260

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 3, MARCH 2002

Performance-Effective and Low-Complexity

Task Scheduling for Heterogeneous Computing

Haluk Topcuoglu, Member, IEEE, Salim Hariri, Member, IEEE Computer Society, and
Min-You Wu, Senior Member, IEEE

Abstract—Efficient application scheduling is critical for achieving high performance in heterogeneous computing environments. The
application scheduling problem has been shown to be NP-complete in general cases as well as in several restricted cases. Because of
its key importance, this problem has been extensively studied and various algorithms have been proposed in the literature which are
mainly for systems with homogeneous processors. Although there are a few algorithms in the literature for heterogeneous processors,
they usually require significantly high scheduling costs and they may not deliver good quality schedules with lower costs. In this paper,
we present two novel scheduling algorithms for a bounded number of heterogeneous processors with an objective to simultaneously
meet high performance and fast scheduling time, which are called the Heterogeneous Earliest-Finish-Time (HEFT) algorithm
and the Critical-Path-on-a-Processor (CPOP) algorithm. The HEFT algorithm selects the task with the highest upward rank

value at each step and assigns the selected task to the processor, which minimizes its earliest finish time with an insertion-based
approach. On the other hand, the CPOP algorithm uses the summation of upward and downward rank values for prioritizing

tasks. Another difference is in the processor selection phase, which schedules the critical tasks onto the processor that minimizes

the total execution time of the critical tasks. In order to provide a robust and unbiased comparison with the related work, a
parametric graph generator was designed to generate weighted directed acyclic graphs with various characteristics. The
comparison study, based on both randomly generated graphs and the graphs of some real applications, shows that our
scheduling algorithms significantly surpass previous approaches in terms of both quality and cost of schedules, which are mainly
presented with schedule length ratio, speedup, frequency of best results, and average scheduling time metrics.

Index Terms—DAG scheduling, task graphs, heterogeneous systems, list scheduling, mapping.

1 INTRODUCTION

DIVERSE sets of resources interconnected with a high-
speed network provide a new computing platform,
called the heterogeneous computing system, which can
support executing computationally intensive parallel and
distributed applications. A heterogeneous computing
system requires compile-time and runtime support for
executing applications. The efficient scheduling of the
tasks of an application on the available resources is one of
the key factors for achieving high performance.

The general task scheduling problem includes the
problem of assigning the tasks of an application to suitable
processors and the problem of ordering task executions on
each resource. When the characteristics of an application
which includes execution times of tasks, the data size of
communication between tasks, and task dependencies are
known a priori, it is represented with a static model.

In the general form of a static task scheduling problem,

an application represented by a directed acyclic graph

o H. Topcuoglu is with the Computer Engineering Department, Marmara
University, Goztepe Kampusu, 81040, Istanbul, Turkey.
E-mail: haluk@eng.marmara.edu.tr.

e S. Hariri is with the Department of Electrical and Computer Engineering,
University of Arizona, Tucson, AZ 85721-0104.
E-mail: hariri@ece.arizona.edu.

o M.-Y. Wu is with the Department of Electrical and Computer Engineering,
University of New Mexico, Albuquerque, NM 87131-1356.
E-mail: wu@eece.unm.edu.

Manuscript received 28 Aug. 2000; revised 12 July 2001; accepted 6 Sept.
2001.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 112783.

(DAG) in which nodes represent application tasks and
edges represent intertask data dependencies. Each node
label shows computation cost (expected computation time)
of the task and each edge label shows intertask commu-
nication cost (expected communication time) between
tasks. The objective function of this problem is to map
tasks onto processors and order their executions so that
task-precedence requirements are satisfied and a mini-
mum overall completion time is obtained. The task
scheduling problem is NP-complete in the general case
[1], as well as some restricted cases [2], such as scheduling
tasks with one or two time units to two processors and
scheduling unit-time tasks to an arbitrary number of
processors.

Because of its key importance on performance, the task
scheduling problem in general has been extensively studied
and various heuristics were proposed in the literature [3],
[4], [3], [6], [7], 8], [9], [10], [11], [13], [12], [16], [17], [18],
[20], [22], [23], [27], [30]. These heuristics are classified into a
variety of categories (such as list-scheduling algorithms,
clustering algorithms, duplication-based algorithm, guided
random search methods) and they are mainly for systems
with homogeneous processors.

In a list scheduling algorithm [3], [4], [6], [7], [18], [22], an
ordered list of tasks is constructed by assigning priority for
each task. Tasks are selected in the order of their priorities
and each selected task is scheduled to a processor which
minimizes a predefined cost function. The algorithms in
this category provide good quality of schedules and their
performance is comparable with the other categories at a

1045-9219/02/$17.00 © 2002 IEEE

TOPCUOGLU ET AL.: PERFORMANCE-EFFECTIVE AND LOW-COMPLEXITY TASK SCHEDULING FOR HETEROGENEOUS COMPUTING 261

lower scheduling time [21], [26]. The clustering algorithms
[3], [12], [19], [25] are, in general for an unbounded number
of processors, so they may not be directly applicable. A
clustering algorithm requires a second phase (a scheduling
module) to merge the task clusters generated by the
algorithm onto a bounded number of processors and to
order the task executions within each processor [24].
Similarly, task duplication-based heuristics are not practical
because of their significantly high time complexity. As an
example, the time complexity of the BTDH Algorithm [30]
and the DSH Algorithm [18] are O(v*); the complexity of the
CPFD Algorithm [9] is O(e x v?) for scheduling v tasks
connected with e edges on a set of homogeneous processors.

Genetic Algorithms [5], [8], [11], [13], [17], [31] (GAs) are
of the most widely studied guided random search techni-
ques for the task scheduling problem. Although they
provide good quality of schedules, their execution times
are significantly higher than the other alternatives. It was
shown that the improvement of the GA-based solution to
the second best solution was not more than 10 percent and
the GA-based approach required around a minute to
produce a solution, while the other heuristics required an
execution of a few seconds [31]. Additionally, extensive
tests are required to find optimal values for the set of
control parameters used in GA-based solutions.

The task scheduling problem has also been studied by a
few research groups for the heterogeneous systems [6], [7],
[8], [10], [11], [13], [14]. These algorithms may require
assigning a set of control parameters and some of them
confront with the substantially high scheduling costs [6],
[8], [11], [13]. Some of them partition the tasks in a DAG into
levels such that there will be no dependency between tasks
in the same level [10], [14]. This level-by-level scheduling
technique considers the tasks only in the current level (that
is, a subset of ready tasks) at any time, which may not
perform well because of not considering all ready tasks.
Additionally, the study given in [14] presents a dynamic
remapper that requires an initial schedule of a given DAG
and then improves its performance using three variants of
an algorithm, which is out of the scope of this paper.

In this paper, we propose two new static scheduling
algorithms for a bounded number of fully connected
heterogeneous processors: the Heterogeneous Earliest-
Finish-Time (HEFT) algorithm and the Critical-Path-on-a-
Processor (CPOP) algorithm. Although the static-schedul-
ing for heterogeneous systems is offline, in order to
provide a practical solution, the scheduling time (or
running time) of an algorithm is the key constraint.
Therefore, the motivation behind these algorithms is to
deliver good-quality of schedules (or outputs with better
scheduling lengths) with lower costs (i.e., lower schedul-
ing times). The HEFT Algorithm selects the task with the
highest upward rank (defined in Section 4.1) at each step.
The selected task is then assigned to the processor which
minimizes its earliest finish time with an insertion-based
approach. The upward rank of a task is the length of the
critical path (i.e., the longest path) from the task to an exit
task, including the computation cost of the task. The
CPOP algorithm selects the task with the highest (upward
rank + downward rank) value at each step. The algorithm

targets scheduling of all critical tasks (i.e., tasks on the
critical path of the DAG) onto a single processor, which
minimizes the total execution time of the critical tasks. If
the selected task is noncritical, the processors selection
phase is based on earliest execution time with insertion-
based scheduling, as in the HEFT Algorithm.

