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ABSTRACT
A crucial task in the analysis of on-line social-networking
systems is to identify important people — those linked by
strong social ties — within an individual’s network neighbor-
hood. Here we investigate this question for a particular cate-
gory of strong ties, those involving spouses or romantic part-
ners. We organize our analysis around a basic question: given
all the connections among a person’s friends, can you recog-
nize his or her romantic partner from the network structure
alone? Using data from a large sample of Facebook users, we
find that this task can be accomplished with high accuracy,
but doing so requires the development of a new measure of tie
strength that we term ‘dispersion’ — the extent to which two
people’s mutual friends are not themselves well-connected.
The results offer methods for identifying types of structurally
significant people in on-line applications, and suggest a po-
tential expansion of existing theories of tie strength.
Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications—Data mining
Keywords: Social Networks; Romantic Relationships.

INTRODUCTION
In a social network, an individual’s network neighborhood —
the set of people to whom he or she is linked — has been
shown to have important consequences in a wide range of
settings, including social support [12,24] and professional op-
portunities [5, 15]. As people use on-line social networks to
manage increasingly rich aspects of their lives, the structures
of their on-line network neighborhoods have come to reflect
these functions, and the complexity that goes with them.

A person’s network neighbors, taken as a whole, encompass
a profoundly diverse set of relationships — they typically in-
clude family members, co-workers, friends of long duration,
distant acquaintances, potentially a spouse or romantic part-
ner, and a variety of other categories. An important and very
broad issue for the analysis of on-line social networks is to
use features in the available data to recognize this variation
across types of relationships. Methods to do this effectively
can play an important role for many applications at the in-
terface between an individual and the rest of the network —
managing their on-line interactions [9], prioritizing content
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they see from friends [1], and organizing their neighborhood
into conceptually coherent groups [23, 25].

Tie Strength.
Tie strength forms an important dimension along which to
characterize a person’s links to their network neighbors. Tie
strength informally refers to the ‘closeness’ of a friendship;
it captures a spectrum that ranges from strong ties with close
friends to weak ties with more distant acquaintances. An ac-
tive line of research reaching back to foundational work in so-
ciology has studied the relationship between the strengths of
ties and their structural role in the underlying social network
[15]. Strong ties are typically ‘embedded’ in the network, sur-
rounded by a large number of mutual friends [6,16], and often
involving large amounts of shared time together [22] and ex-
tensive interaction [17]. Weak ties, in contrast, often involve
few mutual friends and can serve as ‘bridges’ to diverse parts
of the network, providing access to novel information [5,15].

A fundamental question connected to our understanding of
strong ties is to identify the most important individuals in a
person’s social network neighborhood using the underlying
network structure. What are the defining structural signatures
of a person’s strongest ties, and how do we recognize them?
Techniques for this problem have potential importance both
for organizing a person’s network neighborhood in on-line
applications, and also for providing basic insights into the ef-
fect of close relationships on network structure more broadly.

Recent work has developed methods of analyzing and esti-
mating tie strength in on-line domains, drawing on data from
e-mail [19], phone calls [27], and social media [14]. The
key structural feature used in these analyses is the notion of
embeddedness — the number of mutual friends two people
share [22], a quantity that typically increases with tie strength.
Indeed, embeddedness has been so tightly associated with tie
strength that it has remained largely an open question to de-
termine whether there are other structural measures, distinct
from embeddedness, that may be more appropriate for char-
acterizing particular types of strong ties.

Romantic Relationships.
In this work we propose a new network-based characteriza-
tion for intimate relationships, those involving spouses or ro-
mantic partners. Such relationships are important to study for
several reasons.

From a substantive point of view, romantic relationships are
of course singular types of social ties that play powerful roles
in social processes over a person’s whole life course [4], from
adolescence [2] to older age [7]. They also form an important
aspect of the everyday practices and uses of social media [28].
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And they are an important challenge from a methodological
point of view; they are evidently among the very strongest
ties, but it has not been clear whether standard structural the-
ories based on embeddedness are sufficient to characterize
them, or whether they possess singular structural properties
of their own [11, 18].

