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Abstract. We study two-sided matching markets with locality of in-
formation and control. Each male (female) agent has an arbitrary strict
preference list over all female (male) agents. In addition, each agent is
a node in a fixed network. Agents learn about possible partners dynam-
ically based on their current network neighborhood. We consider con-
vergence of dynamics to locally stable matchings that are stable with
respect to their imposed information structure in the network. While ex-
istence of such states is guaranteed, we show that reachability becomes
NP-hard to decide. This holds even when the network exists only among
one side. In contrast, if only one side has no network and agents re-
member a previous match every round, reachability is guaranteed and
random dynamics converge with probability 1. We characterize this pos-
itive result in various ways. For instance, it holds for random memory
and for memory with the most recent partner, but not for memory with
the best partner. Also, it is crucial which partition of the agents has
memory. Finally, we conclude with results on approximating maximum
locally stable matchings.

1 Introduction

Matching problems form the basis of many assignment and allocation tasks en-
countered in computer science, operations research, and economics. A prominent
and popular approach in all these areas is stable matching, as it captures aspects
like distributed control and rationality of participants that arise in many as-
signment problems today. A variety of allocation problems in markets can be
analyzed within the context of two-sided stable matching, e.g., the assignment
of jobs to workers [2,5], organs to patients [18], or general buyers to sellers. In ad-
dition, stable marriage problems have been successfully used to study distributed
resource allocation problems in networks [9].

In this paper, we consider a game-theoretic model for matching with dis-
tributed control and information. Agents are rational agents embedded in a
(social) network and strive to find a partner for a joint relationship or activity,
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e.g., to do sports, write a research paper, exchange data etc. Such problems are
of central interest in economics and sociology, and they act as fundamental coor-
dination tasks in distributed computer networks. Our model extends the stable
marriage problem, in which we have sets U and W of men and women. Each
man (woman) can match to at most one woman (man) and has a complete strict
preference list over all women (men). Given a matching M , a blocking pair is a
man-woman pair such that both strictly improve by matching to each other. A
matching without blocking pair is a stable matching.

A central assumption in stable marriage is that every agent knows all agents
it can match to. In reality, however, agents often have limited information about
their matching possibilities. For instance, in a large society we would not expect
a man to match up with any other woman immediately. Instead, there exist re-
strictions in terms of knowledge and information that allow some pairs to match
up directly, while others would have to get to know each other before being
able to start a relationship. We incorporate this aspect by assuming that agents
are embedded in a fixed network of links. Links represent an enduring knowl-
edge relation that is not primarily under the control of the agents. Depending
on the interpretation, links could represent, e.g., family, neighbor, colleague or
teammate relations. Each agent strives to build one matching edge to a partner.
The set of links and edges defines a dynamic information structure based on
triadic closure, a standard idea in social network theory: If two agents have a
common friend, they are likely to meet and learn about each other. Translated
into our model this implies that each agent can match only to partners in its
2-hop neighborhood of the network of matching edges and links. Then, a local
blocking pair is a blocking pair of agents that are at hop distance at most 2 in
the network. Consequently, a locally stable matching is a matching without local
blocking pairs. Local blocking pairs are a subset of blocking pairs. In turn, every
stable matching is a locally stable matching, because it allows no (local or global)
blocking pairs. Thus, one might be tempted to think that locally stable match-
ings are easier to find and/or reach using distributed dynamics than ordinary
stable matchings. In contrast, we show in this paper that locally stable match-
ings have a rich structure and can behave quite differently than ordinary stable
matchings. Our study of locally stable matching with arbitrary strict preferences
significantly extends recent work on the special case of correlated or weighted
matching [11], in which preferences are correlated via matching edge benefits.