As part of this research work, a parametric graph
generator has been designed to generate weighted directed
acyclic graphs for the performance study of the scheduling
algorithms. The graph generator targets the generation of
many types of DAGs using several input parameters that
provide an unbiased comparison of task-scheduling algo-
rithms. The comparison study in this paper is based on both
randomly generated task graphs and the task graphs of real
applications, including the Gaussian Elimination Algorithm
[3], [28], FFT Algorithm [29], [30], and a molecular dynamic
code given in [19]. The comparison study shows that our
algorithms significantly surpass previous approaches in
terms of both performance metrics (schedule length ratio,
speedup, efficiency, and number of occurrences giving best
results) and a cost metric (scheduling time to deliver an
output schedule).

The remainder of this paper is organized as follows: In
the next section, we define the research problem and the
related terminology. In Section 3, we provide a taxonomy of
task-scheduling algorithms and the related work in
scheduling for heterogeneous systems. Section 4 introduces
our scheduling algorithms (the HEFT and the CPOP
Algorithms). Section 5 presents a comparison study of our
algorithms with the related work, which is based on
randomly generated task graphs and task graphs of
several real applications. In Section 6, we introduce
several extensions to the HEFT algorithm. The summary
of the research presented and planned future work is
given in Section 7.

2 TASK-SCHEDULING PROBLEM

A scheduling system model consists of an application, a
target computing environment, and a performance criteria
for scheduling. An application is represented by a directed
acyclic graph, G = (V, E), where V is the set of v tasks
and E is the set of e edges between the tasks. (Task and
node terms are interchangeably used in the paper.) Each
edge (i,j) € E represents the precedence constraint such
that task n; should complete its execution before task n;
starts. Data is a v X v matrix of communication data, where
data; i, is the amount of data required to be transmitted from
task n; to task nj.

In a given task graph, a task without any parent is
called an entry task and a task without any child is called
an exit task. Some of the task scheduling algorithms may
require single-entry and single-exit task graphs. If there is
more than one exit (entry) task, they are connected to a
zero-cost pseudo exit (entry) task with zero-cost edges, which
does not affect the schedule.

We assume that the target computing environment
consists of a set @ of ¢ heterogeneous processors
connected in a fully connected topology in which all
interprocessor communications are assumed to perform
without contention. In our model, it is also assumed that

262 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 3, MARCH 2002

computation can be overlapped with communication.
Additionally, task executions of a given application are
assumed to be nonpreemptive. W is a v x ¢ computation
cost matrix in which each w; ; gives the estimated execution
time to complete task n; on processor p;. Before scheduling,
the tasks are labeled with the average execution costs. The
average execution cost of a task n; is defined as

w; = zq: wi j/q- (1)

The data transfer rates between processors are stored in
matrix B of size ¢ x ¢. The communication startup costs of
processors are given in a g-dimensional vector L. The
communication cost of the edge (¢,k), which is for
transferring data from task n; (scheduled on p,,) to task
ny (scheduled on p,), is defined by

data; .
Ci,k = Lm =+ B ok . (2)

When both n; and n; are scheduled on the same
processor, c¢;; becomes zero since we assume that the
intraprocessor communication cost is negligible when it is
compared with the interprocessor communication cost.
Before scheduling, average communication costs are used
to label the edges. The average communication cost of an
edge (i, k) is defined by

. — datai k
Gk =1L+ T

where B is the average transfer rate among the processors
in the domain and L is the average communication
startup time.

Before presenting the objective function, it is necessary to
define the EST and EFT attributes, which are derived from a
given partial schedule. EST'(n;,p;) and EFT(n;,p;) are the
earliest execution start time and the earliest execution finish
time of task n; on processor pj, respectively. For the entry
taSk ncntry/

: 3)

EST(eriry. p;) = 0. (4)

For the other tasks in the graph, the EFT and EST values
are computed recursively, starting from the entry task, as
shown in (5) and (6), respectively. In order to compute the
EFT of a task n;, all immediate predecessor tasks of n; must
have been scheduled.

EST(n;,p;) = max {avail[j], (AFT(ny,) + cm,i)},

max
i Epred(n;)
(5)
EFT(nz'vpj) = Wi, + EST(ni,pj) , (6)

where pred(n;) is the set of immediate predecessor tasks of
task n; and avail[j] is the earliest time at which processor p;
is ready for task execution. If n;, is the last assigned task on
processor p;, then avail[j] is the time that processor p;
completed the execution of the task n; and it is ready to
execute another task when we have a noninsertion-based
scheduling policy. The inner max block in the EST equation
returns the ready time, i.e., the time when all data needed by
n; has arrived at processor p;.

After a task n,, is scheduled on a processor pj, the earliest
start time and the earliest finish time of n,,, on processor p;
is equal to the actual start time, AST'(n,,), and the actual
finish time, AFT(n,,), of task n,, respectively. After all
tasks in a graph are scheduled, the schedule length (ie.,
overall completion time) will be the actual finish time of the
exit task ng.y. If there are multiple exit tasks and the
convention of inserting a pseudo exit task is not applied, the
schedule length (which is also called makespan) is defined as

makespan = max{AFT (neit)} (7

The objective function of the task-scheduling problem is to
determine the assignment of tasks of a given application to
processors such that its schedule length is minimized.

3 RELATED WORK

Static task-scheduling algorithms can be classified into two
main groups (see Fig. 1), heuristic-based and guided
random-search-based algorithms. The former can be further
classified into three groups: list scheduling heuristics,
clustering heuristics, and task duplication heuristics.

List Scheduling Heuristics. A list-scheduling heuristic
maintains a list of all tasks of a given graph according to
their priorities. It has two phases: the task prioritizing (or task
selection) phase for selecting the highest-priority ready task
and the processor selection phase for selecting a suitable
processor that minimizes a predefined cost function (which
can be the execution start time). Some of the examples are
the Modified Critical Path (MCP) [3], Dynamic Level
Scheduling [6], Mapping Heuristic (MH) [7], Insertion-
Scheduling Heuristic [18], Earliest Time First (ETF) [22],
and Dynamic Critical Path (DCP) [4] algorithms. Most of
the list-scheduling algorithms are for a bounded number
of fully connected homogeneous processors. List-schedul-
ing heuristics are generally more practical and provide
better performance results at a lower scheduling time than
the other groups.

Clustering Heuristics. An algorithm in this group maps
the tasks in a given graph to an unlimited number of
clusters. At each step, the selected tasks for clustering can
be any task, not necessarily a ready task. Each iteration
refines the previous clustering by merging some clusters. If
two tasks are assigned to the same cluster, they will be
executed on the same processor. A clustering heuristic
requires additional steps to generate a final schedule: a
cluster merging step for merging the clusters so that the
remaining number of clusters equal the number of
processors, a cluster mapping step for mapping the clusters
on the available processors, and a task ordering step for
ordering the mapped tasks within each processor [24].
Some examples in this group are the Dominant Sequence
Clustering (DSC) [12], Linear Clustering Method [19],
Mobility Directed [3], and Clustering and Scheduling
System (CASS) [25].