Our central finding is that embeddedness is in fact a compar-
atively weak means of characterizing romantic relationships,
and that an alternate network measure that we term dispersion
is significantly more effective. Our measure of dispersion
looks not just at the number of mutual friends of two peo-
ple, but also at the network structure on these mutual friends;
roughly, a link between two people has high dispersion when
their mutual friends are not well connected to one another.

On a large random sample of Facebook users who have de-
clared a relationship partner in their profile, we find that our
dispersion measure has roughly twice the accuracy of em-
beddedness in identifying this partner from among the user’s
full set of friends. Indeed, for married Facebook users, our
measure of dispersion applied to the pure, unannotated net-
work structure is more effective at identifying a user’s spouse
than a complex classifier trained using machine learning on
an array of interaction measures including messaging, com-
menting, profile-viewing, and co-presence at events and in
photos. Further, using dispersion in conjunction with these
interaction features produces significantly higher accuracy.

The main contributions of our work are thus the following.

• We propose a new network measure, dispersion, for esti-
mating tie strength. Given the ubiquity of embeddedness
in existing analyses of tie strength, the availability of this
new measure broadens the range of tools available for rea-
soning about tie strength, and about mechanisms for tie-
strength classification in on-line domains.

• We provide a new substantive characterization of romantic
relationships in terms of network structure, with potential
consequences for our understanding of the effect that such
relationships have on the underlying social network.

• Given this characterization, we examine its variation across
different conditions and populations. We find, for example,
that there are significant gender differences in the extent to
which relationship partners are recognizable from network
structure, and that relationships are more likely to persist
when they score highly under our dispersion measure.

It is also important to delineate the scope of our results. Our
approach to analyzing romantic partnerships in on-line so-
cial settings is through their effect on the network structure,
and the ways in which such relationships can be recognized
through their structural signatures. As such, there is potential
for it to be combined with other perspectives on how these
relationships are expressed on-line, and the conventions that
develop around their on-line expression; a complete picture
will necessarily involve a synthesis of all these perspectives.

DATA AND PROBLEM DESCRIPTION
We analyze romantic relationships in social networks using a
dataset of randomly sampled Facebook users who declared a

relationship partner in their profile; this includes users who
listed their status as ‘married,’ ‘engaged,’ or ‘in a relation-
ship’. To evaluate different structural theories on a common
footing, we begin with a simply stated prediction task de-
signed to capture the basic issues. We take a Facebook user
with a declared relationship partner, and we hide the identity
of this partner. Then we ask: given the user’s network neigh-
borhood — the set of all friends and the links among them —
how accurately can we identify the relationship partner using
this structural information alone? Figure 1 gives an example
of such a Facebook user’s network neighborhood [21], drawn
so that the user is depicted at the center; such diagrams are
the ‘input’ from which we wish to identify the user’s partner.
By phrasing the question this starkly, we are able to assess
the extent to which structural information on its own conveys
information about the relationships of interest.

We note that our question has an important contingent nature:
given that a user has declared a relationship partner, we want
to understand how effectively we can find the partner. There
are different questions that could be asked in a related vein —
for example, inferring from a user’s network neighborhood
whether he or she is in a relationship. We briefly discuss the
connections among these questions in a subsequent section,
but the problem of identifying partners is our main focus here.

As data for our analyses, we principally use two collections
of network neighborhoods from Facebook. The first consists
of the network neighborhoods of approximately 1.3 million
Facebook users, selected uniformly at random from among
all users of age at least 20, with between 50 and 2000 friends,
who list a spouse or relationship partner in their profile. These
neighborhoods have an average of 291 nodes and 6652 links,
for an overall dataset containing roughly 379 million nodes
and 8.6 billion links.

We also employ a smaller dataset — a sample of approxi-
mately 73000 neighborhoods from this first collection, se-
lected uniformly at random from among all neighborhoods
with at most 25000 links. We refer to this sample as the pri-
mary dataset, and the larger dataset in the preceding para-
graph as the extended dataset. We compute our main struc-
tural and interaction measures on both the primary and ex-
tended datasets, and these measures exhibit nearly identical
performance on the two datasets. As we discuss further be-
low, we evaluate additional network measures, as well as
more complex combinations of measures based on machine
learning algorithms, only on the primary dataset.

All Facebook data in these analyses was used anonymously,
and all analysis was done in aggregate.