Contribution We concentrate on the important case of two-sided markets, in
which a (locally) stable matching is always guaranteed to exist. Our primary
interest is to characterize convergence properties of iterative round-based dy-
namics with distributed control, in which in each round a local blocking pair is
resolved. We focus on the Reachability problem: Given an instance and an
initial matching, is there a sequence of local blocking pair resolutions leading
to a locally stable matching? In Section 3 we see that there are cases, in which
a locally stable matching might never be reached. This is in strong contrast to
the case of weighted matching, in which it is easy to show convergence of every
sequence of local blocking pair resolutions with a potential function. In fact, it
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is NP-hard to decide Reachability, even if the network exists only among one
partition of agents. Moreover, there exist games and initial matchings such that
every sequence of local blocking pairs terminating in a locally stable matching is
exponentially long. Hence, Reachability might even be outside NP. If we need
to decide Reachability for a given initial matching and a specific locally stable
matching to be reached, the problem is even NP-hard for correlated matching.

Our NP-hardness results hold even if the network exists only among one par-
tition. In Section 4, we concentrate on a more general class of games in which
links exist in one partition and between partitions (i.e., one partition has no
internal links). This is a natural assumption when considering objects that do
not generate knowledge about each other, e.g., when matching resources to net-
worked nodes or users, where initially resources are only known to a subset of
users. Here we characterize the impact of memory on distributed dynamics. For
recency memory, each agent remembers in every round the most recent partner
that is different from the current one. With recency memory, Reachability
is always true, and for every initial matching there exists a sequence of poly-
nomially many local or remembered blocking pairs leading to a locally stable
matching. In contrast, for quality memory where all agents remember their best
partner Reachability stays NP-hard. This formally supports the intuition that
recency memory is more powerful than quality memory, as the latter yields agents
that are “hung up” on preferred but unavailable partners. This provides a novel
distinction between recency and quality memory.

Our positive results for recency memory in Section 4 imply that if we pick lo-
cal blocking pairs uniformly at random in each step, we achieve convergence with
probability 1. The proof relies only on the memory of one partition. In contrast,
if only the other partition has memory, we obtain NP-hardness of Reachabil-
ity. Convergence with probability 1 can also be guaranteed for random mem-
ory if in each round each agent remembers one of his previous matches chosen
uniformly at random. The latter result holds even when links exist among or
between both partitions. However, using known results on stable marriage with
full information [1], convergence time can be exponential with high probability,
independently of any memory.

In contrast to ordinary stable matchings, two locally stable matchings can
have very different size. This motivates our search for maximum locally stable
matchings in Section 5. While a simple 2-approximation algorithm exists, we can
show a non-approximability result of 1.5− ε under the unique games conjecture.
For spatial reasons most of the proofs are omitted but can be found in the full
version.

Related Work Locally stable matchings were introduced by Arcaute and Vassil-
vitskii [2] in a two-sided job-market model, in which links exist only among one
partition. The paper uses strong uniformity assumptions on the preferences and
addresses the lattice structure for stable matchings and a local Gale-Shapley
algorithm. More recently, we studied locally stable matching with correlated
preferences in the roommates problem, where arbitrary pairs of agents can be
matched [11]. Using a potential function argument, Reachability is always
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true and convergence guaranteed. Moreover, for every initial matching there
is a polynomial sequence of local blocking pairs that leads to a locally stable
matching. The expected convergence time of random dynamics, however, is ex-
ponential. If we restrict to resolution of pairs with maximum benefit, then for
random memory the expected convergence time becomes polynomial, but for
recency or quality memory convergence time remains exponential, even if the
memory is of polynomial size.

For an introduction to stable marriage and some of its variants we refer the
reader to several books in the area [10, 19]. There is a significant literature on
dynamics, especially in economics, which is too broad to survey here. These
works usually do not address issues like computational complexity or worst-
case bounds. We focus on a subset of prominent analytical works related to
our scenario. For the stable marriage problem, it is known that better-response
dynamics, in which agents sequentially deviate to blocking pairs, can cycle [16].
On the other hand, Reachability is always true, and for every initial matching
there exists a sequence of polynomially many steps to a stable matching [20]. If
blocking pairs are chosen uniformly at random at each step, convergence time is
exponential [1] in the worst case.

