
On the Complexity of Universal Leader Election

Shay Kutten
∗

Faculty of IE&M,
Technion, Haifa 32000.
kutten@ie.technion.ac.il

Gopal Pandurangan
† ‡

Div. of Mathematical Sciences,
Nanyang Technological Univ.,

Singapore 637371.
gopalpandurangan@gmail.com

David Peleg
§

Dept. of Computer Science,
The Weizmann Institute,

Rehovot, Israel.
david.peleg@weizmann.ac.il

Peter Robinson
¶

Div. of Mathematical Sciences,
Nanyang Technological Univ.,

Singapore 637371.
peter.robinson@ntu.edu.sg

Amitabh Trehan*
Faculty of IE&M,

Technion, Haifa 32000.
amitabh.trehaan@gmail.com

ABSTRACT
Electing a leader is a fundamental task in distributed com-
puting. In its implicit version, only the leader must know
who is the elected leader. This paper focuses on studying the
message and time complexity of randomized implicit leader
election in synchronous distributed networks. Surprisingly,
the most “obvious” complexity bounds have not been proven
for randomized algorithms. The “obvious” lower bounds of
Ω(m) messages (m is the number of edges in the network)
and Ω(D) time (D is the network diameter) are non-trivial
to show for randomized (Monte Carlo) algorithms. (Recent
results that show that even Ω(n) (n is the number of nodes
in the network) is not a lower bound on the messages in
complete networks, make the above bounds somewhat less
obvious). To the best of our knowledge, these basic lower

∗Research supported in part by the Israel Science Founda-
tion and by the Technion TASP center.
†Research supported in part by the following grants:
Nanyang Technological University grant M58110000, Sin-
gapore Ministry of Education (MOE) Academic Research
Fund (AcRF) Tier 2 grant MOE2010-T2-2-082, MOE AcRF
Tier 1 grant MOE2012-T1-001-094, and a grant from the
US-Israel Binational Science Foundation (BSF).
‡Also affiliated with the Department of Computer Science,
Brown University, Box 1910, Providence, RI 02912, USA.
§Supported in part by the Israel Science Foundation (grant
894/09), the United States-Israel Binational Science Foun-
dation (grant 2008348), the Israel Ministry of Science and
Technology (infrastructures grant), and the Citi Foundation.
¶Research supported in part by the following grants:
Nanyang Technological University grant M58110000, Sin-
gapore Ministry of Education (MOE) Academic Research
Fund (AcRF) Tier 2 grant MOE2010-T2-2-082.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

bounds have not been established even for deterministic al-
gorithms (except for the limited case of comparison algo-
rithms, where it was also required that some nodes may not
wake up spontaneously, and that D and n were not known).

We establish these fundamental lower bounds in this pa-
per for the general case, even for randomized Monte Carlo
algorithms. Our lower bounds are universal in the sense
that they hold for all universal algorithms (such algorithms
should work for all graphs), apply to every D, m, and n,
and hold even if D, m, and n are known, all the nodes wake
up simultaneously, and the algorithms can make any use of
node’s identities. To show that these bounds are tight, we
present an O(m) messages algorithm. An O(D) time al-
gorithm is known. A slight adaptation of our lower bound
technique gives rise to an Ω(m) message lower bound for
randomized broadcast algorithms.

An interesting fundamental problem is whether both upper
bounds (messages and time) can be reached simultaneously
in the randomized setting for all graphs. (The answer is
known to be negative in the deterministic setting). We an-
swer this problem partially by presenting a randomized algo-
rithm that matches both complexities in some cases. This
already separates (for some cases) randomized algorithms
from deterministic ones. As first steps towards the general
case, we present several universal leader election algorithms
with bounds that trade-off messages versus time. We view
our results as a step towards understanding the complexity
of universal leader election in distributed networks.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: [Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems]

Keywords
Leader election; lower bound; distributed algorithm.

1. INTRODUCTION
Leader election is a fundamental and classical problem in

distributed computing. Due to shortage of space, we rely
on the reader’s familiarity with its long history and many
theoretical implications. Previous work is too rich to survey

100

here, see, e.g., [3, 14, 19, 20]. Still, let us stress that this
long-studied task is relevant today more than ever, with its
practical applications to the emerging area of large scale
and resource-constrained networks such as peer-to-peer net-
works (e.g., that of Akamai [16]), ad hoc and sensor networks
(e.g., [9, 21]). For example, minimizing messages and time
for basic tasks such as leader election can help in minimizing
energy consumption in ad hoc and sensor networks. Hence,
it is desirable to achieve fast, low cost and scalable leader
election. This is one of the reasons why this paper con-
centrates on randomized algorithms, that have been shown
to reduce complexity dramatically in various contexts. (In
fact, it was recently shown that the randomized message
complexity of leader election in complete graphs is sublin-
ear, O(

√
n log3/2 n)[12].) Interestingly, although the leader

election task is so well studied, some basic theoretical ques-
tions concerning its complexity have not been answered yet,
especially (but not only) for the randomized case.

Informally, the leader election task requires a group of
processors in a distributed network to elect a unique leader
among themselves, i.e., exactly one processor must output
the decision that it is the leader, say, by changing a spe-
cial status component of its state to the value leader, with
all the other nodes changing their status component to the
value non-leader. These nodes need not be aware of the iden-
tity of the leader. This implicit version of leader election is
rather standard (cf. [14]), and is sufficient in many appli-
cations, e.g., its original application for token generation in
a token ring environment [13]. (In the explicit variant, ev-
ery node must also know the identity of the unique leader.)
This paper focuses on implicit leader election, although our
algorithms apply to the explicit version as well.

The study of leader election algorithms is usually con-
cerned with both message and time complexity. Both may
appear to be very well understood. For example, Awerbuch
[4] presented a deterministic algorithm (that takes O(n)
rounds and uses O(m+n logn) messages) that was claimed
to be optimal both in terms of time complexity and in terms
of message complexity. As demonstrated in [17], the time
in Awerbuch’s algorithm may be optimal only existentially,
that is, only in the case that n = O(D), where n is the num-
ber of nodes, and D the diameter of the graph. Moreover,
these claims of optimality rely on the tacit assumption that
D and m (the number of edges) are lower bounds on the
time and the number of messages required for leader elec-
tion, respectively. Surprisingly, even for deterministic algo-
rithms, the only proof we are aware of for a lower bound
of Ω(m) on the message complexity of leader election is for
the rather limited case where (a) the algorithms are only
comparison algorithms (that may not manipulate the actual
value of node’s identities, but only compare identities with
each other), (b) spontaneous wakeup of the nodes is not
guaranteed, and (c) network parameters (such as n) are not
known to the nodes. This limited case admits a very short
and elegant proof, cf. [20]. Unfortunately, that proof fails
completely if one of the assumptions is removed1. (As a by

1Interestingly, even in the explicit deterministic variant, an
“obvious” lower bound of Ω(m) messages was not known.
Indeed, the explicit version seems to require a broadcast of
the leader’s name. Still, the known lower bound of Ω(m) on
deterministic broadcast was shown only for the case where
the nodes do not wake up simultaneously [5]. Hence in the
general case, it was not known that conveying the leader’s

product of our results for randomized algorithms, we get rid
of all these special assumptions for deterministic algorithms
too.) For the time complexity of leader election, the situa-
tion is even less stable, and the lower bound of D seems to
be folklore, cf. [5, 20].)

