances of
P are only small in comparison with the parameter r that
is encoded in the labelling of the graph; we have arbitrarily
large graphs in both P and P ′.

We will next show that the construction satisfies the fol-
lowing properties:

• P ′ ∈ LD∗, that is, even if we do not have access to
unique identifiers, we can verify that the input is either
small or large. Hence we do not need to rely on a
promise—we can locally verify it.

• P ∈ LD, that is, we can reject large instances with the
help of identifiers,

• P /∈ LD∗, that is, we cannot distinguish between small
and large instances with Id-oblivious algorithms.

(P ′ ∈ LD∗): The overall structure of a layered depth-
R(r) tree is straightforward to verify locally with the help
of coordinates; we can also easily check that all nodes agree
on the value of r. We can verify that the coordinates satisfy
0 ≤ x < 2y and 0 ≤ y ≤ R(r), there is no parent iff y = 0,
there are no children iff y = R(r), etc.

160

Tr :

Hr :

Figure 1: Graph Tr is a layered tree of depth R(r) � r. Each graph H+ ∈ Hr is a layered tree of depth r,
augmented with a single pivot node (black). The nodes that are far from the boundary (highlighted) have
local neighbourhoods that are indistinguishable from the local neighbourhood of the same node in Tr.

The non-trivial part is the case of a pivot node. The crucial
property is that a pivot node sees all border nodes of a small
instance. Therefore a pivot node can verify that the size of
the border (as well as the coordinates of the border nodes)
agree with the definition of a small instance.

In essence, if we encounter a pivot node, we must have a
small instance: if we fix the structure near the border nodes,
and then complete it so that it is locally consistent with the
structure of a layered tree, we will arrive at a labelled graph
in P. On the other hand, if we never encounter a pivot node,
we must have a large instance.

(P /∈ LD∗): Suppose for contradiction that A∗ is a t-time
Id-oblivious algorithm that decides P. For a large enough
r � t, we have that each t-neighbourhood in Tr is already
found in one of the yes-instances in Hr. But because A∗

accepts all of Hr, it must also accept the no-instance Tr,
which is a contradiction.

(P ∈ LD): The only difficulty in locally deciding P is to
be able to reject Tr while accepting all graphs in Hr. But
there is a node in Tr with an identifier at least R(r), which
is too large to be found in the graphs Hr.

3. SEPARATION UNDER
COMPUTABILITY

In this section we assume that all local algorithms are
computable (C). We will exhibit a locally decidable property
P that cannot be decided by an Id-oblivious local algorithm.

Promise Problem
Again, to illustrate our approach, we first describe a simple
promise problem that separates LD∗ and LD.

Promise problem R: The instances are labelled
graphs (G,M) such that G is an n-cycle; the
constant input label M is a Turing machine; and
if M halts in exactly s steps (when started on a
blank tape) then we promise that n ≥ s.

We have a yes-instance if M runs forever and a
no-instance if M halts.

(R ∈ LD): The problem R is locally decidable using
identifiers. Indeed, a node with identifier i first simulates
M for i steps. Then, if M stops within this many steps, we
output no; otherwise we output yes. For correctness, note
that our promise implies that for every no-instance (G,M)
where M halts, there will be some node v with identifier at
least as large as M ’s run-time, and v will be able to reject
(G,M).

(R /∈ LD∗): On the other hand, it is easy to see that any
Id-oblivious algorithm for R has to solve the halting problem
without the additional knowledge of M ’s run-time, which is
an uncomputable task.

In this section, our goal is to construct a promise-free
version of this decision problem.

3.1 Overview
The computationally difficult part in our decision problem
P will be to determine whether a given Turing machine M
halts and outputs 0 (when started on a blank tape).

To make P easy for an algorithm using identifiers, we
will require that the instance G contains a grid-like locally
checkable execution table of M . This way—as in the promise
problem example—there will be some node v that has an
identifier larger than M ’s run-time. The node v can then
locally simulate M to discover its output.

To make P hard for an Id-oblivious algorithm, we need
to obfuscate the structure of G so that its local topology
does not reveal any useful information about the execution
of M . In particular, even if M halts, no local neighbourhood
of G should certify this fact. This way, an Id-oblivious
algorithm is left with trying to find out M ’s output without
any additional means. More formally, such an algorithm
would need to separate the languages

Li := {M : M outputs i}, i = 0, 1,

which is known to be impossible for a computable function:

Lemma 1 (e.g. [19, p. 65]). The languages L0 and L1

are computably inseparable, i.e., there is no computable set
R such that L0 ⊆ R and L1 ∩R = ∅.