In the roommates problem, in which every pair of agents can be matched,
stable matchings can be absent. Deciding existence and computing stable match-
ings if they exist can be done in polynomial time [14]. In addition, if a stable
matching exists, then Reachability is always true [8]. A similar statement
can be made even more generally for relaxed concepts like P -stable matchings
that always exist [12]. Ergodic sets of the underlying Markov chain have been
studied [13] and related to random dynamics [15]. In addition, for computing
(variants of) stable matchings via iterative entry dynamics see [4–6].

The problem of computing a maximum locally stable matchings has recently
been considered in [7]. In addition to characterizations for special cases, a NP-
hardness result is shown and non-approximability of (21/19− ε) unless P= NP.
Computing maximum stable matchings with ties and incomplete lists has gener-
ated a significant amount of research interest over the past decade. The currently
best results are a 1.5-approximation algorithm [17] and (4/3−ε)-hardness under
the unique games conjecture [21].

2 Preliminaries

A network matching game (or network game) consists of a (social) network N =
(V,L), where V is a set of vertices representing agents and L ⊆ {{u, v}|u, v ∈
V, u 6= v} is a set of fixed links. A set E ⊆ {{u, v}|u, v ∈ V, u 6= v} defines the
potential matching edges. A state is a matching M ⊆ E such that for each v ∈ V
we have |{e | e ∈ M,v ∈ e}| ≤ 1. An edge e = {u, v} ∈ M provides utilities
bu(e), bv(e) > 0 for u and v, respectively. If for every e ∈ E we have bu(e) =
bv(e) = b(e) > 0, we speak of correlated preferences or a correlated network game.
Otherwise, we will assume that each agent has a total order � over its possible
matching partners, and for every agent the utility of matching edges is given
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according to this ranking. Throughout the paper we focus on the two-sided or
bipartite case, which is often referred to as the stable marriage problem, where V
is divided into two disjoint sets U and W such that E ⊆ {{u,w}| u ∈ U,w ∈W}.
Note that this does not imply that N is bipartite. If further the vertices of U
are isolated in N , we speak of a job-market game for consistency with [2, 11].

To describe stability in network matching games, we assume agents u and
v are accessible in state M if they have a distance of at most 2 in the graph
G = (V,L ∪M). A state M has a local blocking pair e = {u, v} ∈ E if u and v
are accessible and are each either unmatched in M or matched through an edge
e′ such that e′ serves a strictly smaller utility than e. Thus, in a local blocking
pair both agents can strictly increase their utility by generating e (and possibly
dismissing some other edge thereby). A state M that has no local blocking pair
is a locally stable matching.

Most of our analysis concerns iterative round-based dynamics, where in each
round we pick one local blocking pair, add it to M , and remove all edges that
conflict with this new edge. We call one such step a local improvement step.
With random dynamics we refer to the process when in each step the local
blocking pair is chosen uniformly at random from the ones available. A local
blocking pair {u, v} that is resolved and not a link as well must be connected
by some distance-2 path (u,w, v) in M before the step. This path can consist of
two links, or of exactly one link and one matching edge. In the latter case, let
w.l.o.g. {u,w} be the matching edge. As u can have only one matching edge, the
local improvement step will delete {u,w} to create {u, v}. For simplicity, we will
refer to this fact as ”an edge moving from {u,w} to {u, v}” or ”u’s edge moving
from w to v”.

In subsequent sections we will assume that agents have memory that allows
to “remember” one matching partner from a former round. In this case, a pair
{u, v} of agents becomes accessible not only by a distance-2 path in G, but
also when u appears in the memory of v. Hence, in this case a local blocking
pair can be based solely on access through memory. For random memory, we
assume that in every round each agent remembers a previous matching partner
chosen uniformly at random. For recency memory, each agent remembers the last
matching partner that is different from the current partner. For quality memory,
each agent remembers the best previous matching partner.