Let us assume for a moment that the above lower bounds
were indeed “obvious” (though not formally proven for the
general case) for deterministic algorithms. Are they indeed
that obvious for randomized ones? The work of [12] demon-
strated that, for randomized algorithms, the “obvious” lower
bound of Ω(n) messages for a complete graph (as well as
other classes of graphs with sufficiently small mixing times
such as expanders and hypercubes) does not hold. Specifi-
cally, it presented an algorithm that executes in O(1) time

and uses only O(
√
n log3/2 n) messages to elect a leader in

a complete graph (and similarly for other families of high-
expansion graphs). Consequently, it would appear that the
obvious lower bounds on time and messages must be revis-
ited, especially for randomized algorithms.

This paper concerns universal leader election algorithms,
namely, algorithms that work for all graphs. The uncon-
ditional randomized lower bounds of Ω(m) messages and
Ω(D) time shown in this paper (cf. Table 1) subsume the
above deterministic bounds in a general way. These bounds
apply to a large class of graphs for (essentially) every given
m,D, and n. They hold even for non-comparison algorithms
and even if nodes have knowledge of these parameters. They
also hold for synchronous networks, and even if all the nodes
wake up simultaneously. Finally, they hold not only for the
CONGEST model [18] (where sending a message of O(logn)
bits takes one unit of time) but also for the LOCAL model
(where the number of bits in a message is allowed to be
arbitrary).

We note that the universal lower bounds of Ω(m) and
Ω(D) do not follow from currently known results. There are
several known lower bounds for deterministic leader election
algorithms in cycles (e.g., [7]) and complete graphs (e.g., [11,
2]), which also imply bounds for (deterministic) universal al-
gorithms. These results alone do not, however, imply that
a universal algorithm cannot do significantly better in other
classes of networks. For example, the deterministic lower
bound of Ω(n logn) messages in ring graphs (cf. [7, 20])
does not imply a lower bound of Ω(m) messages (even for
deterministic algorithms) in general graphs. Moreover, it
does not even imply the necessity of Ω(n logn) messages for
every graph, since there exist graphs with n nodes where the
number of messages required is smaller (e.g., a star graph).
It may even be possible to design a universal election algo-
rithm that will use only O(n) messages when executed on a
star graph.

Compared to deterministic algorithms, lower bounds (and
their proofs) for randomized algorithms, particularly Monte
Carlo ones, are more delicate. For example, consider the
following simple algorithm (which assumes the nodes know
n): “Each node elects itself as leader with probability 1/n.”
The probability of this algorithm resulting in exactly one
leader is

(
n
1

)
1
n

(1 − 1/n)n−1 ≈ 1/e ≈ 0.368. Hence there
exists a randomized algorithm that elects a leader in one

identity to every node consumes Ω(m) messages. As opposed
to the number of edges, still for the explicit variant, Ω(n)
(the number of nodes) and Ω(D) do seem to be known lower
bounds on the messages and time. Nevertheless, Ω(D) time
is not obvious for the implicit variant studied here.

101

time unit, without sending any messages, and succeeds with
constant (albeit small) probability! In contrast, as proved
later in the paper, if the success probability is required to
be a somewhat larger constant, then the time lower bound
becomes Ω(D) and the message lower bound becomes Ω(m).

To the best of our knowledge, previous work on time com-
plexity bounds for leader election in general networks is
scarce. In a recent work[8], the authors study determin-
istic algorithms for variants of leader election in anonymous
networks called weak (resp., strong) leader election, which
require the algorithm to elect a leader in the given network
if possible. It is shown in [8] that D + λ is a lower bound
in this setting, where λ is a symmetry parameter, which is
the smallest depth at which the views of the nodes become
distinguishable.

Over two decades ago, the following basic open problem
was raised in [17]: Is it possible to design a universal al-
gorithm for leader election that is simultaneously both time
and message optimal? In view of the lower bounds in this
paper, this question can be reformulated as follows: Is there
an O(D) time and O(m) messages universal leader election
algorithm? The answer is negative if we restrict ourselves
to deterministic algorithms, since it is known that for a cy-
cle any O(n) time deterministic algorithm requires at least
Ω(n logn) messages (even when nodes know n) [7]. How-
ever, the problem still stands for randomized algorithms.
We provide a partial answer for this problem by presenting
a randomized algorithm that matches both complexities for
m > n1+ε (for any fixed constant ε > 0), assuming n is
known. This already separates randomized algorithms from
deterministic ones. Another such case (for every m) when
both lower bounds can be matched is when n and D are
known. As first steps for the more general case, we present
several universal leader election algorithms with bounds that
trade-off messages versus time. In particular, to also show
that our lower bounds are tight, we present a simple deter-
ministic algorithm that uses O(m) messages. An O(D) time
algorithm is already known [17].

1.1 Our Results
This paper presents lower and upper bounds for univer-

sal leader election algorithms in synchronous arbitrary net-
works. Our results on leader election are summarized in
Table 1. The formal statements of our algorithms and their
full proofs are in the full paper. The tight bounds are the
lower ones – Theorem 3.13 and Theorem 3.1, as demon-
strated by Theorem 4.1 (and [17]). Corollary 3.12 shows
that a slight adaptation of our lower bound technique im-
plies an Ω(m) message lower bound for solving the broadcast
problem. Note that Theorem 4.3.(B) presents a case where
one can match both lower bounds simultaneously with a con-
stant (though close to 1) probability. Corollary 4.4 shows a
case where both bounds can be matched with high success
probability2 (but with a constraint on m). Corollary 4.5
demonstrates a case with probability 1, but with an extra
assumption (knowledge of D). The other results in the table
may be of interest by themselves. They were obtained on
the way to reaching the above results, or in trying to get
close to a tight upper bound for the general case.

2Throughout, “with high probability (w.h.p.)” means with
probability at least 1− 1/n.

2. PRELIMINARIES
We consider a system of n nodes, represented as an undi-

rected connected (not necessarily complete) graphG = (V,E).
Each node u runs an instance of a distributed algorithm
and has a unique identifier IDu of O(logn) bits chosen by
an adversary from an arbitrary set of integers Z of size n4

(the nodes themselves may not have knowledge of n, nor of
Z). The lower bounds hold even when nodes have unique
identities (IDs). However, for some of the algorithms, we
do not assume that the nodes have unique identities (IDs).
Hence, the randomized algorithms in this paper also work
for anonymous networks. To make the lower bounds more
general, we assume that all nodes wake up simultaneously
at the beginning of the execution.

The computation advances in synchronous rounds, where
in every round, nodes can send messages, receive messages
that were sent in the same round by neighbors in G, and
perform some local computation. Our algorithms work in
the CONGEST model [18], where in each round a node can
send at most one message of size O(logn) bits on a sin-
gle edge. In contrast, our lower bounds apply even in the
LOCAL model [18], where there is no restriction on message
size.

For randomized (Las Vegas and Monte Carlo) algorithms,
we also assume that every node has access to the outcome of
unbiased private coin flips. Messages are the only means of
communication; in particular, nodes cannot access the coin
flips of other nodes, and do not share any memory. The
classical leader election literature distinguishes between the
simultaneous wakeup model where all nodes are awake ini-
tially and start executing the algorithm simultaneously, and
the adversarial wakeup model where the nodes are awoken
at arbitrary points in time, with the restriction that nodes
wake upon receiving a message and at least one node is ini-
tially awake. Our lower bounds hold even if the nodes are
initially awake. In contrast, the analysis of some of the al-
gorithms holds even for the case of adversarial wakeup.