Task Duplication Heuristics. The idea behind duplica-
tion-based scheduling algorithms is to schedule a task
graph by mapping some of its tasks redundantly, which
reduces the interprocess communication overhead [9], [18],
[27], [30]. Duplication-based algorithms differ according to
the selection strategy of the tasks for duplication. The

TOPCUOGLU ET AL.: PERFORMANCE-EFFECTIVE AND LOW-COMPLEXITY TASK SCHEDULING FOR HETEROGENEOUS COMPUTING 263

Static Task-Scheduling Algorithms

Heuristic Based

Guided Random Search Based

Genetic Algorithms [5, 8, 13]
Simulated Annealing [11, 15]
Local Search Technique [16, 20]

‘ List Scheduling Heuristics

Modified Critical Path [3]
Dynamic Critical Path [4]
Dynamic Level Scheduling [6]

Task Duplication
Heuristics

Critical Path Fast Duplication [9]
Duplication Scheduling Heuristic [18]

Mapping Heuristic [7]

Clustering Heuristics

Bottom-Up Top-Down Duplication Heuristic [30]
Duplication First and Reduction Next [27]

Mobility Directed [3]

Dominant Sequnce Clustering [12]

Linear Clustering [19]

Fig. 1. Classification of static task-scheduling algorithms.

algorithms in this group are usually for an unbounded
number of identical processors and they have much higher
complexity values than the algorithms in the other groups.

Guided Random Search Techniques. Guided random
search techniques (or randomized search techniques) use
random choice to guide themselves through the problem
space, which is not the same as performing merely random
walks as in the random search methods. These techniques
combine the knowledge gained from previous search
results with some randomizing features to generate new
results. Genetic algorithms (GAs) [5], [8], [11], [13], [17] are
the most popular and widely used techniques for several
flavors of the task scheduling problem. GAs generate good
quality of output schedules; however, their scheduling
times are usually much higher than the heuristic-based
techniques [31]. Additionally, several control parameters in
a genetic algorithm should be determined appropriately.
The optimal set of control parameters used for scheduling
a task graph may not give the best results for another
task graph. In addition to GAs, simulated annealing [11],
[15] and local search method [16], [20] are the other
methods in this group.

3.1 Task-Scheduling Heuristics for Heterogeneous
Environments

This section presents the reported task-scheduling heuristics
that support heterogeneous processors, which are the
Dynamic Level Scheduling Algorithm [6], the Levelized-
Min Time Algorithm [10], and the Mapping Heuristic
Algorithm [7].

Dynamic-Level Scheduling (DLS) Algorithm. At each
step, the algorithm selects the (ready node, available
processor) pair that maximizes the value of the dynamic
level which is equal to DL(n;,p;) = rank:(n;) — EST(n;, ;).
The computation cost of a task is the median value of the
computation costs of the task on the processors. In this
algorithm, upward rank calculation does not consider the
communication costs. For heterogeneous environments, a

new term added for the difference between the task’s
median execution time on all processors and its execution
time on the current processor. The general DLS algorithm
has an O(¢* x ¢) time complexity, where v is the number of
tasks and ¢ is the number of processors.

Mapping Heuristic (MH). In this algorithm, the compu-
tation cost of a task on a processor is computed by the
number of instructions to be executed in the task divided by
the speed of the processor. However, in setting the
computation costs of tasks and the communication costs
of edges before scheduling, similar processing elements
(i.e., homogeneous processors) are assumed; the hetero-
geneity comes into the picture during the scheduling
process.

This algorithm uses static upward ranks to assign
priorities. (The authors also experimented by adding the
communication delay to the rank values.) In this algorithm,
the ready time of a processor for a task is the time when the
processor has finished its last assigned task and is ready to
execute a new one. The MH algorithm does not schedule a
task to an idle time slot that is between two tasks already
scheduled. The time complexity, when contention is con-
sidered, is equal to O(v* x ¢*) for v tasks and ¢ processors;
otherwise, it is equal to O(v* x q).

Levelized-Min Time (LMT) Algorithm. It is a two-phase
algorithm. The first phase groups the tasks that can be
executed in parallel using the level attribute. The second
phase assigns each task to the fastest available processor. A
task in a lower level has higher priority than a task in a
higher level. Within the same level, the task with the highest
computation cost has the highest priority. Each task is
assigned to a processor that minimizes the sum of the task’s
computation cost and the total communication costs with
tasks in the previous levels. For a fully connected graph,
the time complexity is O(v* x ¢°) when there are v tasks
and ¢ processors.

264 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13,

NO. 3, MARCH 2002

o v

O 00 =]

. endwhile

1. Set the computation costs of tasks and communication costs of edges with mean values.
2. Compute rank, for all tasks by traversing graph upward, starting from the exit task.
3. Sort the tasks in a scheduling list by nonincreasing order of rank, values.
4. while there are unscheduled tasks in the list do
53 Select the first task, »;, from the list for scheduling.
for each processor p; in the processor-set (py, € () do

Compute EFT(n;, pp) value using the insertion-based scheduling policy.
Assign task n; to the processor p; that minimizes EFT ol task n;.

Fig. 2. The HEFT algorithm.

4 TASK-SCHEDULING ALGORITHMS

Before introducing the details of HEFT and CPOP algorithms,
we introduce the graph attributes used for setting the task
priorities.

41 Graph Attributes Used by HEFT and CPOP
Algorithms

Tasks are ordered in our algorithms by their scheduling
priorities that are based on upward and downward
ranking. The upward rank of a task n; is recursively
defined by

rank,(n;) =w;, + max (¢, + rank,(n;)), (8)
njesucc(n;)

where succ(n;) is the set of immediate successors of task n;,
i, is the average communication cost of edge (4, j), and w;
is the average computation cost of task n;. Since the rank is
computed recursively by traversing the task graph upward,
starting from the exit task, it is called upward rank. For the
exit task n.,;, the upward rank value is equal to

rank,(Negit) = Weit- 9)

Basically, rank,(n;) is the length of the critical path from
task n; to the exit task, including the computation cost of
task n;. There are algorithms in the literature which
compute the rank value using computation costs only,
which is called static upward rank, rank;,.

Similarly, the downward rank of a task n; is recursively
defined by

max

rankg(n;) =
njepred(n;)

{r(mkd(nj) +w; +¢j; }, (10)
where pred(n;) is the set of immediate predecessors of
task n;. The downward ranks are computed recursively
by traversing the task graph downward starting from the
entry task of the graph. For the entry task ngu,, the
downward rank value is equal to zero. Basically, rank,(n;)
is the longest distance from the entry task to task n;,
excluding the computation cost of the task itself.

4.2 The Heterogeneous-Earliest-Finish-Time (HEFT)
Algorithm

The HEFT algorithm (Fig. 2) is an application scheduling
algorithm for a bounded number of heterogeneous
processors, which has two major phases: a task prioritizing
phase for computing the priorities of all tasks and a
processor selection phase for selecting the tasks in the order
of their priorities and scheduling each selected task on its
“best” processor, which minimizes the task’s finish time.

Task Prioritizing Phase. This phase requires the priority
of each task to be set with the upward rank value, rank,,
which is based on mean computation and mean communica-
tion costs. The task list is generated by sorting the tasks by
decreasing order of rank,. Tie-breaking is done randomly.
There can be alternative policies for tie-breaking, such as
selecting the task whose immediate successor task(s) has
higher upward ranks. Since these alternate policies increase
the time complexity, we prefer a random selection strategy.
It can be easily shown that the decreasing order of rank,
values provides a topological order of tasks, which is a
linear order that preserve the precedence constraints.

Processor Selection Phase. For most of the task schedul-
ing algorithms, the earliest available time of a processor p;
for a task execution is the time when p; completes the
execution of its last assigned task. However, the HEFT
algorithm has an insertion-based policy which considers the
possible insertion of a task in an earliest idle time slot
between two already-scheduled tasks on a processor. The
length of an idle time-slot, i.e., the difference between
execution start time and finish time of two tasks that were
consecutively scheduled on the same processor, should be
at least capable of computation cost of the task to be
scheduled. Additionally, scheduling on this idle time slot
should preserve precedence constraints.