3 Complexity of Reachability and Duration

Complexity In contrast to ordinary stable marriage, there exist small examples
that show Reachability is not always true for locally stable matchings (see [11,
Thm. 5] or our circling gadget in the full version). Here we consider complexity of
this problem and show NP-hardness results when agents have strict preferences.
This is in contrast to correlated network games, where Reachability is true and
for every initial matching there is always a sequence to a locally stable matching
of polynomial length [11]. Still, we here show that given a particular matching to
reach, deciding Reachability becomes also NP-hard, even for correlated job-
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market games. We present the proof of the latter result in detail, as it provides
the basic idea for the omitted NP-hardness proofs as well.

Theorem 1. It is NP-hard to decide Reachability from the initial matching
M = ∅ to a given locally stable matching in a correlated network game.

Proof. We use a reduction from 3Sat . Given a 3Sat formula with k variables
x1, . . . , xk and l clauses C1, . . . , Cl, where clause Cj contains the literals l1j , l2j
and l3j , we have

U = {uxi |i = 1 . . . k} ∪ {uCj |j = 1 . . . l} ∪ {bh|h = 1 . . . k + l − 1},
W = {vxi , xi, xi|i = 1 . . . k} ∪ {vCj |j = 1 . . . l} ∪ {a, a1}.

For the social links see the picture shown below.

x1

x1

xk

xk

a

a1

vx1
vxk

vC1
vCl

ux1
uxk

uC1
uClb1 bl bl+1

· · · · · ·...

· · · · · ·

We do not restrict the set of matching edges, but assume that every edge not
appearing in the list below has benefit ε� 1 (resulting in them being irrelevant
for the dynamics). The other benefits are given as follows.

u ∈ U w ∈W b({u,w})
uCj

a j j = 1, . . . , l
uxi a i+ l i = 1, . . . , k
bh a h+ 1

2 h = 1, . . . , k + l − 1
uCj

l1j/l2j/l3j k + l + 1 j = 1, . . . , l
uxi xi/xi k + l + 1 i = 1, . . . , k
uCj

vxi
k + l + 1 + i i = 1, . . . , k, j = 1, . . . , l

uxi
vxi′ k + l + 1 + i′ i = 1, . . . , k, i′ = 1, . . . , i

uCj vCj′ 2k + l + 1 + j′ j = 1, . . . , l, j′ = 1, . . . , j

Our goal is to reach M∗ = {{us, vs}|s ∈ {x1, . . . , xk} ∪ {C1, . . . , Cl}}.
First, note that additional matching edges can only be introduced at {uC1 , a}.

Furthermore, once a vertex uy, y ∈ {x1, . . . , xk} ∪ {C1, . . . , Cl}, is matched to
a vertex other than a, it blocks the introduction of any edge for a vertex lying
behind uy on the path from uC1

to uxk
. Also, the vertices bh prevent that an edge
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is moved on from one u-vertex to another after it has left a. Thus, at the time
when an edge to a clause u-vertex is created that still exists in the final matching
(but is connected to some vCj then), the edges for all variable u-vertices must
have been created already.

Assume that the 3Sat formula is satisfiable. Then we first create a matching
edge at {uCj

, a}, move it over the u-and b-vertices to uxk
, and then move it

into the branching to the one of xk or xk that negates its value in the satisfy-
ing assignment. Similarly, one after the other (in descending order), we create
a matching edge at a for each of the variable u-vertices and move it into the
branching to the variable vertex that negates its value in the satisfying assign-
ment. As every clause is fulfilled, at least one of the three vertices that yield an
improvement for the clause u-vertex from a is not blocked by a matching edge to
a variable u-vertex. Then, the edges to clause u-vertices can bypass the existing
edges (again, one after the other in descending order) and reach their positions
in M∗. After that, the variable-edges can leave the branching and move to their
final position in the same order as before.