Initially, each node is given a port numbering where each
port is connected to an incident edge leading to a neighbor.
However, the node has no knowledge of the neighbor at the
other endpoint of edge. Recall that our lower bounds hold
even if the nodes know some of the graph parameters, such
as n, D, and m. Some of our algorithms work without this
assumption. However, other algorithms rely on the assump-
tion that the nodes know one or more of these parameters
(cf. Table 1).

2.1 Leader Election (LE)
We now define the leader election problem formally. Every

node u has a special variable statusu that can be set to a
value in {⊥,non-elected, elected}; initially statusu =
⊥. An algorithm A solves leader election in T rounds if,
from round T on, exactly one node has its status set to
elected while all other nodes are in state non-elected.

We say that A is a universal leader election algorithm,
with error probability ε, if for any choice of n and m, the
probability that A succeeds is at least 1− ε on any network
of n nodes and m edges, and any ID assignment chosen
from any integer set of large polynomial (in n) size; for our
lower bounds we assume that |Z| > n4. In particular, if
A is a deterministic algorithm or a randomized Las Vegas
algorithm, then A is universal if and only if it achieves leader
election on every network under all ID assignments.

102

Time Messages Knowledge Success Probability

Lower Bounds:
Theorem 3.13 – Ω(m)† n,m,D > 53/56
Theorem 3.1 Ω(D)∗ – n,m,D > 15/16 + ε ††

Randomized Algorithms:

Theorem 4.3 O(D) O(mmin(log f(n), D))†, # n > 1− 1/eΘ(f(n))

Theorem 4.3.(A) O(D) O(mmin(log log n,D))† n > 1− n−1

Theorem 4.3.(B) O(D) O(m)† n > 1− ε ††
Corollary 4.4 O(D) O(m)†, if m > n1+ε †† n > 1− n−1

Corollary 4.2 O(D) O(mmin(logn,D))$ – > 1− n−1

Corollary 4.5 O(D)† O(m)† n, D 1

Theorem 4.6 O(D logn)$ O(m+ n logn)$ n > 1− n−1

Deterministic Algorithms:
Theorem 4.7 O(D logn) O(m logn) –
Theorem 4.1 arbitrary O(m) –
$ with high probability. † in expectation. ∗ with constant probability. # for any f(n) ∈ Ω(1). †† for any fixed

constant ε > 0.

Table 1: Upper and lower bounds for universal leader election algorithms.

3. RANDOMIZED LOWER BOUNDS
As mentioned earlier, to the best of our knowledge, lower

bounds for randomized (especially Monte Carlo) algorithms
have not been studied. Here we present two basic lower
bounds that apply to randomized algorithms, including Monte
Carlo algorithms with (suitably large) constant success prob-
ability: an Ω(m) bound on the number of messages and an
Ω(D) bound on the time. Our message lower bound applies
to any m and n, i.e., we show that given any n and m, there
exists a graph with Θ(n) nodes and Θ(m) edges, where the
lower bound holds. Our time lower bound states that for
every n and D (2 < D < n), there exists a graph with
Θ(n) nodes and Θ(D) diameter for which the time needed
is Ω(D), even with constant success probability. Also, these
lower bounds hold even if the nodes have knowledge of the
global parameters n, D and m. Our lower bounds apply
to all algorithms (and not just comparison-based ones) and
hold even if the all nodes wake up simultaneously.

Our message lower bound is proved by first showing a
lower bound for a related problem referred to as “bridge
crossing (BC)”. In the bridge crossing problem, it is re-
quired that at least one message is sent across a “bridge”
edge connecting two specific subgraphs. We then show con-
ditions under which any universal leader election algorithm
must solve BC. We first show a lower bound of the expected
message complexity of deterministic algorithms for BC and
LE, and then use Yao’s lemma (cf. Lemma 3.2) to show
that it applies also to the expected message complexity of
randomized algorithms on the worst-case input. The proof
involves constructing a suitable graph that ensures that a
knowledge of n, m, D, and identity assignment will be use-
less to any algorithm; it also involves a counting argument
to lower bound the number of messages sent.

Our Ω(D) time lower bound is proven directly for Monte
Carlo algorithms by a probabilistic argument. We show that
for a suitably constructed graph of a given size and diameter,
any Monte Carlo algorithm that needs to succeed with a
suitably large constant probability must communicate over
a distance of Ω(D) edges. Otherwise, there might not be a
unique leader.

3.1 Message Complexity Lower Bound
Theorem 3.1. Let R be a universal leader election al-

gorithm that succeeds with probability at least 1 − β, for
some constant β 6 3/56. For every sufficiently large n and
n 6 m 6

(
n
2

)
, there exists a (connected) graph G of n nodes

and Θ(m) edges, such that the expected number of messages
used by R on G is Ω(m). The above holds even if n, m
and D are known to the algorithm and all nodes wake up
simultaneously.

For simplicity, we first describe the proof assuming the
nodes do not know the diameter D. At the end of the proof,
we explain why this proof fails for weaker algorithms, which
are guaranteed to work correctly only when the nodes know
D, and then outline the modifications necessary to allow the
proof to handle this harder case as well.

The proof is based on constructing a graph family referred
to as dumbbell graphs. Given R, n and m, pick one spe-
cific 2-connected graph G0 of n nodes and m edges, and
a range Z = [1, n4] of ID’s. This G0 has many instan-
tiations, obtained by fixing the node ID assignment and
the port number mapping. An ID assignment is a function
ϕ : V (G0) 7→ Z. A port mapping for node v is a mapping
Pv : [1, degv] 7→ Γ(v) (namely, v’s neighbors). A port map-
ping for the graph G0 is P = 〈Pv1 , . . . , Pvn〉. Every choice
of ϕ and P yields a concrete graph Gϕ,P . Denote the set of
id’s of this graph by ID(Gϕ,P) = {ϕ(v) | v ∈ V (G0)}. Let G
be the collection of concrete graphs Gϕ,P obtained from G0.
For a graph G ∈ G, and an edge e of G0, the “open graph”
G[e] is obtained by erasing e and leaving the two ports that
were attached to it empty. Let Gopen be the collection of
open graphs obtained from G0.

For two open graphs G′[e′] and G′′[e′′] with disjoint sets of
ID’s, ID(G′[e′])∩ID(G′′[e′′]) = ∅, letDumbbell(G′[e′], G′′[e′′])
be the graph obtained by taking one copy of each of these
graphs, and connecting their open ports. Hence a dumbbell
graph is composed of two open graphs plus two connecting
edges, referred to as bridges. Moreover, we say that G′[e′]
participates on the left and G′′[e′′] participates on the right
in Dumbbell(G′[e′], G′′[e′′]). (Strictly speaking, there could
be two such graphs, but let us consider only one of them.

103

For concreteness, if e′ = (v′, w′) and e′′ = (v′′, w′′) where
ID(v′) < ID(w′) and ID(v′′) < ID(w′′), then the graph
Dumbbell(G′[e′], G′′[e′′]) contains the bridge edges (v′, v′′)
and (w′, w′′). Create a collection I of inputs for our prob-
lem consisting of all the dumbbell graphs

I = {Dumbbell(G′[e′], G′′[e′′]) | G′[e′], G′′[e′′] ∈ Gopen,
ID(G′[e′]) ∩ ID(G′′[e′′]) = ∅}.

Partition the collection of inputs I into classes as follows: for
every two graphs G′, G′′ ∈ G, define the class C(G′, G′′) =
{Dumbbell(G′[e′], G′′[e′′]) | e′, e′′ ∈ E(G0)}, consisting of
the m2 dumbbell graphs constructed from G′ and G′′. Fi-
nally, create a uniform distribution Ψ on I.