EMBEDDEDNESS AND DISPERSION
To evaluate approaches for our task of recognizing relation-
ship partners from network structure, we start with a fun-
damental baseline — the standard characterization of a tie’s
strength in terms of its embeddedness, the number of mutual
friends shared by its endpoints [22]. Embeddedness has also
served as the key definition in structural analyses for the spe-
cial case of relationship partners, since it captures how much
the two partners’ social circles ‘overlap’ [11, 18]. This sug-



Figure 1. A network neighborhood, contributed by a Facebook em-
ployee (drawn as the circled node at the center), and displayed as an
example in the work of Marlow et al [21]. Two clear clusters with highly
embedded links are visible at the top and right of the diagram; in the
lower left of the diagram are smaller, sparser clusters together with a
node that bridges between these clusters.

gests a natural predictor for identifying a user u’s partner: se-
lect the link from u of maximum embeddedness, and propose
the other end v of this link as u’s partner.

We will evaluate this embeddedness-based predictor, and oth-
ers, according to their performance: the fraction of instances
on which they correctly identify the partner. Under this mea-
sure, embeddedness achieves a performance of 24.7% —
which both provides evidence about the power of structural
information for this task, but also offers a baseline that other
approaches can potentially exceed.

Next, we show that it is possible to achieve more than twice
the performance of this embeddedness baseline using our new
network measure, dispersion. In addition to this relative im-
provement, the performance of our dispersion measure is very
high in an absolute sense — for example, on married users in
our sample, the friend who scores highest under this disper-
sion measure is the user’s spouse over 60% of the time. Since
each user in our sample has at least 50 friends, this perfor-
mance is more than 30 times higher than random guessing,
which would produce a performance of at most 2%.

Theoretical Basis for Dispersion.
We motivate the dispersion measure by first highlighting a
basic limitation of embeddedness as a predictor, drawing on
the theory of social foci [10]. Many individuals have large
clusters of friends corresponding to well-defined foci of in-
teraction in their lives, such as their cluster of co-workers or
the cluster of people with whom they attended college. Since
many people within these clusters know each other, the clus-
ters contain links of very high embeddedness, even though
they do not necessarily correspond to particularly strong ties.
In contrast, the links to a person’s relationship partner or other
closest friends may have lower embeddedness, but they will
often involve mutual neighbors from several different foci, re-
flecting the fact that the social orbits of these close friends are

b

c f
d

h

k
j

e

a

u

i

g

Figure 2. A synthetic example network neighborhood for a user u; the
links from u to b, c, and f all have embeddedness 5 (the highest value in
this neighborhood), whereas the link from u to h has an embeddedness
of 4. On the other hand, nodes u and h are the unique pair of interme-
diaries from the nodes c and f to the nodes j and k; the u-h link has
greater dispersion than the links from u to b, c, and f .

not bounded within any one focus — consider, for example, a
husband who knows several of his wife’s co-workers, family
members, and former classmates, even though these people
belong to different foci and do not know each other.

Thus, instead of embeddedness, we propose that the link be-
tween an individual u and his or her partner v should display a
‘dispersed’ structure: the mutual neighbors of u and v are not
well-connected to one another, and hence u and v act jointly
as the only intermediaries between these different parts of the
network. (See Figure 2 for an illustration.)

We now formulate a sequence of definitions that captures this
idea of dispersion. To begin, we take the subgraph Gu in-
duced on u and all neighbors of u, and for a node v in Gu we
define Cuv to be the set of common neighbors of u and v. To
express the idea that pairs of nodes in Cuv should be far apart
in Gu when we do not consider the two-step paths through
u and v themselves, we define the absolute dispersion of the
u-v link, disp(u, v), to be the sum of all pairwise distances
between nodes in Cuv , as measured in Gu − {u, v}; that is,

disp(u, v) =
∑

s,t∈Cuv

dv(s, t),

where dv is a distance function on the nodes of Cuv . The
function dv need not be the standard graph-theoretic distance;
different choices of dv will give rise to different measures
of absolute dispersion. As we discuss in more detail below,
among a large class of possible distance functions, we ulti-
mately find the best performance when we define dv(s, t) to
be the function equal to 1 when s and t are not directly linked
and also have no common neighbors in Gu other than u and
v, and equal to 0 otherwise. For the present discussion, we
will use this distance function as the basis for our measures
of dispersion; below we consider the effect of alternative dis-
tance functions. For example, in Figure 2, disp(u, h) = 4 un-
der this definition and distance function, since there are four
pairs of nodes in Cuh that are not directly linked and also
have no neighbors in common in Gu − {u, h}. In contrast,
disp(u, b) = 1 in Figure 2, since a and e form the only pair
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Figure 3. Performance of (disp(u, v) + b)α/(emb(u, v) + c) as a func-
tion of α, when choosing optimal values of b and c.