161

Implementation
For a pair (M, r), where M halts and r ∈ N is a locality
parameter, we will construct a graph G(M, r) satisfying the
following properties.

(P1) The execution table of M is contained in G(M, r).

(P2) It is locally decidable (even in LD∗) whether an instance
is of the form G(M, r).

(P3) The r-neighbourhoods of G(M, r) reveal only com-
putable information about M . More formally, there is
an algorithm B that halts on all inputs (N, r), where
N is any Turing machine, and outputs a finite set of
r-neighbourhoods B(N, r) such that

N halts =⇒
B(N, r) = { r-neighbourhoods of G(N, r) }.

Note, especially, that B halts even if N does not!

Suppose for a moment that we have a construction satisfying
(P1–P3). We can now define

P := {G(M, r) : M outputs 0}.

Theorem 2. P ∈ LDr LD∗ under (C).

Proof. (P ∈ LD): Given (G, Id) as input, a node v ∈
V (G) computes in two stages. First, v performs its local test
according to (P2) to see if G = G(M, r) for some (M, r). If
this test fails, v outputs no. Otherwise v proceeds to the
second stage where v locally simulates M for Id(v) steps. If
the simulation finishes and M outputs something other than
0, then v outputs no; otherwise v outputs yes.

For correctness, we need only note that in case all nodes
pass the first stage, we have that G = G(M, r), and thus, by
(P1), there will be some node v with so large an identifier
that v will finish the simulation of M in the second stage
and discover M ’s true output.

(P /∈ LD∗): For the sake of contradiction, suppose that
an Id-oblivious algorithm A∗ with run-time t decides P. We
show how A∗ can be exploited to separate the languages L0

and L1.

Separation algorithm R: Given a Turing machine
N we first compute B(N, t). Then, we run A∗ on
all the t-neighbourhoods in B(N, t). We accept
N precisely if A∗ accepts all of B(N, t).

First, note that, by (P3), our algorithm R halts on every
input N . Moreover, suppose that N halts. Then R accepts
N iff A∗ accepts every t-neighbourhood of G(N, r) iff A∗

accepts G(N, r) iff G(N, r) ∈ P iff N outputs 0. But this
contradicts Lemma 1.

Indeed, it remains to give the details of a construction
satisfying (P1–P3).

3.2 Construction of G(M, r)
Let M be a Turing machine that halts. Each node in the

graph G = G(M, r) will have (M, r) as part of their input
labelling. The graph G will consist of two parts:

• the execution table T of M , and

• a certain fragment collection C.

See Figure 2.

Execution Table
Let s be the running time of M . The execution table T of
M will be represented, as per usual, as a labelled square grid
graph on nodes [s+ 1]× [s+ 1], where two nodes are adjacent
if their Euclidean distance is 1. We think of the edges of T
as being oriented from top to bottom and from left to right.
Such an orientation can be locally supplied by labelling (x, y)
with (x mod 3, y mod 3).

Labels for execution. The i-th row of T corresponds to the
configuration of M before the i-th step of the execution: the
nodes are labelled with tape cell contents, and the read-write
head of the machine is owned by exactly one node per row;
this node also records the state of the machine. The first
row contains just blank symbols, and the computation starts
with the head on the leftmost node, which we call the pivot
node.

The exact details of this labelling scheme are not important.
Any reasonable scheme will do. We only require that the size
of the labels is bounded by a computable function of M . For
example, we cannot allow the nodes on the i-th row to hold
the number i in their labels, since, intuitively, this would leak
information about M ’s run-time to an Id-oblivious algorithm.
(More precisely, this would mess up our construction of C
below.)

Local decidability. It is well known that valid executions of
a Turing machine can be checked locally—at least once we
somehow know that the instance is really a labelled square
grid and not, e.g., a torus-like graph that locally looks like a
grid. To make T locally checkable, we need to augment it
with some special structure; we take care of this technicality
in the appendix.

Fragment Collection
The purpose of the fragment collection C is to ensure property
(P3).

Intuition. If we had G = T , an Id-oblivious algorithm
could decide whether M outputs 0 simply by checking if
there was a local neighbourhood in G = T where M is in a
halting state with output 0.

To prevent this from happening, we add superfluous table
fragments to G. In fact, we will let G contain all syntactically
possible execution table fragments. This way, the answer to
the question “Does there exists a local neighbourhood in G
where M is in such-and-such a state” will always be yes. In
effect, when an Id-oblivious algorithm is exploring G locally,
it learns nothing about the execution of M that it could not
compute by itself.