We now give a high level overview of the main ideas of
the proof of Theorem 3.1.First, we would like to prove that
every deterministic algorithm D that achieves LE on ev-
ery graph in collection I, has expected message complexity
Ω(m) on Ψ. Yao’s minimax principle (cf. Lemma 3.2) then
implies that the randomized algorithm R has expected mes-
sage complexity Ω(m) on some graph G∗ of I. Since every
graph in the collection I has 2m edges, this implies a lower
bound of Ω(m) for R.

To prove this, we define an intermediate problem on the
input collection I, called bridge crossing (BC). An algorithm
for this problem is required to send a message on one of
the two bridge edges connecting the two open graphs (from
either direction). More precisely, any algorithm solving BC
is allowed to start simultaneously at all nodes, and succeeds
if during its execution, a message has crossed one of the two
connecting bridge edges. (Note that in our model, the nodes
are unaware of their neighbors’ identities, and in particular,
the four nodes incident to the two bridge edges are unaware
of this fact.)

Lemma 3.2 (Minimax Principle, Prop. 2.6 in [15]).
Consider a finite collection of inputs I and a distribution Ψ
on it. Let X be the minimum expected cost of any determin-
istic algorithm that succeeds on at least a 1− 2β fraction of
the graphs in the collection I, for some positive constant β.
Then X/2 lower bounds the expected cost of any randomized
algorithm R on the worst-case graph of I that succeeds with
probability at least 1− β.

Basic counting yields the following:

Fact 3.3. Let the node degrees in G0 be d1, . . . , dn, where
di = deg(vi, G0) for 1 6 i 6 n.
(a) The number of different possible port assignments is

K =
∏n
i=1 di!.

(b) The number of different possible ID assignments is
(
n4

n

)
.

(c) The number of graphs in the collection G is g = K ·
(
n4

n

)
.

(d) The number of graphs in the collection Gopen is gopen =
g ·m.

(e) The number of graphs in each class C(G′, G′′) is m2.
(f) For every graph G′ ∈ G, the number of graphs G′′ ∈ G

ID disjoint from G′ is g̃ = K ·
(
n4−n
n

)
.

(g) The number of classes C(G′, G′′) in the input collection

I is h̃ = g · g̃.
(h) The number of dumbbell graphs in the input collection

I is d̃ = h̃ ·m2.

Also, straightforward calculations yield the following.

Lemma 3.4. g̃ > (1− 1/n)g.

Lemma 3.5. For every deterministic algorithm A and for
every two disjoint graphs G′, G′′ ∈ G, if A achieves BC on
at least εm2 graphs in the class C(G′, G′′), for constant 0 <
ε 6 1, then the expected message complexity of A on inputs
taken from C(G′, G′′) with a uniform distribution is ε2m/8 =
Ω(m).

Proof. Consider two disjoint graphs G′, G′′ ∈ G and an
algorithm A satisfying the premise of the lemma. Perform
the following experiment. Run the code of algorithm A on
the nodes of the 2n-node graph G′2 composed of two (dis-
connected) copies of G′. Denote this execution by EX(G′).
(Of course, since G′ is not a dumbbell graph, this is not a
legal input for A, so there are no guarantees on the output
or even termination of this execution.) The algorithm will
send some messages, and then possibly halt. For each edge
e (interpreted as a directed edge), identify the first time t(e)
in which a message was sent over e (in this direction) in
this execution. Order the (directed) edges in increasing or-

der of t(e), getting the list Ê′ = (e′1, . . . , e
′
k′). (Edges on

which no messages were sent are not included in this list,
so k′ 6 2m.) Run a similar experiment EX(G′′) on G′′,

getting a list Ê′′ = (e′′1 , . . . , e
′′
k′′).

Now consider them2 executions EX(Dumbbell(G′[e′], G′′[e′′]))
of A on the dumbbell graphs in the class C(G′, G′′). In at
least εm2 of these executions, the algorithm A succeeds, so
(at least) one message crosses one bridge in one direction.
Without loss of generality, in at least εm2/2 of these execu-
tions, the first crossing message was sent from G′ to G′′.

Partition the dumbbell graphs in the class C(G′, G′′) into
subclasses C0, C1, . . . , Ck′ , where the subclass Ci for 1 6 i 6
k′ contains all the dumbbell graphs Dumbbell(G′[e′], G′′[e′′])
in which e′ = e′i and in execution EX(Dumbbell(G′[e′], G′′[e′′])),
the first crossing message went over the edge e′i from G′[e′] to
G′′[e′′]. The subclass C0 contains all the remaining graphs
of the class C(G′, G′′).

Consider an execution EX(Dumbbell(G′[e′], G′′[e′′])) in
which BC was achieved, and assuming that the first cross-
ing message was sent in round t from G′ to G′′, say, over
port p that in the original G′ was used for e′. A crucial
observation is that the part of this execution restricted to
G′[e′] is identical to the execution EX(G′) up to and includ-
ing round t. Similarly, the part of this execution restricted
to G′′[e′′] is identical to the execution EX(G′′) up to and
including round t. This implies that e′ must occur in the
list Ê′ in some position, as e′j . In particular, it follows that
the subclass C0 contains only dumbbell graphs in which the
first crossing message went from G′′[e′′] to G′[e′] plus all the
dumbbell graph in which no message crossed. In addition,

it follows that |C0| 6 (1 − ε)m2/2 and
∑k′

i=1 |Ci| > εm2/2.
Moreover, in the execution EX(Dumbbell(G′[e′], G′′[e′′])),
algorithm A must have sent at least one message on each of
the edges e′i for 1 6 i 6 j, i.e., A must have sent at least j
messages.

We define `j = |Cj | to be the number of executions
EX(Dumbbell(G′[e′], G′′[e′′])) in which the first crossing mes-
sage was sent from G′ to G′′ over the edge e′j . This requires,
in particular, that e′ = e′j . As there are exactly m dumbbell
graphs Dumbbell(G′[e′j], G

′′[e′′]), it follows that `j 6 m. Let

B =
∑k′

j=1 `j . By assumption, B > εm2/2. Let Q be the
total number of messages sent by A in all these executions.

Then Q >
∑k′

j=1 `j ·j. To lower bound Q, note that this last

sum is minimized if the first B/m summands are `i = m, for

104

i = 1, . . . , B/m, and the remaining summands are 0. Hence

Q >
B/m∑
j=1

m·j >
m

2
·B
m
·
(
B

m
+ 1

)
> B2/(2m) > ε2m3/8.

Therefore the expected cost incurred by A over the class
C(G′, G′′) is at least ε2m/8 = Ω(m).

Lemma 3.6. Every deterministic algorithm A that achieves
BC on at least 1/4 of the dumbbell graphs in the collection
I has expected message complexity Ω(m) on Ψ.

Proof. Consider an algorithm A as in the lemma. Let z
denote the number of dumbbell graphs in the collection I on
which algorithm A achieves BC. By the assumption of the
lemma, z > d̃/4. Let X denote the set of pairs of disjoint
graphs (G′, G′′) such that algorithm A achieves BC on at
leastm2/8 of them2 dumbbell graphsDumbbell(G′[e′], G′′[e′′])
in the class C(G′, G′′). Let Y denote the set of remaining
pairs (such that A achieves BC on fewer than m2/8 of the
dumbbell graphs in C(G′, G′′)). Let x = |X| and y = |Y |.
Note that x+ y = h̃.

Claim 3.7. x > h̃/8.