Now assume that we can reach M∗ from ∅. We note that the edges to clause
u-vertices have to overtake the edges to variable u-vertices somewhere on the
way to reach their final position. The only place to do so is in the branching
leading over the xi and xi. Thus all variable-edges have to wait at some xi or
xi until the clause-edges have passed. But from a, vertex uxi

is only willing to
switch to xi or xi. Thus, every vertex blocks out a different variable (either in
its true or in its false value). Similarly, a vertex uCj will only move further from
a if it can reach one of its literals. Hence, if all clauses can bypass the variables,
then for every clause there was one of its literals left open for passage. Thus, if
we set each variable to the value that yields the passage for clause-edges in the
branching, we obtain a satisfying assignment. ut

Corollary 1. It is NP-hard to decide Reachability to a given locally stable
matching in a correlated job-market game.

Theorem 2. It is NP-hard to decide Reachability from the initial matching
M = ∅ to an arbitrary locally stable matching in a bipartite network game.

Length of Sequences We now consider the number of improvement steps required
to reach locally stable matchings. In general, there is a network game and an
initial matching such that we need an exponential number of steps before reach-
ing any locally stable matching. This is again in contrast to the correlated case,
where every reachable stable matching can be reached in a polynomial number
of steps. We present the latter result and defer the much more technical proof
of the general lower bound to the full version.

Theorem 3. For every network game with correlated preferences, every locally
stable matching M∗ ∈ E and initial matching M0 ∈ E such that M∗ can be
reached from M0 through local improvement steps, there exists a sequence of at
most O(|E|3) local improvement steps leading from M0 to M∗.
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Proof. Consider an arbitrary sequence between M0 and M∗. We will explore
which steps in the sequence are necessary and which parts can be omitted. We
rank all edges by their benefit (allowing multiple edges to have the same rank)
such that r(e) > r(e′) iff b(e) > b(e′) and set rmax = max{r(e)|e ∈ E}. Recall
from Section 2 that we can account edges in the way that every edge e has at
most one direct predecessor e′ in the sequence, which was necessary to build e.
Because e was a local blocking pair, we know r(e′) < r(e). Thus, every edge e
has at most rmax predecessors. Our proof is based on two crucial observations:

(1) An edge can only be deleted by a stronger edge, that is, every chain of one
edge deleting the next is limited in length by rmax.

(2) If an edge is created, then possibly moved, and finally deleted without delet-
ing an edge on its way, this edge would not have to be introduced in the first
place.

Suppose our initial matching is the empty matching, then every edge in the
locally stable matching has to be created and by (repeated application of) (2)
we only need to create and move edges that are needed for the final matching.
Thus we have |M∗| edges, which each made at most rmax steps.

Now if we start with an arbitrary matching, the sequence might be forced
to delete some edges that cannot be used for the final matching. Each of these
edges generates a chain of edges deleting each other throughout the sequence,
but (1) tells us that this chain is limited as well as the number of steps each
of these edges has to make. The only remaining issue is what happens to edges
”accidentally” deleted during this procedure. Again, we can use (2) to argue
that there is no reason to rebuild such an edge just to delete it again. Thus, such
deletions can happen only once for every edge we had in M0 (not necessarily
on the position it had in M0). It does not do any harm if it happens to an
edge of one of the deletion-chains, as it would just end as desired. For the edges
remaining in |M∗| the same bounds holds as before. Thus, we have an overall
bound of |M0| · rmax · rmax + |M∗| · rmax ∈ O(|E|3) steps, where the first term
results from the deletion chains and the second one from the edges surviving in
the final matching. ut

Theorem 4. There is a network game with strict preferences such that a locally
stable matching can be reached by a sequence of local improvement steps from
the initial matching M = ∅, but every such sequence has length 2Ω(|V |).

4 Memory

Given the impossibility results in the last section, we now focus on the impact of
memory. As a direct initial result, no memory can yield reachability of a given
locally stable matching, even in a correlated job-market game.

Corollary 2. It is NP-hard to decide Reachability to a given locally stable
matching in a correlated job-market game with any kind of memory.
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Let us instead concentrate on the impact of memory on reaching an arbitrary
locally stable matching. For our treatment we will focus on the case in which
the network links L ⊆ (W ×W )∪ (U ×W ). We assume that in every step, every
agent remembers one previous matching partner.