Construction. Let F be a 3r × 3r grid graph. Consider
labelling F in all possible ways that satisfy the local consis-
tency rules of T . That is, we put no limitations on how the
boundary nodes are labelled, as long as

• the (mod 3)-labels give a consistent orientation, and

• every 2× 2 sub-table of F is consistent with the transi-
tion function of M .

We let C = C(M, r) consist of these labelled versions of F .
The important property here is that every r-neighbourhood

in T (including those near a boundary of T) is found already
in some labelled fragment in C.

Efficiency. The construction of C is purely syntactic: for
any machine N (that does not necessarily halt), we can
efficiently generate C(N, r) by a simple enumeration of all

162

Graph G(M, r) Execution table T

Fragment collection C

= head position,
machine state

= tape cells

start: empty tape

halt: final configuration

correct output

incorrect output

syntactically possible fragments

· · ·

Figure 2: Construction of graph G(M, r).

possible labellings, as our labelling scheme uses bounded
labels. We record this observation.

Lemma 2. There is an algorithm that on input (N, r) out-
puts the finite collection C(N, r).

Putting G Together
To construct G we glue together T and the fragments C.
Details follow.

Natural borders. Consider the leftmost column of nodes
C in a labelled fragment F ∈ C. We call C a natural border
if C could, in principle, appear on the leftmost column of
an execution table of M , i.e., if the machine head never
moves to, or appears from, the left of C. We say that the
rightmost column is natural under analogous circumstances.
The bottom row is natural if it does not contain the machine
head in a non-halting state. The top row is never natural.

Here is a technical point: we need the non-natural borders
to always form a connected subgraph of F . The only situation

where this is currently violated is when precisely the top and
bottom rows of F are non-natural, but this is easily fixed by
replacing F with two of its variants where the left and right
borders are interpreted non-natural in turn. We now gain
the following property, which becomes useful when proving
that G is locally decidable.

Border property: Given a subgraph induced on
the non-natural borders of a fragment F ∈ C, the
local transition rules of M reconstruct F uniquely.

Construction. The graph G consists of (i) the table T ,
(ii) the fragments C, and also (iii) new edges that connect
each node of a non-natural border in C to the pivot node
of T .

This completes the description of G. We leave the straight-
forward but tedious details of checking that G is locally
decidable to the appendix.

Efficiency. Finally, for the purposes of (P3), we note that
our construction of G(M, r) is highly explicit in the sense

163

that the set of r-neighbourhoods of G(M, r) can be computed
even without the knowledge of M halting.

Neighbourhood generator B: On input (N, r),
where N does not necessarily halt, we first com-
pute C = C(N, r) using Lemma 2. Then, we begin
constructing the (possibly infinite) computation
table T of N for some 4r rows, each of width 4r;
call the resulting table fragment T4r ⊆ T . We
then glue C to the pivot of T4r as described above
to obtain a graph G4r. Finally, we output the set
of r-neighbourhoods in G4r that do not contain
nodes from the bottom row of T4r.

The correctness of B follows from the observation that, if
N halts, every r-neighbourhood in G(N, r) is already found
in G4r. This establishes property (P3) and completes our
proof.

3.3 Randomisation Helps an Id-Oblivious
Algorithm

To conclude this section, we point to another application
of our property P, this time in the setting of randomised
local decision. Namely, we observe that P can be decided by
an Id-oblivious algorithm if and only if we allow randomness.

A randomised local algorithm has access to an unbounded
string of random bits. For p, q ∈ (0, 1], we say that a ran-
domised local algorithm A is a (p, q)-decider for P if the
following holds for any input (G,x, Id):

• if (G,x) ∈ P, then A(G,x, Id, v) = yes for all v ∈ V (G)
with probability at least p,

• if (G,x) /∈ P, then A(G,x, Id, v) = no for at least one
v ∈ V (G) with probability at least q.

The power of randomness is still lacking a full characterisation
in the context of local decision [3, 4].

Randomised Id-oblivious Decider for P
Even though an Id-oblivious algorithm cannot use random-
ness to generate a fresh set of globally unique identifiers
without any knowledge of n, we can still generate a few large
numbers with high probability. This suffices for deciding P
without identifiers, since, in addition to (P2), we only need
some node v to obtain a number nv ≥ n so that v can finish
simulating M in nv steps.