type embed rec.disp. photo prof.view.
all 0.247 0.506 0.415 0.301
married 0.321 0.607 0.449 0.210
married (fem) 0.296 0.551 0.391 0.202
married (male) 0.347 0.667 0.511 0.220
engaged 0.179 0.446 0.442 0.391
engaged (fem) 0.171 0.399 0.386 0.401
engaged (male) 0.185 0.490 0.495 0.381
relationship 0.132 0.344 0.347 0.441
relationship (fem) 0.139 0.316 0.290 0.467
relationship (male) 0.125 0.369 0.399 0.418

Figure 4. The performance of different measures for identifying spouses
and romantic partners: the numbers in the table give the precision at the
first position — the fraction of instances in which the user ranked first by
the measure is in fact the true partner. Averaged over all instances, re-
cursive dispersion performs approximately twice as well as the standard
notion of embeddedness, and also better overall than measures based on
profile viewing and presence in the same photo.

of non-neighboring nodes in Cub that have no neighbors in
common in Gu − {u, b}.

Strengthenings of Dispersion.
We can learn a function that predicts whether or not v is
the partner of u in terms of the two variables disp(u, v)
and emb(u, v), where the latter denotes the embeddedness
of the u-v link. We find that performance is highest for
functions that are monotonically increasing in disp(u, v) and
monotonically decreasing in emb(u, v): for a fixed value of
disp(u, v), increased embeddedness is in fact a negative pre-
dictor of whether v is the partner of u. A simple combina-
tion of these two quantities that comes within a few percent
of more complicated functional forms can be obtained by the
expression disp(u, v)/emb(u, v), which we term the normal-
ized dispersion norm(u, v) since it normalizes the absolute
dispersion by the embeddedness. Predicting u’s partner to
be the individual v maximizing norm(u, v) gives the correct
answer in 48.0% of all instances.

There are two strengthenings of the normalized dispersion
that lead to increased performance. The first is to rank nodes
by a function of the form (disp(u, v)+ b)α/(emb(u, v)+ c).
Searching over choices of α, b, and c leads to maximum per-
formance of 50.5% at α = 0.61, b = 0, and c = 5; see
Figure 3. Alternately, one can strengthen performance by ap-

type embed rec.disp. photo prof.view.
all 0.391 0.688 0.528 0.389
married 0.462 0.758 0.561 0.319
married (fem) 0.488 0.764 0.538 0.350
married (male) 0.435 0.751 0.586 0.287
engaged 0.335 0.652 0.553 0.457
engaged (fem) 0.375 0.674 0.536 0.492
engaged (male) 0.296 0.630 0.568 0.424
relationship 0.277 0.572 0.460 0.498
relationship (fem) 0.318 0.600 0.440 0.545
relationship (male) 0.239 0.546 0.479 0.455

Figure 5. The performance of the four measures from Figure 4 when
the goal is to identify the partner or a family member in the first position
of the ranked list. The difference in performance between the genders
has largely vanished, and in some cases is inverted relative to Figure 4.

plying the idea of dispersion recursively — identifying nodes
v for which the u-v link achieves a high normalized disper-
sion based on a set of common neighbors Cuv who, in turn,
also have high normalized dispersion in their links with u. To
carry out this recursive idea, we assign values to the nodes
reflecting the dispersion of their links with u, and then update
these values in terms of the dispersion values associated with
other nodes. Specifically, we initially define xv = 1 for all
neighbors v of u, and then iteratively update each xv to be∑

w∈Cuv
x2w + 2

∑
s,t∈Cuv

dv(s, t)xsxt

emb(u, v)
.