In the HEFT Algorithm, the search of an appropriate idle
time slot of a task n; on a processor p; starts at the time
equal to the ready_time of n; on pj, i.e., the time when all
input data of n; that were sent by n;’s immediate
predecessor tasks have arrived at processor p;. The search
continues until finding the firstidle time slot that is capable of
holding the computation cost of task n;. The HEFT algorithm
has an O(e x ¢) time complexity for e edges and ¢ processors.
For a dense graph when the number of edges is
proportional to O(v?) (v is the number of tasks), the time
complexity is on the order of O(v* x p).

As an illustration, Fig. 4a presents the schedules obtained
by the HEFT algorithm for the sample DAG of Fig. 3. The
schedule length, which is equal to 80, is shorter than the
schedule lengths of the related work; specifically, the
schedule lengths of DLS, MH, and LMT Algorithms are
91, 91, and 95, respectively. The first column in Table 1 gives
upward rank values for the given task graph. The
scheduling order of the tasks with respect to the HEFT
Algorithm is {ny, ng, n4, no, ns, ng, ny, N7, Ng, N10 }-

4.3 The Critical-Path-on-a-Processor (CPOP)
Algorithm

Although our second algorithm, the CPOP algorithm
shown in Fig. 5, has the task prioritizing and processor

TOPCUOGLU ET AL.: PERFORMANCE-EFFECTIVE AND LOW-COMPLEXITY TASK SCHEDULING FOR HETEROGENEOUS COMPUTING 265

Fig. 3. A sample task graph with 10 tasks.

P1 P2 P3
0, — :

20 —

30 |—

50 —

60 |—

70—

80 —

90 —

(@)

Computation Costs

Task P1 P2 P3
1 14 16 9
2 13 19 18
3 11 13 19
4 13 8 17
5 12 13 10
6 13 16 9
7 7 15 11
8 5 11 14
9 18 12 20
10 21 7 16

P1 P2 P3

90 —

Fig. 4. Scheduling of task graph in Fig. 3 with the HEFT and CPOP algorithms. (a) HEFT Algorithm (schedule length = 80). (b) CPOP Algorithm

(schedule length = 86).

selection phases as in the HEFT algorithm, it uses a different
attribute for setting the task priorities and a different
strategy for determining the “best” processor for each
selected task.

Task Prioritizing Phase. In this phase, upward rank
(rank,) and downward rank (rank,) values for all tasks are
computed using mean computation and mean communica-
tion costs (Steps 1-3). The CPOP algorithm uses the critical

path of a given application graph. The length of this path,
|CP|, is the sum of the computation costs of the tasks on the
path and intertask communication costs along the path. The
sum of computation costs on the critical path of a graph is
basically the lower bound for the schedule lengths generated

by the task scheduling algorithms.
The priority of each task is assigned with the summation

of upward and downward ranks. The critical path length is

266 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 3, MARCH 2002

TABLE 1
Values of Attributes Used in HEFT and CPOP Algorithms
for Task Graph in Fig. 3

ng | rank,(n;) | rankg(n;) | rank,(n;) 4+ rankg(n;)
nq 108.000 0.000 108.000
ny 77.000 31.000 108.000
3 80.000 25.000 105.000
i 80.000 22.000 102.000
N5 69.000 24.000 93.000
Ng 63.333 27.000 90.333
ny 42.667 62.333 105.000
ng 35.667 66.667 102.3341
g 11.333 63.667 108.000
nip | 11.667 93.333 108.000

equal to the entry task’s priority (Step 5). Initially, the entry
task is the selected task and marked as a critical path task.
An immediate successor (of the selected task) that has the
highest priority value is selected and it is marked as a
critical path task. This process is repeated until the exit node
is reached (Steps 6-12). For tie-breaking, the first immediate
successor which has the highest priority is selected.

We maintain a priority queue (with the key of
rank, + rankg) to contain all ready tasks at any given
instant. A binary heap was used to implement the priority
queue, which has time complexity of O(log v) for insertion
and deletion of a task and O(1) for retrieving the task with
the highest priority. At each step, the task with the highest
rank, + rank, value is selected from the priority queue.

Processor Selection Phase. The critical-path processor,
pcp, is the one that minimizes the cumulative computation
costs of the tasks on the critical path (Step 13). If the selected

task is on the critical path, then it is scheduled on the
critical-path processor; otherwise, it is assigned to a
processor which minimizes the earliest execution finish
time of the task. Both cases consider an insertion-based
scheduling policy. The time-complexity of the CPOP
algorithm is equal to O(e x p). Fig. 4b shows the schedule
obtained by the CPOP algorithm for Fig. 3, which has a
schedule length of 86. Based on the values in Table 1, the
critical path in Fig. 3 is {ni,ns,ng,nyo}. If all critical path
tasks are scheduled on P1, P2, or P3, the path length will be
66, 54, or 63, respectively. P2 is selected as the critical path
processor. The scheduling order of the tasks with respect to
CPOP algorithm is {77,1, Na, N3, N7, N4, N5, N9, Ng, N8, mo}.

5 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the comparative evaluation of
our algorithms and the related work given in Section 3.1.
For this purpose, we consider two sets of graphs as the
workload for testing the algorithms: randomly generated
application graphs and the graphs that represent some of
the numerical real world problems. First, we present the
metrics used for performance evaluation, which is followed
by two sections on experimental results.

5.1 Comparison Metrics

The comparisons of the algorithms are based on the
following four metrics:

e Schedule Length Ratio (SLR). The main perfor-
mance measure of a scheduling algorithm on a
graph is the schedule length (makespan) of its output
schedule. Since a large set of task graphs with
different properties is used, it is necessary to
normalize the schedule length to a lower bound,

D W —

1>

7. Ml — Nentry-
8. while nj, is not the exit task do

9. Select n; where
10. SETep = SETep U {n;}.
11. g — nj.

12. endwhile

22. endwhile

. Set the computation costs of tasks and communication costs of edges with mean values.
. Compute rank, of tasks by traversing graph upward. starting from the cxit task.
. Compute rank, of tasks by traversing graph downward, starting [rom the entry task.
. Compute priorily(n;) = ranky(n;) + rank,(n;) lor each task n; in the graph.
L NCOP| = priorily(nentry)y where nensry, 1s the enlry task.
5. SETop = {entry }» where SETqp is the setl of tasks on the critical path.
Y

((nj € suee(ng)) and (priority(n;) == |CPJ)).

13. Seleet the critical-path processor (pep) which minimizes

14. Initialize the priority queue with the entry task.
15. while there is an unscheduled task in the priority queue do

16. Select the highest priority task n; from priority queue.

17. if n, € SET¢p then

18. Assign the task »; on pop.

19. else

20. Assign the task n; to the processor p; which minimizes the IFT(n,. p;).
21. Update the priority-queue with the successors ol n;. if they become ready tasks.

Z Wi, Vp; € Q.

n; ESET~p

Fig. 5. The CPOP algorithm.