Quality Memory With quality memory, each agent remembers the best matching
partner he ever had before. While this seems quite a natural choice and appears
like a smart strategy, it can be easily fooled by starting with a much-liked part-
ner, who soon after matches with someone more preferred and never becomes
available again. This way the memory becomes useless which leaves us with the
same dynamics as before.

Proposition 1. There is a network game with strict preferences, links L ⊆
(W × W ) ∪ (U ×W ), quality memory and initial matching M = ∅ such that
no locally stable matching can be reached with local improvement steps from M .
This even holds if every agent remembers the best k previous matches.

Theorem 5. It is NP-hard to decide Reachability to an arbitrary locally sta-
ble matching in a network game with quality memory.

Recency Memory With recency memory, each agent remembers the last partner
he has been matched to. This is again quite a very natural choice as it expresses
the human character of remembering the latest events best. Interestingly, here
we actually can ensure that a locally stable matching can be reached.

Theorem 6. For every network game with strict preferences, links L ⊆ (U ×
W )∪ (W ×W ), recency memory and every initial matching, there is a sequence
of O(|U |2|W |2) many local improvement steps to a locally stable matching.

Proof. Our basic approach is to construct the sequence in two phases similarly
as in [1]. In the first phase, we let the matched vertices from U improve, but
ignore the unmatched ones. In the second phase, we make sure that vertices from
W have improved after every round.

Preparation phase: As long as there is at least one u ∈ U with u matched
and u part of a blocking pair, allow u to switch to the better partner.

The preparation phase terminates after at most |U | · |W | steps, as in every
round one matched u ∈ U strictly improves in terms of preference. This can hap-
pen at most |W | times for each matched u. In addition, the number of matched
vertices from U only decreases.

Memory phase: As long as there is a u ∈ U with u part of a blocking pair,
pick u and execute a sequence of local improvement steps involving u until u is
not part of any blocking pair anymore. For every edge e = {u′, w} with u′ 6= u
that was deleted during the sequence, recreate e from the memory of u′.

We claim that if we start the memory phase after the preparation phase,
at the end of every round we have the following invariants: The vertices from
W that have been matched before are still matched, they do not have a worse
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partner than before, and at least one of them is matched strictly better than
before. Also, only unmatched vertices from U are involved in local blocking pairs.

Obviously, at the end of the preparation phase the only U -vertices in local
blocking pairs are unmatched, i.e., initially only unmatched U -vertices are part
of local blocking pairs. Let u be the vertex chosen in the following round of
the memory phase. At first we consider the outcome for w ∈ W . If w is the
vertex matched to u in the end, then w clearly has improved. Otherwise w gets
matched to its former partner (if it had one) through memory and thus has the
same utility as before. In particular, every w that represents an improvement
to some u′ but was blocked by a higher ranked vertex still remains blocked.
Together with the fact that u plays local improvement steps until it is not part
of a local blocking pair anymore, this guarantees that all matched U -vertices
cannot improve at the end of the round. As one W -vertex improves in every
round, we have at most |U | · |W | rounds in the memory phase, where every
round consists of at most |W | steps by u and at most |U | − 1 edges reproduced
from memory. ut

The existence of sequences to (locally) stable matchings also implies that
random dynamics converge in the long run with probability 1 [8, 12, 20]. In
general, we cannot expect fast convergence here, as there are instances where
random dynamics yield an exponential sequence with high probability even if all
information is given – e.g., reinterpret the instance from [1] with L = U ×W ,
then every agent knows every possible partner and memory has no effect.

Observe that the previous proof relies only on the recency memory of parti-
tion U . Hence, the existence of short sequences holds even if only agents from
U have memory. In contrast, if only agents from W have recency memory, the
previous NP-hardness constructions can be extended.