Note that after the first iteration, xv is 1+2 ·norm(u, v), and
hence ranking nodes by xv after the first iteration is equiv-
alent to ranking nodes by norm(u, v). We find the highest
performance when we rank nodes by the values of xv after
the third iteration. For purposes of later discussion, we will
call this value xv in the third iteration the recursive disper-
sion rec(u, v), and will focus on this as the main examplar
from our family of related dispersion-based measures. (See
the Appendix for further mathematical properties of the re-
cursive dispersion.)

PERFORMANCE OF STRUCTURAL AND INTERACTION
MEASURES
We summarize the performance of our methods in Figure 4.
Looking initially at just the first two columns in the top row of
numbers (‘all’), we have the overall performance of embed-
dedness and recursive dispersion — the fraction of instances
on which the highest-ranked node under these measures is
in fact the partner. As we will see below in the discussion
around Figure 6, recursive dispersion also has higher perfor-
mance than a wide range of other basic structural measures.

We can also compare these structural measures to features de-
rived from a variety of different forms of real-time interaction
between users — including the viewing of profiles, sending of
messages, and co-presence at events. The use of such ‘inter-
action features’ as a comparison baseline is motivated by the
way in which tie strength can be estimated from the volume of
interaction between two people [8, 17]. Within this category
of interaction features, the two that consistently display the
best performance are to rank neighbors of u by the number of



photos in which they appear with u, and to rank neighbors of
u by the total number of times that u has viewed their profile
page in the previous 90 days. The last two columns of Fig-
ure 4 show the performance of these two measures; on the set
of instances as a whole, recursive dispersion performs better
than these features.

The remaining rows of Figure 4 show the performance of
these measures on different subsets of the data. Most users
who report a relationship partner on Facebook list themselves
as either ‘married’ or ‘in a relationship,’ with a smaller num-
ber who are ‘engaged.’ The performance of the structural
measures is much higher for married users (60.7%) than for
users in a relationship (34.4%); the opposite is true for pro-
file viewing, which in fact achieves higher performance than
recursive dispersion for users in a relationship. The perfor-
mance for users who are engaged is positioned between the
extremes of ‘married’ and ‘in a relationship.’

In addition, we see important differences based on gen-
der. The performance of structural measures is significantly
higher for males than for females, suggesting some of the
ways in which relationship partners produce more visible
structural effects — at least according to these measures —
on the network neighborhoods of men. And for certain more
focused subsets of the data, the performance is even stronger;
for example, on the subset corresponding to married male
Facebook users in the United States, the friend with the high-
est recursive dispersion is the user’s spouse 76.9% of the time.

We can also evaluate performance on the subset of users in
same-sex relationships. Here we focus on users whose status
is ‘in a relationship.’1 The relative performance of our struc-
tural measures is exactly the same for same-sex relationships
as for the set of all relationships, with recursive dispersion
achieving close to twice the performance of embeddedness,
and slightly higher performance than absolute and normal-
ized dispersion. For female users, the absolute level of per-
formance is almost identical regardless of whether their listed
partner is female or male; for male users, the performance is
significantly higher for relationships in which the partner is
male. (For a same-sex relationship listed by a male user, re-
cursive dispersion identifies the partner with a performance of
.450, in contrast with the performance of .369 for all partners
of male users shown in Figure 4.)

Finally, returning to the set of all relationships, when the user
v who scores highest under one of these measures is not the
partner of u, what role does v play among u’s network neigh-
bors? We find that v is often a family member of u; for mar-
ried users (Figure 5), the friend v that maximizes rec(u, v) is
the partner or a family member over 75% of the time. We also
see that when we ask for the top-ranked friend to be either the

1There is significant informal evidence that the ‘married’ relation-
ship status is employed by younger users of the same gender for a
range of purposes even when they are not, in fact, married. While
we only include users of age at least 20 in our sample, the effect
is present in that age range. Listing a relationship status that does
not correspond to one’s off-line relationship is of course a concern
across all categories of users, but from investigation of this issue, the
‘married’ status for users of the same gender is the only category for
which we see evidence that this is a significant factor.