TOPCUOGLU ET AL.: PERFORMANCE-EFFECTIVE AND LOW-COMPLEXITY TASK SCHEDULING FOR HETEROGENEOUS COMPUTING 267

which is called the Schedule Length Ratio (SLR). The
SLR value of an algorithm on a graph is defined by

makespan

SLR = - .
Z'n, €CPyin mlnpj EQ{w%]}

(11)

The denominator is the summation of the minimum
computation costs of tasks on the CPyn. (For an
unscheduled DAG, if the computation cost of each
node n; is set with the minimum value, then the
critical path will be based on minimum computation
costs, which is represented as C'Py;ry.) The SLR of a
graph (using any algorithm) cannot be less than one
since the denominator is the lower bound. The task-
scheduling algorithm that gives the lowest SLR of a
graph is the best algorithm with respect to perfor-
mance. Average SLR values over several task graphs
are used in our experiments.

e Speedup. The speedup value for a given graph is
computed by dividing the sequential execution time
(i.e., cumulative computation costs of the tasks in the
graph) by the parallel execution time (ie., the
makespan of the output schedule). The sequential
execution time is computed by assigning all tasks to
a single processor that minimizes the cumulative of
the computation costs.

minpy €Q { an 9% w7~]}
makespan '

Speedup = (12)
If the sum of the computation costs is maximized,
it results in a higher speedup, but ends up with
the same ranking of the scheduling algorithms.
Efficiency, the ratio of the speedup value to the
number of processors used, is another comparison
metric used for application graphs of real world
problems given in Section 5.3.

e Number of Occurrences of Better Quality of
Schedules. The number of times that each algorithm
produced better, worse, and equal quality of sche-
dules compared to every other algorithm is counted in
the experiments.

o Running Time of the Algorithms. The running time
(or the scheduling time) of an algorithm is its
execution time for obtaining the output schedule
of a given task graph. This metric basically gives
the average cost of each algorithm. Among the
algorithms that give comparable SLR values, the
one with the minimum running time is the most
practical implementation. The minimization of SLR
by checking all possible task-processor pairs can
conflict with the minimization in the running time.

5.2 Randomly Generated Application Graphs

In our study, we first considered the randomly generated
application graphs. A random graph generator was
implemented to generate weighted application DAGs
with various characteristics that depend on several input
parameters given below. Our simulation-based framework
allows assigning sets of values to the parameters used by
random graph generator. This framework first executes the
random graph generator program to construct the applica-
tion DAGs, which is followed by the execution of the
scheduling algorithms to generate output schedules, and,

finally, it computes the performance metrics based on the
schedules.

5.2.1 Random Graph Generator
Our random graph generator requires the following input
parameters to build weighted DAGs.

e Number of tasks in the graph, (v).

e Shape parameter of the graph, («). We assume that
the height (depth) of a DAG is randomly generated
from a uniform distribution with a mean value equal
to % (The height is equal to the smallest integral
value not less than the real value generated
randomly.) The width for each level is randomly
selected from a uniform distribution with mean
equal to « x /v. A dense graph (a shorter graph
with high parallelism) can be generated by selecting
a >> 1.0;if o << 1.0, it will generate a longer graph
with a low parallelism degree.

e Out degree of a node, (out_degree).

e Communication to computation ratio, (CCR). It is the
ratio of the average communication cost to the
average computation cost. If a DAG’s CCR value is
very low, it can be considered as a computation-
intensive application.

e Range percentage of computation costs on proces-
sors, (0). It is basically the heterogeneity factor for
processor speeds. A high percentage value causes a
significant difference in a task’s computation cost
among the processors and a low percentage indi-
cates that the expected execution time of a task is
almost equal on any given processor in the system.
The average computation cost of each task n; in the
graph, i.e., w;, is selected randomly from a uniform
distribution with range [0, 2 X Wpag |, where Wpag
is the average computation cost of the given graph,
which is set randomly in the algorithm. Then, the
computation cost of each task n; on each processor p;
in the system is randomly set from the following
range:

w; X (1—§> Sw,;wjgmx <1+§)

In each experiment, the values of these parameters are
assigned from the corresponding sets given below. A
parameter should be assigned by all values given in its set
in a single experiment and, in case of any change on these
values, it is written explicitly in the paper. Note that the last
value in the out_degree set is the number of nodes in the
graph which generate fully connected graphs for the
experiments.

(13)

SETy = {20,40, 60, 80,100},
SET¢cr = {0.1,0.5,1.0,5.0,10.0},
SET, = {0.5,1.0,2.0},
SETput_degree = {1,2,3,4,5,v},
SETs = {0.1,0.25,0.5,0.75,1.0}.

These combinations give 2,250 different DAG types.
Since 25 random DAGs were generated for each DAG type,
the total number of DAGs used in our experiments was
around 56K. Assigning several input parameters and
selecting each parameter from a large set cause the

268 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 3, MARCH 2002

Average SLR
w\

20 30 40 50 60 70 80 90 100
Number of Nodes

(a)

28

26

24

22

Average Speedup
no

20 30 40 50 60 70 80 90 100

1 I L L L

Number of Nodes

(b)

Fig. 6. (a) Average SLR and (b) average speedup with respect to graph size.

generation of diverse DAGs with various characteristics.
Experiments based on diverse DAGs prevent biasing
toward a particular scheduling algorithm.

5.2.2 Performance Results

The performance of the algorithms were compared with
respect to various graph characteristics. The first set of
experiments compares the performance and cost of the
algorithms with respect to various graph sizes (see Figs. 6
and 7). The SLR-based performance ranking of the
algorithms is {HEFT, CPOP, DLS, MH, LMT]}. (It should
be noted that each ranking in this paper starts with the best
algorithm and ends with the worst one with respect to
the given comparison metric.) The average SLR value of
HEFT on all generated graphs is better than the CPOP
algorithm by 7 percent, the DLS algorithm by 8 percent,
the MH algorithm by 16 percent, and the LMT algorithm
by 52 percent. The average speedup ranking of the
algorithms is {HEFT, DLS, (CPOP=MH), LMT} (Fig. 6b).

Based on these experiments, the HEFT algorithm outper-
forms the other algorithms for any graph size in terms of SLR
and speedup. The CPOP algorithm outperforms the related
work in terms of average SLR; for various graph sizes, it
cannot give higher speedup values than the DLS algorithm.
With respect to average running times (see Fig. 7), The HEFT
algorithm is the fastest and the DLS algorithm is the
slowest one. On average, the HEFT algorithm is faster
than the CPOP algorithm by 10 percent, the MH algorithm
by 32 percent, the DLS algorithm by 84 percent, and the
LMT algorithm by 48 percent.

The next experiment is with respect to the graph
structure. When o (the shape parameter of the graph) is
equal to 0.5, i.e., the generated graphs have greater depths
with a low degree of parallelism, it is shown that the
performance of the HEFT algorithm is better than that of
the CPOP algorithm by 8 percent, the MH algorithm by
12 percent, the DLS algorithm by 16 percent, and the
LMT algorithm by 40 percent. When « is equal to 1.0, the
average SLR value of the HEFT algorithm is better than that
of the CPOP algorithm by 7 percent, the MH algorithm
by 14 percent, the DLS algorithm by 7 percent, and the
LMT algorithm by 34 percent. When « is equal to 2.0,
the HEFT algorithm is better than the CPOP algorithm by

6 percent, the MH algorithm by 15 percent, the DLS algorithm
by 8 percent, and the LMT algorithm by 31 percent. For all
three different graph structures, the HEFT algorithm gives
the best performance.

Quality of schedules generated by the algorithms with
respect to various CCR values was compared in another
experiment. The performance ranking of the algorithms
when CCR < 1.0 is {HEFT, DLS, MH, CPOP, LMT}. When
CCR > 1.0, the performance ranking changes to {HEFT,
CPOP, DLS, MH, LMT}. The CPOP algorithm gives better
results for graphs with higher CCRs than the graphs with
lower CCRs. Clustering of the critical path on the fastest
processor results in better quality of schedules for the
graphs in which average communication cost is greater than
average computation cost.

Finally, the number of times that each scheduling
algorithm in the experiments produced better, worse, or
equal schedule length compared to every other algorithm
was counted for the 56250 DAGs used. Each cell in Table 2
indicates the comparison results of the algorithm on the left
with the algorithm on the top. The “combined” column
shows the percentage of graphs in which the algorithm on
the left gives a better, equal, or worse performance than all
other algorithms combined. The ranking of the algorithms,

20

e
G—oHEFT /
4 CPOP /

T 16 H-tIMH /

é % - DLS /

= A -ALMT //

o 12 //

E y

= /

> 7/

£ %

5 8 s Ry

[// A

Q — -

& , A -

]

z 4r

0 ‘ . ‘ . ‘ .