Proof. Observe that z, the number of dumbbell graphs
in I on which algorithmA achieves BC, cannot exceed xm2+
ym2/8, hence

xm2 + ym2/8 > z > d̃/4 = h̃m2/4.

Hence assuming, to the contrary, that x < h̃/8, implies that

h̃

8
·m2 +

7h̃

8
· m

2

8
> xm2 + ym2/8 >

h̃m2

4
,

or 15/64 > 1/4, contradiction.

By Lemma 3.5, for every pair of disjoint graphs (G′, G′′) ∈
X, the expected message complexity of A on inputs taken
from C(G′, G′′) with a uniform distribution is at least m/27.
Hence the total number of messages sent by the algorithm
when executed over all inputs from C(G′, G′′) is at least,
(xm2) ·m/27 + (ym2) · 0. The first summand stands for the
xm2 graphs in the x classes of X, and the second summand
stands for the graphs in the classes of Y . By Claim 3.7, this
is at least (h̃/23) · (m3/27) = d̃m/210, hence the expected
message complexity of algorithm A over all disjoint graph
pairs in I (with a uniform distribution) is at least m/210 =
Ω(m).

Lemma 3.8. Let ε and δ > 1/4 be positive constants such
that 7ε+ δ 6 1. If a deterministic universal LE algorithm A
solves LE on at least a 1− ε fraction of the input graphs in
I, then A achieves BC on at least a δ fraction of the graphs
in I.

Proof. Denote by ILE (respectively, IBC) the set of
input dumbbell graphs on which algorithm A achieves LE
(resp., BC). Let I∗ = ILE \ IBC . By the assumption of the

lemma, |ILE | > (1 − ε)d̃. Assume, towards contradiction,

that |IBC | < δd̃. Then

|I∗| > (1− ε− δ)d̃. (1)

Let W denote the set of open graphs G′[e′] that participate
on the left in dumbbell graphs in I∗. Formally,

W = {G′[e′] ∈ Gopen | ∃G′′[e′′] s.t. (G′[e′], G′′[e′′]) ∈ I∗}.

Let Z = G \W . Note that |W |+ |Z| = gm. Observe that

(1− ε− δ)gg̃m2 = (1− ε− δ)d̃ < |I∗| 6 |W |g̃m. (2)

The last inequality follows from the fact that we can combine
G′[e′] ∈ W to form a dumbbell with any G′′[e′′] of the g̃
disjoint graphs where e′′ can be any one of m edges.

Observation 3.9. |W | > (1− ε− δ)gm.

Corollary 3.10. |Z| < (ε+ δ)gm.

Consider an execution of algorithm A on a dumbbell graph
(G′[e′], G′′[e′′]) ∈ I∗. Necessarily, in one of the two graphs,
all nodes ended in state non-elected, and in the other
graph, exactly one node ended in state elected and all the
others in state non-elected. Suppose all nodes in G′[e′]
ended in state non-elected. Then for every other dumb-
bell graph (G′[e′], G′′′[e′′′]) ∈ I∗ or (G′′′[e′′′], G′[e′]) ∈ I∗ in
which G′[e′] participates, the run on G′[e′] will behave the
same as in the run on (G′[e′], G′′[e′′]), so all nodes in G′[e′]
will end in state non-elected.

This observation implies that the open graphs in W can
be partitioned into two sets:
• the set WNE of graphs G′[e′] ∈W for which in execu-

tions on dumbbell graphs belonging to I∗, all nodes in
G′[e′] end in state non-elected, and
• the set WE of graphs G′[e′] ∈ W for which in execu-

tions on dumbbell graphs belonging to I∗, exactly one
node ends in state elected and all other nodes end in
state non-elected.

For every open graph G′[e′] ∈WNE , let

Γ(G′[e′]) = {G′′[e′′] ∈ Gopen | G′[e′] and G′′[e′′] are disjoint}.

Also let

ΓNE(G′[e′]) = WNE ∩ Γ(G′[e′]),

ΓE(G′[e′]) = WE ∩ Γ(G′[e′]),

ΓZ(G′[e′]) = Z ∩ Γ(G′[e′]).

Denote the sizes of these sets by γ(G′[e′]), γNE(G′[e′]), γE(G′[e′]),
and γZ(G′[e′]), respectively. Note that

γNE(G′[e′])+γE(G′[e′])+γZ(G′[e′]) = γ(G′[e′]) = g̃m. (3)

We separate the analysis into two cases.
Case 1: |WNE | > |W |/2: By Obs. 3.9, |WNE | > (1 − ε −
δ)gm/2. By the assumption of Case 1, γE(G′[e′]) 6 |WE | 6
|W |/2 6 gm/2. By Cor. 3.10, γZ(G′[e′]) 6 |Z| < (ε+ δ)gm.
Combining the last two facts with Eq. (3) and Lemma 3.4,
implies that

γNE(G′[e′]) = g̃m− (γE(G′[e′]) + γZ(G′[e′]))

> (1− 1/n)gm− gm/2 = (1/2− 1/n)gm.

Our key observation is that every pair of open graphs from
WNE forms a dumbbell graph on which algorithm A fails
to solve LE, since no node will end in state elected. This
allows us to lower bound the number X of dumbbell graphs
on which agorithm A fails to solve leader election: summing
over all graphs in WNE , we get that

X >
∑

G′[e′]∈WNE

γNE(G′[e′]) > |WNE | · (1/2− 1/n)gm

> ((1− ε− δ)gm/2) · ((1/2− 1/n)gm)

> (1− ε− δ)d̃/6.

105

On the other hand, recall that we have assumed that |ILE | >
(1 − ε)d̃, so X 6 εd̃. It follows that (1 − ε − δ)d̃/6 < εd̃.
Rearranging, we get that 7ε + δ > 1, contradicting the as-
sumption of the lemma.
Case 2: |WE | > |W |/2: A similar contradiction is derived,
based on the observation that every pair of open graphs from
WE forms a dumbbell graph on which algorithm A fails to
solve LE.

This completes the proof of Lemma 3.8.

Combining Lemmas 3.6 and 3.8 allows us to use a reduc-
tion of BC to LE to show the claimed result for a universal
randomized algorithm R that achieves LE with probability
at least 1 − β: Suppose that A is a universal determinis-
tic leader election algorithm that achieves LE on at least a
1−2β fraction of the dumbbell graphs in I. By Lemma 3.8,
we know that A achieves BC on at least a δ > 1/4 frac-
tion of the dumbbell graphs in I. Applying Lemma 3.6
yields that A must have an expected message complexity
of Ω(m) on distribution Ψ, which shows the theorem for
deterministic algorithms. By a simple application of Yao’s
minimax principle (cf. Lemma 3.2), it follows that the Ω(m)
bound for deterministic algorithms is a lower bound for the
expected message complexity of R (under the worst case
input), thereby completing the proof of Theorem 3.1.

At this point, let us explain why the above proof fails for
weaker algorithms, which are guaranteed to work correctly
only when the nodes know D. The problem occurs in the
proof of Lemma 3.5. In that proof, we run an experiment
where we execute algorithm A (which is now assumed to
work correctly only when the nodes are given the diameter
Diam(G) as part of their inputs) on an “illegal” graph G′2

composed of two (disconnected) copies of G′. We then argue
that the execution on the dumbbell graphs serving as the
“real” inputs will behave the same as on the illegal graph
G′2 (so long as there was no bridge crossing). But this claim
no longer holds when the nodes get the diameter D as part
of their input, since the diameter of the dumbbell graph is
different from that of the illegal graph G′2 (which is infinite),
so a node v will see a different input in the two execution.