distance type all marr. eng. rel.
threshold 2 absolute 0.279 0.361 0.205 0.152

normalized 0.305 0.394 0.227 0.168
recursive 0.210 0.279 0.141 0.105

threshold 3 absolute 0.430 0.530 0.359 0.270
normalized 0.486 0.588 0.425 0.322
recursive 0.506 0.607 0.446 0.344

threshold 4 absolute 0.473 0.568 0.414 0.321
normalized 0.483 0.570 0.434 0.342
recursive 0.455 0.539 0.405 0.319

diff component absolute 0.380 0.461 0.317 0.253
normalized 0.364 0.433 0.308 0.258
recursive 0.323 0.384 0.276 0.228

diff community absolute 0.286 0.368 0.212 0.160
normalized 0.296 0.379 0.221 0.167
recursive 0.216 0.283 0.156 0.115

spring length absolute 0.379 0.474 0.307 0.229
normalized 0.454 0.553 0.387 0.296
recursive 0.396 0.480 0.341 0.261

Figure 6. Performance of variants of the dispersion measure using dif-
ferent underlying distance functions.

measure all married engaged relationship
betweenness 0.441 0.535 0.374 0.293
network constraint 0.307 0.394 0.232 0.171

Figure 7. Performance of betweenness and network constraint as alter-
nate measures of bridging.

partner or a family member, rather than just the partner, the
performance gap between the genders essentially vanishes in
the case of married users, and becomes inverted in the case of
users in a relationship — in this latter case, female users are
more likely to have their partner or a family member at the
top of the ranking by recursive dispersion.

A Broader Set of Measures.
Since measures of dispersion are based on an underlying dis-
tance function dv , it is interesting to investigate how the per-
formance depends on the choice of dv . In Figure 6, we con-
sider dispersion measures based on a range of natural choices
for dv . as follows.

• First, we can set a distance threshold r, and declare that
dv(s, t) = 1 when s and t are at least r hops apart in
Gu − {u, v}, and dv(s, t) = 0 otherwise. The measure of
dispersion we use above corresponds to the choice r = 3;
setting the threshold r = 2 simply requires that s and t
are not directly connected, while setting r = 4 imposes a
stricter requirement.

• In a related vein, we could declare dv(s, t) = 1 if s and t
belong to different connected components of Gu − {u, v},
and dv(s, t) = 0 otherwise. This in effect follows the pre-
ceding approach, but with the distance threshold r concep-
tually set to be infinite.

• Since the idea of dispersion at a more general level is based
on the notion that the common neighbors of u and v should
belong to different ‘parts’ of the network, it is also natural
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to divide Gu − {u} into communities according to a net-
work clustering heuristic, and then declare dv(s, t) = 1 if
and only if s and t belong to different communities. For
this purpose, we use the Louvain method of Blondel et al
for optimizing modularity [3], as implemented in the soft-
ware package NetworkX. There is a wide range of meth-
ods available for inferring communities from network data
[26]; we choose the Louvain method as a baseline because
the graph G − {u} for most users tends to have clearly
defined modules of nodes, corresponding roughly to social
foci, with a high density of links inside each module and a
low density of links between them. Such modular structure
is what the Louvain method is designed to identify.

• Related to partitions into communities, one can embed
Gu − {u} in the plane using an energy-minimization
heuristic that treats each link of the graph as a spring with
a fixed rest length. After computing such a spring embed-
ding of Gu − {u}, one can then define dv(s, t) simply to
be the distance between the locations of s and t in their
embedding in the plane. Here too we use a heuristic imple-
mented in NetworkX, in this case for spring embedding.

Figure 6 shows the performance of the absolute, normalized,
and recursive dispersion based on all these possible distance
functions dv . (For all these distance functions, when the re-
cursive process was carried out, the iteration other than the
first producing the highest performance was always the third
iteration, and so we continue to use the results in this third
iteration as the definition of recursive dispersion.) As noted
above, recursive dispersion using a distance function dv based
on a distance threshold of 3 produces the highest accuracy.

Finally, there are other measures of bridging that cannot be
naturally expressed using the framework of dispersion. Two
standard such measures are are betweenness and network con-
straint [5] applied to Gu − {u}. Figure 7 shows their perfor-
mance; both score below the strongest dispersion measures,
although betweenness has strong performance.