.
20 30 40 50 60 70 80 90 100
Number of Nodes

Fig. 7. Average running time of algorithms with respect to graph size.

TOPCUOGLU ET AL.: PERFORMANCE-EFFECTIVE AND LOW-COMPLEXITY TASK SCHEDULING FOR HETEROGENEOUS COMPUTING 269
TABLE 2
Pair-Wise Comparison of the Scheduling Algorithms
HEFT | CPOP | DLS MH | LMT | Combined
better 15181 | 42709 | 19730 | 56059 86%
HEFT | cqual * 215 802 689 2 1%
worse 10854 | 12739 | 5831 189 13%
better 10854 21771 | 31689 | 53922 55%
CPOP | cqual 215 * 108 76 3 < 1%
WOTSC 45181 31368 | 21485 | 2325 45%
better 12739 31368 44056 | 55873 64%
DLS cqual R02 10% * | 2170 1 1%
WOrse 42709 24774 10024 376 35%
better 5831 21485 | 10021 55312 11%
MH equal 689 76 | 2170 * 6 1%
WOrse 49730 34689 | 44056 902 38%
better 189 2325 376 902 2%
LMT | equal 2 3 1 6 * < 1%
WOTse 26059 53922 | 55873 | 55342 98%

based on occurrences of best results, is {HEFT, DLS, CPOP,
MH, LMT}. However, the ranking with respect to average
SLR values was: {HEFT, CPOP, DLS, MH, LMT}. Although
the DLS algorithm outperforms the CPOP algorithm in
terms of the number of occurrences of best results, the
CPOP algorithm has shown slightly better average SLR
value than the DLS algorithm.

5.3 Application Graphs of Real World Problems

In addition to randomly generated task graphs, we also
considered application graphs of three real world
problems: Gauss elimination algorithm [3], [28], Fast
Fourier Transformation [29], [30], and a molecular
dynamics code given in [19].

5.3.1 Gaussian Elimination

Fig. 8a gives the sequential program for the Gaussian
elimination algorithm [3], [28]. The data-flow graph of the
algorithm for the special case of m =5, where m is the
dimension of the matrix, is given in Fig. 8b. Each T
represents a pivot column operation and each Tj.; repre-
sents an update operation. In Fig. 8b, the critical path is
T171T1.2T2.2T2‘3T3‘3T3A4T4A4T475, which is the path with the
maximum number of tasks.

For the experiments of Gauss elimination application, the
same CCR and range percentage values (given in Section 5.2)
were used. Since the structure of the application graph is
known, we do not need the other parameters, such as the
number of tasks, out_degree, and shape parameters. A
new parameter, matrix size (m), is used in place of v (the
number of tasks in the graph). The total number of tasks in a
Gaussian elimination graph is equal to ’”2++*2

Fig. 9a gives the average SLR values of the algorithms at
various matrix sizes from 5 to 20, with an increment of one,
when the number of processors is equal to five. The
smallest size graph in this experiment has 14 tasks and
the largest one has 209 tasks. The performances of the
HEFT and DLS algorithms are the best of all. Increasing
the matrix size causes more tasks not to be on the critical
path, which results in an increase in the makespan for
each algorithm.

For the efficiency comparison, the number of processors
used in our experiments is varied from 2 to 16, increment-
ing by the power of 2; the CCR and range percentage
parameters have the same set of values. Fig. 9b gives
efficiency comparison for Gaussian elimination graphs
when the matrix size is 50. The HEFT and DLS algorithms
have better efficiency than the other algorithms. When the
number of processors is increased beyond eight, the
HEFT algorithm outperforms the DLS algorithm in terms
of efficiency. Since the matrix size is fixed, an increase in
the number of processors decreases the makespan for each
algorithm. As part of this experiment, we compared the
running time of the algorithms with respect to the various
numbers of processors (by keeping the matrix size fixed).
The results indicate that the DLS algorithm is the slowest
algorithm among them, although it performs as well as
the HEFT algorithm. As an example, when the matrix size
is 50 for 16 processors, the DLS algorithm takes 16.2 times
longer than the HEFT algorithm to schedule a given
graph. When the performance and cost results are
considered together, the HEFT algorithm is the most
efficient and practical algorithm among them.

5.3.2 Fast Fourier Transformation

The recursive, one-dimensional FFT Algorithm [29], [30]
and its task graph (when there are four data points) is given
in Fig. 10. In this figure, A is an array of size m which holds
the coefficients of the polynomial and array Y is the
output of the algorithm. The algorithm consists of two
parts: recursive calls (lines 3-4) and the butterfly opera-
tion (lines 6-7). The task graph in Fig. 10b can be divided
into two parts—the tasks above the dashed line are the
recursive call tasks and the ones below the line are
butterfly operation tasks. For an input vector of size m,
there are 2 x m — 1 recursive call tasks and m x log, m
butterfly operation tasks. (We assume that m =2* for
some integer k). Each path from the start task to any of
the exit tasks in an FFT task graph is a critical path since
the computation costs of tasks in any level are equal and the
communication costs of all edges between two consecutive
levels are equal.

270

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13,

NO. 3, MARCH 2002

(@)

O S—
— T
N i e
fg) (el ()
—
e
Y
for k=1 to m-1 do ’T2’9 66’) (\ng,
Tk :{fori=k+et to m do 1
3
Ak =k /A)
for j=k+1 to m do ";3‘\\
Tki o {fori=k+t1 to m do T
g a: =a. -ay, *ap } R
1 1 ik ki \ =
ﬁi’ 39
()
(Ta,q)
\V/\\ N
S
\(\4 5)

Fig. 8. (a) Gaussian elimination algorithm, (b) task graph for matrix of size 5.

4

35

25

Average SLR

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Matrix Size

(@)

W HEFT
i CPOP
MH
fios

08
LMT

<o
o

Efficiency

<o
'S

0.2

Number of Processors

(b)

Fig. 9. (a) Average SLR and (b) efficiency comparison for the Gaussian elimination graph.

For the FFT-related experiments, only the CCR and range
percentage parameters, among the parameters given in
Section 5.2, were used, as in the Gauss elimination
application. The number of data points in FFT is another
parameter in our simulations, which varies from 2 to 32
incrementing by the power of 2. Fig. 11a shows the average
SLR values for FFT graphs at various sizes of input points.
One can observe that the HEFT algorithm outperforms the
other algorithms in most of the cases. Fig. 11b presents the
efficiency values obtained for each of the algorithms
with respect to various numbers of processors with
graphs of 64 data points. The number of processors used
varied from two to 32, incrementing by the power of 2.
The HEFT and DLS algorithms give the most efficient
schedules in all cases.

When the running times of the algorithms for schedul-
ing FFT graphs are compared with respect to both the
number of data points and the number of processors used

(see Fig. 12), one can observe that the DLS algorithm is
the highest cost algorithm. Note that the number of
processors is equal to six in Fig. 12a and the number of
input points is equal to 64 in Fig. 12b.

5.3.3 Molecular Dynamics Code

Fig. 13 is the task graph of a modified molecular dynamic
code given in [19]. This application is part of our
performance evaluation since it has an irregular task graph.
Since the number of tasks is fixed in the application and the
structure of the graph is known, only the values of CCR and
range percentage parameters (in Section 5.2) are used in our
experiments. Fig. 14a shows the performance of the
algorithms with respect to five different CCR values when
the number of processors is equal to six. On the average, the
SLR ranking is {HEFT, DLS, CPOP, MH, LMT}. The
efficiency comparison of the scheduling algorithms is given
in Fig. 14b, in which the number of processors is varied

TOPCUOGLU ET AL.: PERFORMANCE-EFFECTIVE AND LOW-COMPLEXITY TASK SCHEDULING FOR HETEROGENEOUS COMPUTING 271

FFT (A, ®)

1. n= length(A)

2. if {(n=1) return (A)

3. YO = FFT((AI0LA[2]....AIn-2]) , o)
4. Y = FFT((AM]AB]..AN-1]) , of)
5 for i=0to n/2-1 do

6. {Vil=YOl+ o+ v

7. Yii+n/2] = YOI - o * Y[}
8. return (Y)

(@

Fig. 10. (a) FFT algorithm, (b) the generated DAG of FFT with four points.