Theorem 7. It is NP-hard to decide Reachability to an arbitrary locally sta-
ble matching in a network game with links L ⊆ (U ×W )∪ (W ×W ) and recency
memory only for agents in W .

Random Memory Finally, with random memory, each agent remembers a partner
chosen uniformly at random in each step. We consider random memory and
reaching a locally stable matching from every starting state even in general
network games. While we cannot expect fast convergence, we can show that
random memory helps with reachability:

Theorem 8. For every network game with random memory, random dynamics
converge to a locally stable matching with probability 1.

5 Maximum Locally Stable Matchings

As the size of locally stable matchings can vary significantly – up to the point
where the empty matching as well as a matching that includes every vertex is
locally stable – it is desirable to target locally stable matchings of maximal size.
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We address the computational complexity of finding maximum locally stable
matchings by relating it to the independent set problem.

Theorem 9. For every graph G = (V,E) there is a job-market game that admits
a maximum locally stable matching of size |V | + k if and only if G holds a
maximum independent set of size k.

Proof. Given a graph G = (V,E), |V | = n, we construct the job-market game
with network N = (V ′ = U ∪W,L). For every v ∈ V we have uv,1, uv,2 ∈ U and
wv,1, wv,2 ∈ W . We have the links {wv,1, wv′,2} and {wv′,2, wv,2} if v′ ∈ N(v).
We allow matching edges {uv,1, wv,1}, {uv,1, wv′,2} for v′ ∈ N(v), {uv,1, wv,2}
and {uv,2, wv,2}. Each uv,1 prefers wv,2 to every wv′,2, v′ ∈ N(v), and every
wv′,2 to wv,1. The preferences between the different neighbors can be chosen
arbitrarily. Each wv,2 prefers uv,1 to every uv′,1, v′ ∈ N(v), and every uv′,2 to
uv,2. Again the neighbors can be ordered arbitrarily. Vertices wv,1 and uv,2 have
only one possible matching partner.

We claim that G has a maximum independent set of size k iff N has a locally
stable matching of size n+ k.

Let S be a maximum independent set in G. Then M = {{uv,1, wv,2}| v ∈
V \ S} ∪ {{uv,1, wv,1}, {uv,2, wv,2} | v ∈ S} is a locally stable matching as the
edges {uv,1, wv,2} are always stable. For the other vertices the independent set
property tells us that for v ∈ S all vertices v′ ∈ N(S) generate stable edges
{uv′,1, wv′,2} that keep uv,1 from switching to wv′,2. Thus {uv,1, wv,1} is stable
and wv,2 cannot see uv,1 which stabilizes {uv,2, wv,2}.

Now let M be a maximum locally stable matching for the job-market game.
Further we chose M such that every uv,1 is matched, which is possible as re-
placing a matching partner of wv,2 by (the unmatched) uv,1 will not generate
instabilities or lower the size of M . We note that no uv,1 is matched to some
wv′,2 with v 6= v′ as from there uv,1 and wv,2 can see each other and thus con-
stitute a blocking pair. Then, for S = {v|uv,2 ∈ M}, |S| = |M | − n and S is
an independent set, as every uv,2 can only be matched to its vertex wv,2, which
means that uv,1 must be matched to wv,1. But this edge is only stable if every
wv′,2, v′ ∈ N(v), is blocked by uv′,1. Hence for every v ∈ S N(v) ∩ S = ∅. ut

This result allows us to transfer hardness of approximation results for inde-
pendent set to locally stable matching.

Corollary 3. Finding a maximum locally stable matching is NP-complete. Un-
der the unique games conjuncture the problem cannot be approximated within
1.5− ε, for any constant ε.

In fact, our reduction applies in the setting of the job-market game, where one
side has no network at all. This shows that even under quite strong restric-
tions the hardness of approximation holds. In contrast, it is easy to obtain a
2-approximation in every network game that admits a globally stable matching.

Proposition 2. If a (globally) stable matching exists, every such stable match-
ing is a 2-approximation for the maximum locally stable matching.
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