To fix this problem, a natural idea would be to “feed” the
nodes participating in the experiment on the illegal graph
G′2 a“fake” input on the diameter, i.e., set the input variable
DIAMv at each node v to D′, where D′ is the diameter of
the dumbbell graph. (Again, as this input is illegal, it is not
guaranteed that the algorithm will generate a meaningful
output, but still, the execution will behave the same as in
the ”real” execution on the dumbbell graph.)

A technical difficulty that prevents us from using this idea
directly is that there are many dumbbell graphs for a given
pair G′, G′′, and they have different diameters. This means
that no single experiment (run with a specific value of D fed
to the nodes) will be similar to all executions on all dumbbell
graphs.

Hence to overcome this difficulty, it is necessary to pick
G0 and construct the collection of input graphs for the algo-
rithm so that no matter which graphs G′ and G′′ are chosen,
and which edges e′ and e′′ are crossed-over, the diameter of
the resulting dumbbell graph is always the same. The ob-
servation that assists us in achieving this property is that
we are free to select the graph G0, so long as we adhere to
the requirements that its size is n nodes and Θ(m) edges.
So let us pick G0 to have the following structure. Let κ be

the largest integer such that
(
κ
2

)
+ κ 6 m. Let G1

0 be the

complete graph on κ nodes, with m1 =
(
κ
2

)
edges. Let G2

0

be a path of n − κ nodes, (b1, . . . , bn−κ). Combine the two
graphs into G0 by adding κ edges connecting b1 to every
node in G1

0. It is straightforward to verify that the resulting
graph G0 satisfies the size requirements.

Next, we modify the proof by limiting the ways in which
we create open graphs from G0. Specifically, we will consider
only open graphs obtained by disconnecting an edge e′ in the
clique G1

0. That is, the resulting family of open graphs will
contain only graphs (G′[e′]) for e′ ∈ E(G1

0).
The key observation is that no matter which two edges e′

and e′′ of G1
0 we choose to disconnect in G′ and G′′ respec-

tively, the resulting dumbbell graphDumbbell(G′[e′], G′′[e′′])
will always have the same diameter, D = 2n−2κ+1 (which
is the distance between the two endpoints bn−κ of the two
graphs G′[e′] and G′′[e′′]).

One can verify that with this change, the rest of the
proof goes through, with m1 replacing m in the interme-
diate claims. In particular, the number of graphs in each
class C(G′, G′′) becomes m2

1, and so on. We end up proving
that any deterministic leader election algorithm uses an av-
erage of Ω(m1) messages on the collection I of inputs. Those
messages are sent over the edges of the κ-clique (we cannot
prove that there will be any messages sent over the edges
of the paths G2

0 in either side of the dumbbell graphs). Yet
as m1 = Ω(m), this suffices to establish the desired lower
bound of Ω(m) on the expected message complexity of R on
the worst case input.

3.2 A Message Lower Bound for Broadcast
We can leverage our lower bound technique to show an

analogous bound for the broadcast problem [5], where a single
node must convey a message to all other nodes. In fact,
we can show a lower bound of Ω(m) messages even for the
weaker majority broadcast problem, where the message of a
single node needs to reach > n/2 nodes.

Consider the same collection of dumbbell graphs I as
in Lemma 3.6. If a deterministic algorithm B successfully
broadcasts in some execution on a graph G ∈ I, then B also
achieves bridge crossing in G. The following is immediate
from Lemma 3.6:

Lemma 3.11. Suppose that there is an algorithm B that
achieves broadcast on at least 1/4 of the graphs in I. Then
B has expected message complexity of Ω(m) on Ψ.

By a direct application of Lemma 3.2, we get a lower bound
for randomized algorithms:

Corollary 3.12. Let R′ be an algorithm that success-
fully broadcasts a message from a source node to a majority
of nodes with probability at least 1 − β, for some constant
β 6 3/8. For every sufficiently large n and n 6 m 6

(
n
2

)
,

there exists a (connected) graph G of n nodes and Θ(m)
edges, such that the expected number of messages used by R′

on G is Ω(m). The above holds even if n, m and D are
known to the algorithm and all nodes wake up simultane-
ously.

3.3 Time Complexity Lower Bound

Theorem 3.13. Consider a universal leader election al-
gorithm R that succeeds with probability 1 − β, where β <
1/16 in the anonymous setting and β < 1/16 − ε, if nodes

106

C0

C1

C2

C3

T -neighborhood of C0

T
-n

e
ig

h
b
o
r
h
o
o
d

o
f
C
1

T -neighborhood of C2

T
-n

e
ig

h
b
o
r
h
o
o
d

o
f
C
3

v0,0,0

v0,0,1

v0,0,2 v0,1,0

v0,1,1

v0,1,2

v1,0,0

v1,0,1

v1,0,2

v1,1,0

v1,1,1

v1,1,2

v2,0,0

v2,0,1

v2,0,2v2,1,0

v2,1,1

v2,1,2

v3,0,0

v3,0,1

v3,0,2

v3,1,0

v3,1,1

v3,1,2

Figure 1: The Clique-Cycle Construction of Theorem 3.13
for D′ = 8 and n′ = 24. The blue dotted rectangles form
HZ and the red dashed rectangles correspond to HZ′ .

have unique ids, for any constant ε > 0. Then, for every n
and every nondecreasing function D(n) with 2 < D(n) < n,
there exists a graph of n′ ∈ Θ(n) nodes and diameter D′ ∈
Θ(D(n)) where R takes Ω(D′) rounds with constant proba-
bility. This is true even if all nodes know n′ and D′, and
wake up simultaneously.

Proof. For a given n and D(n), we construct the fol-
lowing lower bound graph G: Let D′ = 4d(D(n)/4)e and
let n′ = γ(n)D′ ∈ Θ(n), where γ(n) > 0 is the small-
est integer such that γ(n)D′ > n. The graph G contains
D′ cliques, each of size γ(n). Partition the cliques into 4
subgraphs C0, . . . , C3 referred to as arcs, each containing
D′/4 cliques. Let ci,j denote the j-th clique in the i-th
arc and let vi,j,k be the k-th node in ci,j , for 0 6 i 6 3,
0 6 j 6 D′/4 − 1, and 0 6 k 6 γ(n) − 1. The graph G is
a cycle C formed by the D′ cliques connected the following
way: For every i (adhering to the range defined above) and
every j 6 D′/4 − 2, the edge (vi,j,γ(n)−1, vi,j+1,0) connects
the clique ci,j to the clique ci,j+1 within the same arc Ci.
The connections between arcs Ci and Ci+1 mod 4 are given
by the edges (vi,D′/4−1,γ(n)−1, v(i+1 mod 4),0,0). See Figure 1
for an example.

We first consider the anonymous case, where each node
starts in the same initial state. Let T be the random variable
denoting the running time of the assumed algorithm R and
suppose that the event T ∈ o(D′) happens with probability
δ. Consider the two sets of nodes formed by non-adjacent
arcs Z = (C0, C2) and Z′ = (C1, C3). Let φ : V (G)→ V (G)
be a mapping such that φ(vi,j,k) = v(i+1 mod 4),j,k. Let HZ
be the subgraph consisting of Z and its T -neighborhood and
define HZ′ analogously. By the definition of the adjacencies
of C, it follows that the subgraph induced by φ(HZ) is iso-
morphic to H ′Z .