To this end, we let a node v toss a coin repeatedly until
a head occurs, say after `v tosses. We set nv := 4`v . The
probability that no node has nv ≥ n is then

Pr[∀v : nv < n] ≤ (1− 1/
√
n)n = o(1).

That is, with probability at least 1− o(1) we can reject an
instance G(M, r) where M halts with output other than 0.
Hence, we obtain an Id-oblivious (1, 1− o(1))-decider for P.

This proves Corollary 1.

4. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful feed-

back. This work was supported in part by the ANR project
DISPLEXITY, and the INRIA project GANG, the Academy
of Finland, Grants 132380 and 252018, and by the Research
Funds of the University of Helsinki.

5. REFERENCES
[1] A. Das Sarma, S. Holzer, L. Kor, A. Korman,

D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM Journal on
Computing, 41(5):1235–1265, 2012.

[2] P. Fraigniaud, M. M. Halldorsson, and A. Korman. On
the impact of identifiers on local decision. In Proc. 16th
Conference on Principles of Distributed Systems
(OPODIS 2012), volume 7702 of LNCS, pages 224–238,
Berlin, 2012. Springer.

[3] P. Fraigniaud, A. Korman, M. Parter, and D. Peleg.
Randomized distributed decision. In Proc. 26th
Symposium on Distributed Computing (DISC 2012),
volume 7611 of LNCS, pages 371–385, Berlin, 2012.
Springer.

[4] P. Fraigniaud, A. Korman, and D. Peleg. Local
distributed decision. In Proc. 52nd Symposium on
Foundations of Computer Science (FOCS 2011), Los
Alamitos, 2011. IEEE Computer Society Press.

[5] P. Fraigniaud and A. Pelc. Decidability classes for
mobile agents computing. In Proc. 10th Latin American
Symposium on Theoretical Informatics (LATIN 2012),
volume 7256 of LNCS, pages 362–374, Berlin, 2012.
Springer.

[6] P. Fraigniaud, S. Rajsbaum, and C. Travers. Locality
and checkability in wait-free computing. In Proc. 25th
Symposium on Distributed Computing (DISC 2011),
volume 6950 of LNCS, pages 333–347, Berlin, 2011.
Springer.

[7] P. Fraigniaud, S. Rajsbaum, and C. Travers. Universal
distributed checkers and orientation-detection tasks.
Submitted, 2012.

[8] M. Göös, J. Hirvonen, and J. Suomela. Lower bounds
for local approximation. In Proc. 31st Symposium on
Principles of Distributed Computing (PODC 2012),
pages 175–184, New York, 2012. ACM Press.

[9] M. Göös and J. Suomela. Locally checkable proofs. In
Proc. 30th Symposium on Principles of Distributed
Computing (PODC 2011), pages 159–168, New York,
2011. ACM Press.

[10] H. Hasemann, J. Hirvonen, J. Rybicki, and J. Suomela.
Deterministic local algorithms, unique identifiers, and
fractional graph colouring. In Proc. 19th Colloquium on
Structural Information and Communication Complexity
(SIROCCO 2012), volume 7355 of LNCS, pages 48–60,
Berlin, 2012. Springer.

[11] L. Kor, A. Korman, and D. Peleg. Tight bounds for
distributed MST verification. In Proc. 28th Symposium
on Theoretical Aspects of Computer Science (STACS
2011), volume 9 of LIPIcs, pages 69–80, Dagstuhl, 2011.
Schloss Dagstuhl.

[12] A. Korman and S. Kutten. Distributed verification of
minimum spanning trees. Distributed Computing,
20(4):253–266, 2007.

[13] A. Korman, S. Kutten, and T. Masuzawa. Fast and
compact self stabilizing verification, computation, and
fault detection of an MST. In Proc. 30th Symposium on
Principles of Distributed Computing (PODC 2011),
pages 311–320, New York, 2011. ACM Press.

[14] A. Korman, S. Kutten, and D. Peleg. Proof labeling
schemes. Distributed Computing, 22(4):215–233, 2010.

164

[15] A. Korman, J.-S. Sereni, and L. Viennot. Toward more
localized local algorithms: removing assumptions
concerning global knowledge. In Proc. 30th Symposium
on Principles of Distributed Computing (PODC 2011),
pages 49–58, New York, 2011. ACM Press.

[16] N. Linial. Locality in distributed graph algorithms.
SIAM Journal on Computing, 21(1):193–201, 1992.