6 | HErT
52 CPOP
22 MH
i1 DLS
5 LMT
T 4
n
@«
g
s 3
>
<
2

,,1 sl

Input Points

(@)

Fig. 11. (a) Average SLR and (b) efficiency comparison for the FFT graph.

0.05
W HEFT
i CPOP
0.04 gg e
L v
S
@
12}
£ 003
i
£
=
2
£ 002
C
jum
g
0.01
o r
4 16
Input Points
(a)

Fig. 12. Running times of scheduling algorithms for the FFT graph.

from two to seven with an increment of 1. Since there are at
most seven tasks in any level in Fig. 13, the number of
processors in the experiments is bounded up to seven
processors. It was also observed that the DLS and LMT

Wl HEFT
i%: CPOP
2 MH
0.8 . DLs
LMT
.. 06
Q
C
@
K]
&
0.4
0.2
0
Number of Processors
(b)
1.6
B HEFT
.: CPOP
1.4 2 wH
i DLs
12 CLMT
g
D a
@1 o
£ o
2 |
E 08 .
= |
o o
£ |
£ 06 |
i i
= |
0.4 o
|
0oz |
. .
0 ML | S
2 16
Number of Processors

(b)

algorithms take a running time almost three times longer
than the other three algorithms (HEFT, CPOP, and MH).
When these results are combined, the HEFT algorithm is the
most practical and efficient algorithm for this application.

272 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 3, MARCH 2002

Fig. 13. The task graph of the molecular dynamics code [19].

6 ALTERNATE POLICIES FOR THE PHASES OF THE
HEFT ALGORITHM

We proposed three substitute policies (shown as Al, A2,
and A3) for the task prioritizing phase of the HEFT
algorithm, which is based on upward rank in the experi-
ments. In A1, the priority value is equal to the summation of
the upward and downward ranks. In A2, the right part of
the + sign gives the latest execution finish time of an
immediate predecessor task of n; which is already
scheduled. A3 is similar to A2, except that it considers the
communication cost. In the experiments, it has been
observed that the original priority policy gives better results
than these alternates by 6 percent.

o Al priority(n;) = rank,(n;) + rankg(n;),

o A2 priority(n;) = rank,(n;) + max AFT(n;),
e A3 nj€pred(n;)

priority(n;) = rank,(n;) + max {AFT(n;) + ¢}

njepred(n;)

Another extension that may improve performance is to
take immediate child tasks into account. As an example, the
HEFT algorithm generates an output schedule of length 8
for the task graph given in Fig. 15; if task A and its
immediate child (task B) are scheduled on the same
processor, which minimizes the earliest finish time of task
B, the schedule length decreases to 7. To consider this

extension, we can modify the processor selection phase of
the HEFT algorithm as follows: For each selected task, one
of its immediate child tasks is marked as the critical-child
based on one of the three policies given below. If the other
immediate predecessors of the critical child are already
scheduled, then the selected task and its critical child are
scheduled on the same processor that minimizes the earliest
finish time of the critical child; otherwise, the selected task
is scheduled to the processor that minimizes its earliest
finish time, as in the HEFT algorithm. The three critical
child selection policies (B1, B2, and B3) use either commu-
nication cost or upward rank or both.

e BI: critical_child(n;) = max, csuce(n,) Cier
o B2 critical_child(n;) = max, csuce(n,) Tanky(ne),
e B3:

critical_child(n;) = max {rank,(n.) + ¢}

neesuce(n;)

The original HEFT algorithm outperforms these alter-
nates for small CCR graphs. For high CCR graphs, some
benefit has been observed by taking critical child tasks into
account during processor selection. When 3.0 < CCR < 6.0,
B1 policy slightly outperforms the original HEFT algorithm.
If CCR > 6.0, B2 policy outperforms the original algorithm
and others alternates by 4 percent.

TOPCUOGLU ET AL.:

W HEFT
7 2 CPOP

Average SLR

PERFORMANCE-EFFECTIVE AND LOW-COMPLEXITY TASK SCHEDULING FOR HETEROGENEOUS COMPUTING

273

W HEFT
S;é: CPOP
MH
08 ol
LMT
.. 06
Q
c
9 .
5
%04 o
02 § I |

Number of Processors

()

Fig. 14. (a) Average SLR and (b) efficiency comparison for the task graph of a molecular dynamics code.

P1

w

) (makespan = 8)
computation costs

(@

P2

P1

(makespan = 7)

(b)

Fig. 15. Scheduling of a task graph with the (a) HEFT algorithm and (b) an alternative method.

7 CONCLUSIONS

In this paper, we presented two new algorithms, called
the HEFT algorithm and the CPOP algorithm, for
scheduling application graphs onto a system of hetero-
geneous processors. Based on the experimental study
using a large set (56K) of randomly generated application
graphs with various characteristics and application graphs
of several real world problems (such as Gaussian elimina-
tion, FFT, and a molecular dynamics code), the HEFT
algorithm significantly outperformed the other algorithms
in terms of both performance and cost metrics, including
average schedule length ratio, speedup, frequency of best
results, and average running time. Because of its robust
performance, low running time, and the ability to give stable
performance over a wide range of graph structures, the HEFT
algorithm is a viable solution for the DAG scheduling
problem on heterogeneous systems. Based on our perfor-
mance evaluation study, we also observed that the CPOP
algorithm has given either better performance and better
running time results than existing algorithms or comparable
results with them.

Several alternative policies were studied for task prior-
itizing and processor selection phases of the HEFT algo-
rithm. A new method was introduced for the processor

selection phase which tries to minimize the earliest finish
time of the critical-child task of each selected task.

One planned future research is to analytically investigate
the trade-off between the quality of schedules of the
algorithms, i.e., average makespan values, and the number
of processors available. This extension may come up with
some bounds on the degradation of makespan given that
the number of processors available may not be sufficient.
We plan to extend the HEFT Algorithm for rescheduling
tasks in response to changes in processor and network
loads. Although our algorithms assume a fully connected
network, it is also planned to extent these algorithms for
arbitrary-connected networks by considering the link
contention.

REFERENCES

[1] MR. Gary and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[2]].D. Ullman, “NP-Complete Scheduling Problems,”]. Computer
and Systems Sciences, vol. 10, pp. 384-393, 1975.

[31 M. Wu and D. Gajski, “Hypertool: A Programming Aid for

Message Passing Systems,” IEEE Trans. Parallel and Distributed

Systems, vol. 1, pp. 330-343, July 1990.

Y. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling: An

Effective Technique for Allocating Task Graphs to Multi-

processors,” IEEE Trans. Parallel and Distributed Systems, vol. 7,

no. 5, pp. 506-521, May 1996.

[4]

274

(5]

o]

[

(8]

&)

(10]

(11]

(12]

[13]

(14]

[15]

[10]

(7]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[20]

(271

(28]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 3, MARCH 2002

E.SH. Hou, N. Ansari, and H. Ren, “A Genetic Algorithm for
Multiprocessor Scheduling,” IEEE Trans. Parallel and Distributed
Systems vol. 5, no. 2, pp. 113-120, Feb. 1994.

G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architec-
tures,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 2,
pp- 175-186, Feb. 1993.