Let configuration C = 〈σ1, . . . , σ`〉 denote a vector where
each entry σi denotes a potential local state of a node. For

a set of nodes S = {u1, . . . , u`}, we say that S realizes σ in
round r, if node ui is in state σi in round r; let E(C, S, r) de-
note the event that this happens. The following claim shows
that the mapping φ induces equi-probable realizations of any
local states σ, for any pair of nodes v and φ(v). Note, how-
ever, that Claim 3.14 does not imply that events E(σ, v, r)
and E(σ, φ(v), r) are stochastically independent. The proof
of the next claim follows by a symmetry argument and is
deferred to the full paper:

Claim 3.14. For any round r and any configuration C, we
have IP [E(C, Z, r) | T ∈o(D′)] = IP [E(C, Z′, r) | T ∈o(D′)].

Note that we do not claim independence of the events E(C, Z, r)
and E(C, Z′, r). Let L (resp., L′) be the event that one
node in Z (resp., Z′) becomes leader and let Li be the event
that there is one leader elected in arc Ci. It holds that
IP [L | T ∈o(D′)] = IP [L′ | T ∈o(D′)]; let q denote this prob-
ability. If the algorithm terminates in T = o(D) = o(D′)
rounds, then there is no causal influence between C0 and C2,
which means that E(C, C0, r) and E(C, C2, r) are stochas-
tically independent (as opposed to events E(C, Z, r) and
E(C, Z′, r) above!) for any configuration C and round r 6 T .
In particular, this includes all configurations that satisfy Li.
Let p = IP [L0 | T ∈o(D′)]; again due to symmetry, we know
that IP [L0 | T ∈o(D′)] = · · · = IP [L3 | T ∈o(D′)], and due
to independence of L0 and L2, q = 2p(1 − p). Let One be
the event that the algorithm elects 1 leader. We know that

IP
[
One | T ∈o(D′)

]
=

IP [One]

IP [T ∈o(D′)]

− IP [One | T ∈ Ω(D′)] IP [T ∈Ω(D′)]

IP [T ∈o(D′)]

> (1− β − (1− δ))/δ = 1− β

δ
,

and clearly

IP
[
One | T ∈o(D′)

]
6 IP

[
L | T ∈o(D′)

]
+ IP

[
L′ | T ∈o(D′)

]
= 2q.

Thus q > 1
2
(1 − β/δ), which means that p > 1

2
(1 −

√
β/δ).

We know that β = IP [error] > p2 and thus 1
4
(1−

√
β/δ)2 6

β. Note that since β < 1/16, this inequality requires δ < 1/4
and therefore T ∈ Ω(D′) with constant probability. This
completes the proof for the anonymous case.

Finally, for the non-anonymous case we show a reduction
to the anonymous case. Now suppose that R is an algorithm
designed for a setting where each node has a unique id and
again assume that R takes only o(D) rounds with probabil-
ity 1− δ, for some fixed constant δ. Consider algorithm R′

that extends algorithm R by causing each node to choose an
id uniformly at random from [1, n4] initially. This id is then
used as input for algorithm R (instead of the id assigned
in an non-anonymous network in which R is guaranteed to
work). The event U , where all chosen ids are unique, occurs
with probability at least 1−n−2. By definition of R′, we have
IP [R′ succeeds | U] = IP [R succeeds] and, from the anony-
mous case, we know that IP [R′ succeeds] 6 15/16. It follows
that IP [R′ succeeds | U] 6 (15/16)/IP [U] 6 15/16(1− n−2)
for sufficiently large n. This shows that algorithm R suc-
ceeds with probability at most 15/16 + ε, for any constant
ε > 0.

107

4. MATCHING (OR APPROACHING) THE
LOWER BOUNDS

The purpose of algorithms in this paper is twofold: (1) to
show the tightness of the message lower bound (the tightness
of the time lower bound follows from [17]), and (2) address-
ing the fundamental question: can both lower bounds O(D)
time and O(m) messages be matched or approached simul-
taneously? For goal (1) above, we show that there exists
a deterministic universal algorithm that is optimal in the
number of messages, i.e., an O(m) algorithm. However, this
algorithm takes arbitrary (albeit finite) time (which depends
exponentially on the size of the smallest ID). This algorithm
is a generalization of the one presented by Fredrickson and
Lynch for rings [7].

Theorem 4.1. There is a deterministic leader election
algorithm that uses O(m) messages.

We now briefly highlight the techniques behind the uni-
versal algorithms for goal (2), and point at their new parts
(compared to previous work). We defer the full description
of the algorithms to the full paper. (Our algorithms work in
the CONGEST model).

4.1 Matching (sometimes) both lower bounds
simultaneously

As mentioned earlier (cf. Section 1), only randomized
algorithms have the hope of matching both lower bounds si-
multaneously. We start with the least element lists (Least-El
list) algorithm of [10]. It can be used to elect a unique leader
(with probability 1) in O(D) time and O(mmin(logn,D))
messages [10]. The main idea was to use random IDs. Each
node simply floods its ID and the largest ID wins. If the
IDs are chosen randomly, it can be shown that the number
of messages that every node v has to forward is bounded
by O(logn)deg(v), where deg(v) is v’s degree; this yields
the desired message bound. However, in previous work, the
resulting algorithm needed to know n, the number of nodes.

In the current paper, we show, first, that a standard trick
can be used to get rid of this assumption, by showing that
nodes can get an estimate of n (up to a constant factor) in
O(mmin(logn,D)) messages and O(D) time: Each node u
flips an unbiased coin until the outcome is heads; let Xu de-
note the random variable that contain the number of times
that Xu is flipped. Then, nodes exchange their respective
values of Xu whereas each node only forwards the high-
est value of Xu (once) that it has seen so far. This shows
that a node can see at most D (currently) highest values.
We observe that Xu is geometrically distributed and denote
its global maximum by X̄. For any u, IP [Xu > 2 log2 n] =
1/22 log2 n, and by taking a union bound, IP

[
X̄ > 2 log2 n

]
6

1/n. Furthermore,

IP
[
X̄ < log2 n− log2(logn)

]
= 1− (1− 1/2log2 n−log2(logn))n

≈ 1− exp(−n/2log2 n−log2(logn)).

It follows that each node forwards at most O(logn) distinct
values (w.h.p.) and thus the total number of messages is
O(mmin(logn,D)) with high probability.

Corollary 4.2. Consider a network of n nodes, m edges,
and diameter D, and assume that nodes do not have knowl-
edge of n. There is a randomized algorithm that achieves
leader election with high probability, takes O(D) time and

has a message complexity of O(mmin(logn,D)) with high
probability.

This, however, is still away from our upper bound goal to see
whether it is possible to match both lower bounds. Hence,
we reached another improvement to the Least-El list algo-
rithm of [10]. That is, we show that if, instead of allowing
every node to be a candidate, only log n nodes are allowed to
be candidates, then the (expected) message complexity can
be improved to O(m log log n) with the same time bound.
(Note that the candidates are chosen randomly and do not
have any a priori knowledge of each other.) This yields a
Monte-Carlo algorithm that succeeds with high probability.
More generally, we show it is possible to obtain a trade-off
between the success probability and the number of messages.
In particular, we get an O(m) messages, O(D) time algo-
rithm with large constant success probability (for any large
pre-specified constant).

Theorem 4.3. Consider a network of n nodes, m edges,
and diameter D and assume that each node knows n. Let
f(n) 6 n be any function such that f(n) ∈ Ω(1). There is
a randomized leader election algorithm A that terminates in
O(D) rounds, has an expected message complexity of O(m ·
min (log f(n), D)) and succeeds with probability 1−1/eΘ(f(n)).
This implies the following:
(A) There is an algorithm that takes O(D) time, has an ex-

pected message complexity of O(m ·min (log logn,D))
and succeeds with high probability.