[17] A. Mayer, M. Naor, and L. Stockmeyer. Local
computations on static and dynamic graphs. In Proc.
3rd Israel Symposium on the Theory of Computing and
Systems (ISTCS 1995), pages 268–278, Piscataway,
1995. IEEE.

[18] M. Naor and L. Stockmeyer. What can be computed
locally? SIAM Journal on Computing, 24(6):1259–1277,
1995.

[19] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley Publishing Company, 1994.

[20] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. SIAM Monographs on Discrete Mathematics
and Applications. SIAM, Philadelphia, 2000.

APPENDIX
In this appendix we present the details that were skipped in
Section 3.2.

Pyramidal Execution Table
We describe how to augment the execution table T of M so
that it becomes locally checkable. For clarity of exposition,
we assume that s + 1 is a power of 2, say s + 1 = 2h for
some h—this assumption is easy to remove by modifying the
following constructions slightly.

Denote the node set of T by [2h] × [2h] × {0}. We use
an idea from Section 2: we attach a pyramid-shaped layered
quadtree on top of T . That is, let TM be the graph that
is arranged in layers z = 0, 1, . . . , h such that T makes up
the 0-th level; the z-th level contains a square grid on nodes
[2h−z]×[2h−z]×{z}; and each node (x, y, z) on level z ≤ h−1
is connected to (dx/2e, dy/2e, z+1) on level z+1; see Figure 3.
The new nodes V (TM) r V (T) do not receive labels, except,
of course, the universal label (M, r).

Pyramidal Fragments
Since our construction is now going to use the pyramidal
TM instead of T , we need to adjust our definition of the

T� :T :

Figure 3: Table T and pyramid TM.

table fragments C accordingly. Analogously, we consider the
pyramidal versions the fragments in C:

CM := {FM : F ∈ C}.

However, since attaching a pyramid on top of a fragment
decreases shortest-path distances between nodes, we need to
use larger fragments than in Section 3.2. To fool an r-time
algorithm, it is sufficient that the pyramids FM have height 3r
(i.e., grid-size is 23r × 23r). This way we recover the critical
property: each r-neighbourhood that could syntactically
arise in TM can already be found in CM.

The graph G(M, r) is then defined similarly as in Sec-
tion 3.2: we glue the fragments CM to the pivot of TM by
their non-natural borders.

Note also that in verifying the property (P3) we now need
the neighbourhood generator B to first construct a sub-table
TR ⊆ T containing some R = 24r initial rows and columns,
and then glue CM and TM

R together.

G(M, r) Is Locally Decidable
Suppose we are given an instance G; we argue how to locally
decide (even in LD∗) whether G = G(M, r) for some (M, r).

1. All nodes first make sure they are given the same pair
(M, r) as part of their local input.

2. Each node in G should then belong to a layered quadtree.
By design, the structure of a quadtree is such that the
nodes can locally tell apart adjacent layers and recognise
the inter-layer edges. In particular, each pyramid has a
unique top node, which fixes its global structure.

If the general quadtree structure is consistent, we can
ignore all but the bottommost layer of each pyramid,
and be convinced that G consists of square grids that
are connected together by some inter-grid edges.

3. The labelling inside each grid should follow the local
execution rules of M . Also, we should have a consistent
orientation on each grid.

4. The border nodes of a grid can collectively verify that
the grid is either fragment-like (all nodes in the topmost
row are incident to inter-grid edges) or a full execution
table (the top-left node is the only node incident to
inter-grid edges).

5. All top-left grid corners should see at least one pivot
candidate v that is part of a full execution table. But
we can impose that any such v is globally unique:

• First, v’s own execution table, call it T , cannot
have any other nodes with outgoing inter-grid edges
assuming that all nodes in T pass steps 3 and 4.

• Second, consider the grids C that adjoin v. Node v
can check that each grid in C has fragment-like non-
natural borders. In particular, we can check that
the non-natural borders form a connected subgraph
in each grid—if the bottom row of a grid is non-
natural, it is sufficient to verify that one of the side
borders is also non-natural. But then, exploiting
the Border property from Section 3.2, v can figure
out the exact structure of C provided the nodes in
C have passed step 3. It follows that there are no
inter-grid edges unseen by v.

This establishes the uniqueness of v.

6. Finally, v can check that C = C(M, r) using Lemma 2.

165

	Introduction
	Our Results
	Local Decision in the LOCAL Model
	Related Work

	Separation Under Bounded Identifiers
	Separation Under Computability
	Overview
	Construction of G(M,r)
	Randomisation Helps an Id-Oblivious Algorithm

	Acknowledgements
	References