H. El-Rewini and T.G. Lewis, “Scheduling Parallel Program Tasks
onto Arbitrary Target Machines,” J. Parallel and Distributed
Computing, vol. 9, pp. 138-153, 1990.

H. Singh and A. Youssef, “Mapping and Scheduling Hetero-
geneous Task Graphs Using Genetic Algorithms,” Proc. Hetero-
geneous Computing Workshop, pp. 86-97, 1996.

I. Ahmad and Y. Kwok, “A New Approach to Scheduling Parallel
Programs Using Task Duplication,” Proc. Int'l Conf. Parallel
Processing, vol. 2, pp. 47-51, 1994.

M. Iverson, F. Ozguner, and G. Follen, “Parallelizing Existing
Applications in a Distributed Heterogeneous Environment,” Proc.
Heterogeneous Computing Workshop, pp. 93-100, 1995.

P. Shroff, D.W. Watson, N.S. Flann, and R. Freund, “Genetic
Simulated Annealing for Scheduling Data-Dependent Tasks in
Heterogeneous Environments,” Proc. Heterogeneous Computing
Workshop, pp. 98-104, 1996.

T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on an
Unbounded Number of Processors,” IEEE Trans. Parallel and
Distributed Systems, vol. 5, no. 9, pp. 951-967, Sept. 1994.

L. Wang, HJ. Siegel, and V.P. Roychowdhury, “A Genetic-
Algorithm-Based Approach for Task Matching and Scheduling
in Heterogeneous Computing Environments,” Proc. Heterogeneous
Computing Workshop, 1996.

M. Maheswaran and H.J. Siegel, “A Dynamic Matching and
Scheduling Algorithm for Heterogeneous Computing Systems,”
Proc. Heterogeneous Computing Workshop, pp. 57-69, 1998.

L. Tao, B. Narahari, and Y.C. Zhao, “Heuristics for Mapping
Parallel Computations to Heterogeneous Parallel Architectures,”
Proc. Heterogeneous Computing Workshop, 1993.

M. Wu, W. Shu, and J. Gu, “Local Search for DAG Scheduling and
Task Assignment,” Proc. 1997 Int’l Conf. Parallel Processing,
pp. 174-180, 1997.

R.C. Correa, A. Ferreria, and P. Rebreyend, “Integrating List
Heuristics into Genetic Algorithms for Multiprocessor Schedul-
ing,” Proc. Eighth IEEE Symp. Parallel and Distributed Processing
(SPDP "96), Oct. 1996.

B. Kruatrachue and T.G. Lewis, “Grain Size Determination for
Parallel Processing,” IEEE Software, pp. 23-32, Jan. 1988.

S.J. Kim and J.C. Browne, “A General Approach to Mapping of
Parallel Computation upon Multiprocessor Architectures,” Proc.
Int’l Conf. Parallel Processing, vol. 2, pp. 1-8, 1988.

Y. Kwok, I. Ahmad, and]. Gu, “FAST: A Low-Complexity
Algorithm for Efficient Scheduling of DAGs on Parallel Proces-
sors,” Proc. Int’l Conf. Parallel Processing, vol. 2, pp. 150-157, 1996.
Y. Kwok and I. Ahmad, “Benchmarking the Task Graph
Scheduling Algorithms,” Proc. First Merged Int’l Parallel Pocessing
Symp./Symp. Parallel and Distributed Processing Conf., pp. 531-537,
1998.

JJ. Hwang, Y.C. Chow, F.D. Anger, and C.Y. Lee, “Scheduling
Precedence Graphs in Systems with Interprocessor Communica-
tion Costs,” SIAM]. Computing, vol. 18, no. 2, pp. 244257, 1989.
H. El-Rewini, H.H. Ali, and T. Lewis, “Task Scheduling in
Multiprocessor Systems,” Computer, pp. 27-37, Dec. 1995.

J. Liou and M.A. Palis, “A Comparison of General Approaches to
Multiprocessor Scheduling,” Proc. Int’l Parallel Processing Symp.,
pp. 152-156, 1997.

J. Liou and M.A. Palis, “An Efficient Clustering Heuristic for
Scheduling DAGs on Multiprocessors,” Proc. Symp. Parallel and
Distributed Processing, 1996.

A. Radulescu, A.J.C. van Gemund, and H. Lin, “LLB: A Fast and
Effective Scheduling Algorithm for Distributed-Memory Sys-
tems,” Proc. Second Merged Int’l Parallel Processing Symp./Symp.
Parallel and Distributed Processing Conf., 1999.

G. Park, B. Shirazi, and J. Marquis, “DFRN: A New Approach for
Duplication Based Scheduling for Distributed Memory Multi-
processor Systems,” Proc. Int’l Conf. Parallel Processing, pp. 157-
166, 1997.

M. Cosnard, M. Marrakchi, Y. Robert, and D. Trystram, “Parallel
Gaussian Elimination on an MIMD Computer,” Parallel Comput-
ing, vol. 6, pp. 275-295, 1988.

[29] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. MIT Press, 1990.

Y. Chung and S. Ranka, “Applications and Performance Analysis
of a Compile-Time Optimization Approach for List Scheduling
Algorithms on Distributed Memory Multiprocessors,” Proc. Super-
computing, pp. 512-521, Nov. 1992.

T. Braun, H.J. Siegel, N. Beck, L.L. Boloni, M. Maheswaran, A.L
Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hengsen, and R.F.
Freund, “A Comparison Study of Static Mapping Heuristics for a
Class of Meta-Tasks on Heterogeneous Computing Systems,”
Proc. Heterogeneous Computing Workshop, pp. 15-29, 1999.

(30]

(31]

Haluk Topcuoglu received the BS and MS
degrees in computer engineering from Bogazici
University, Istanbul, Turkey, in 1991 and 1993,
respectively. He received the PhD degree in
computer science from Syracuse University,
New York, in 1999. He is currently an assistant
professor in the Computer Engineering Depart-
ment, Marmara University, Turkey. His research
interests include task scheduling techniques in
heterogeneous environments, cluster comput-
ing, parallel and distributed programming, web technologies, and
genetic algorithms. He is a member of the IEEE, the IEEE Computer
Society and the ACM.

Salim Hariri received the MSc degree from
Ohio State University in 1982 and the PhD
degree in computer engineering from the Uni-
versity of Southern California in 1986. He is a
professor in the Electrical and Computer En-
gineering Department at the University of Ar-
izona and the director of the Center for
Advanced TeleSysMatics (CAT): Next-Genera-
tion Network-Centric Systems. He is the editor in
chief for Cluster Computing: The Journal of
Networks, Software Tools, and Applications. His current research
focuses on high performance distributed computing, agent-based
proactive and intelligent network management systems, design and
analysis of high speed networks, and developing software design tools
for high performance computing and communication systems and
applications. He has coauthored more than 200 journal and conference
research papers and is the author of the book, High Performance
Distributed Computing: Network, Architecture and Programming, to be
published by Prentice Hall, in 2002. He is a member of the IEEE
Computer Society.

Min-You Wu received the MS degree from the
Graduate School of Academia Sinica, Beijing,
China, and the PhD degree from Santa Clara
University, California. He is an associate pro-
L fessor in the Department of Electrical and
\ s Y Computer Engineering at the University of New
e Mexico. He has held various positions at the
University of lllinois at Urbana-Champaign,
\1!" 4 University of California at Irvine, Yale University,
Syracuse University, the State University of New
York at Buffalo, and the University of Central Florida. His research
interests include parallel and distributed systems, compilers for parallel
computers, programming tools, VLSI design, and multimedia systems.
He has published more than 90 journal and conference papers in the
above areas and edited two special issues on parallel operating
systems. He is a senior member of the IEEE and a member of ACM.
He is listed in International Who’s Who of Information Technology and
Who’s Who in America.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