(B) For any small constant ε > 0, there is an algorithm
that takes O(D) time, sends O(m) messages and suc-
ceeds with probability at least 1− ε.

This matches our lower bounds of time and messages for
the case when the success probability is constant. However,
the above improvement requires nodes to have knowledge of
n.

We also managed to match both lower bounds simulta-
neously, for graphs that are “somewhat dense,” i.e., with
m > n1+ε for any fixed constant ε > 0 (known to the al-
gorithm). This is done by combining a randomized spanner
algorithm due to [6] and the above Least-El list algorithm
to achieve leader election with high probability.

Corollary 4.4. Consider a network of n nodes, m edges,
and diameter D and assume that each node knows n. Let
ε > 0 be a fixed constant. If m > n1+ε, then there is a
randomized algorithm that achieves leader election with high
probability, takes O(D) time and has an expected message
complexity of O(m).

Finally, we show in Corollary 4.5 that if nodes have knowl-
edge of both n and D, then one can obtain a randomized
Las Vegas algorithm with expected time complexity O(D)
and expected message complexity O(m).

Corollary 4.5. Consider a network of n nodes, m edges,
and diameter D, and assume that nodes have knowledge of n
and D. There is a randomized algorithm that achieves leader
election with probability 1, has an expected time complexity
of O(D) and an expected message complexity of O(m).

4.2 Approaching both lower bounds simulta-
neously

The Least-El list based algorithms above indeed match
both lower bounds sometimes. However, at some other times

108

their message complexity is higher than m by a multiplica-
tive factor that may be larger than a constant. For com-
pleteness, we also present a randomized algorithm with a
better message complexity in the worst case, although at
some small time penalty:

Theorem 4.6. Consider any network of n nodes, m edges,
and diameter D, and assume that each node has knowl-
edge of n. There is an algorithm that elects a unique leader
(w.h.p.) in O(D logn) rounds and uses O(m+n logn) mes-
sages.

This Monte-Carlo algorithm (the “clustering algorithm”) is
not based on the Least-El list approach, used by the other
randomized algorithms above. In this algorithm (which also
relies on prior knowledge of n), about logn nodes choose to
be candidates and grow clusters till they essentially meet.
The trick then is to first sparsify this graph and reduce the
number of edges to about min(m,n+ log2 n). However, this
sparsification increases the diameter of the residual graph
to O(D logn). One can then apply the Least-El list algo-
rithm to the residual graph to obtain an overall bound of
O(D logn) time and O(m+ n logn) messages.

Finally, as mentioned, in the deterministic case, it is im-
possible to match both lower bounds simultaneously. Hence,
[1] posed that goal of reaching O(m + n logn) messages
and O(D) simultaneously. They presented a sketch of an
elegant deterministic algorithm that “grows kingdoms”; a
leader candidate’s kingdoms keep growing (by building BFS
trees) till only one kingdom is left. Unfortunately, one can
show counter examples to the hope that this algorithm dou-
bles the diameters of winning kingdoms every round. We
present a modified variant of the algorithm of [1]. The mod-
ification ensures that the (upper bound on the) number of
kingdoms is reduced by a constant factor in every phase.
Our algorithm requires no knowledge of n or any other pa-
rameter (it does however require unique identities, which is
necessary.) This yields a O(D logn) time and O(m logn)
messages deterministic algorithm. It is an open question
whether the running time can be improved to O(D) (with
the same number of messages) in the deterministic case.

Theorem 4.7. Consider any network of n nodes, m edges,
and diameter D. There is a deterministic algorithm that
elects a unique leader in O(D logn) time while using O(m logn)
messages.

5. CONCLUSION
We studied the role played by randomization in universal

leader election. Some open questions on randomized leader
election are raised by our work: (1) Can we find tight (uni-
versal) upper and lower bounds for general graphs with and
without knowledge of n? (2) Can we show the following con-
jecture: Any algorithm (even randomized Monte Carlo with
high success probability) without knowledge of global pa-
rameters (e.g. n,D,m) that finishes in O(D) rounds, needs
at least Ω(m logD) messages (in expectation or with high
probability).

6. REFERENCES
[1] H. Abu-Amara and A. Kanevsky. On the complexities of

leader election algorithms. In ICCI, 202–206, 1993.
[2] Y. Afek and E. Gafni. Time and message bounds for

election in synchronous and asynchronous complete
networks. SIAM Journal on Computing, 20(2):376–394,
1991.

[3] Hagit Attiya and Jennifer Welch. Distributed Computing.
(2nd ed.). John Wiley Interscience, 2004.

[4] B. Awerbuch. Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election, and related
problems. In STOC ’87, pages 230–240, New York, USA,
1987. ACM.

[5] Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and
David Peleg. A trade-off between information and
communication in broadcast protocols. J. ACM,
37(2):238–256, April 1990.

[6] Surender Baswana and Sandeep Sen. A simple and linear
time randomized algorithm for computing sparse spanners
in weighted graphs. Random Struct. Algorithms,
30(4):532–563, 2007.

[7] Greg N. Frederickson and Nancy A. Lynch. Electing a
leader in a synchronous ring. Journal of the ACM,
34(1):98–115, 1987.

[8] Emanuele G. Fusco and Andrzej Pelc. Knowledge, level of
symmetry, and time of leader election. In ESA, pages
479–490, 2012.

[9] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava.
Timing-sync protocol for sensor networks. In SenSys, pages
138–149, 2003, New York, USA, 2003. ACM.

[10] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal
Pandurangan, and Kunal Talwar. Efficient distributed
approximation algorithms via probabilistic tree
embeddings. Distributed Computing, 25(3):189–205, 2012.

[11] E. Korach, S. Moran, and S. Zaks. Optimal lower bounds
for some distributed algorithms for a complete network of
processors. Theoretical Computer Science, 64(1):125 – 132,
1989.

[12] Shay Kutten, Gopal Pandurangan, David Peleg, Peter
Robinson, and Amitabh Trehan. Sublinear bounds for
randomized leader election. In ICDCN’13, pages 348–362,
2013.

[13] Gérard Le Lann. Distributed systems - towards a formal
approach. In IFIP Congress, p. 155–160, 1977.

[14] Nancy Lynch. Distributed Algorithms. Morgan Kaufman
Publishers, Inc., San Francisco, USA, 1996.

[15] Rajeev Motwani and Prabhakar Raghavan. Randomized
Algorithms. Cambridge Univ. Press, 1995.

[16] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The
Akamai network: a platform for high-performance internet
applications. SIGOPS Oper. Syst. Rev., 44(3):2–19, August
2010.

[17] David Peleg. Time-optimal leader election in general
networks. Journal of Parallel and Distributed Computing,
8(1):96 – 99, 1990.

[18] David Peleg. Distributed Computing: A Locality-Sensitive
Approach. SIAM, Philadelphia, 2000.

[19] Nicola Santoro. Design and Analysis of Distributed
Algorithms (Wiley Series on Parallel and Distributed
Computing). Wiley-Interscience, 2006.

[20] Gerard Tel. Introduction to distributed algorithms.
Cambridge University Press, New York, USA, 1994.

[21] Yong Yao and Johannes Gehrke. The cougar approach to
in-network query processing in sensor networks. SIGMOD
Rec., 31(3):9–18, 2002.

109