Performance as a Function of Neighborhood Size and
Time on Site.
A further important source of variation among users is in the
size of their network neighborhoods and the amount of time
since they joined Facebook. These two properties are related;
after a user joins the site, his or her network neighborhood
will generally grow monontonically over time. This growth
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the time since the relationship was reported (between 100 and 200 days).

has two potential effects on the level of performance for our
problem, acting in opposite directions: a more mature net-
work neighborhood will have a greater level of complexity,
which may hurt performance; but it will also likely reflect the
user’s off-line relationships in richer detail, which may help
performance. It is thus natural to evaluate performance as a
function of these parameters.

We begin by considering the size of the network neighbor-
hood of the user u; recall that in our data, this size ranges
from 50 to 2000. We find that recursive dispersion performs
well across this full range: Figure 8 shows that, while per-
formance is best when the neighborhood size is around 100
nodes (56%), it only drops moderately (to 33%) as the neigh-
borhood size increases by an order of magnitude to 1000
nodes. This decline is quite small compared to the decline
of the baseline that simply guesses a node uniformly at ran-
dom, which would decrease in performance by a factor of 10
(from 1/100 to 1/1000). The modest decline of recursive dis-
persion may reflect the ways in which larger neighborhoods
are also more informative about a user’s full set of off-line
relationships, which helps offset the considerably increased
number of options for identifying the relationship partner.
Furthermore, recursive dispersion is the highest-performing
structural measure among those considered for every range
of neighborhood sizes except the extremes (50 to 100, and
above 1000); at the extremes, the (non-recursive) normalized
dispersion is slightly better, although even here the recursive
measure is within the margin of error of the best. Note that
the median neighborhood size in our dataset is 205.

The benefits of large neighborhoods are reflected even more
clearly when we consider the performance of interaction fea-
tures — their performance tends to be approximately con-
stant, or even increasing, as a function of neighborhood size.
To elaborate on the arguments discussed above for how a
larger neighborhood may help performance, we make two
further observations. First, users with large neighborhoods
also tend to be more active, and thus the relative variance of
the interaction signals is smaller. Second, despite their large
neighborhoods, previous analysis [21] has shown that the
number of relationships that are actively maintained grows
slowly in the total neighborhood size, and so the number of
plausible candidates for the relationship partner grows more
slowly than the pure neighborhood size would suggest.

We also consider a user’s time on site — the number of days
since they joined Facebook. This is strongly correlated with
neighborhood size, since users continue acquiring friendship



type max. max. all. all. comb.
struct. inter. struct. inter.

all 0.506 0.415 0.531 0.560 0.705
married 0.607 0.449 0.624 0.526 0.716
engaged 0.446 0.442 0.472 0.615 0.708
relationship 0.344 0.441 0.377 0.605 0.682

Figure 10. The performance of methods based on machine learning
that combine sets of features. The first two columns show the highest
performing individual structural and interaction features; the third and
fourth columns show the highest performance of machine learning clas-
sifiers that combine structural and interaction features respectively; and
the fifth column shows the performance of a classifier that combines all
structural and interaction features together.

links over their time on Facebook, and it is also correlated
with the time since the relationship was first reported. (As we
will see later in Figure 11, performance varies as a function
of this latter quantity as well.) To understand whether there
is any effect of a user’s time on site beyond its relation to
these other parameters, we consider a subset of users where
we restrict the neighborhood size to lie between 100 and 150,
and the time since the relationship was reported to lie between
100 and 200 days. Figure 9 shows that for this subset, there is
a weak increase in performance as a function of time on site;
while the effect is not strong, it points to a further source of
enhanced performance for users with mature neighborhoods.

COMBINING FEATURES USING MACHINE LEARNING
Different features may capture different aspects of the user’s
neighborhood, and so it is natural to ask how well we can pre-
dict partners when combining information from many struc-
tural or interaction features via machine learning.

Machine Learning Techniques.
For our machine learning experiments, we compute 48 struc-
tural features and 72 interaction features for all of the nodes
in the neighborhoods from our primary dataset. This gives us
a total of approximately 18.7 million labeled instances with
120 features each — each instance consists of a node v in
a neighborhood Gu, with a positive label indicating v is the
partner of u, or a negative label indicating v is not.

The 48 structural features are the absolute and normalized
dispersion based on six distinct distance functions defined for
Figure 6, as well as the recursive versions using iterations 2
through 7 (recall that the recursive dispersion corresponds to
the third iteration, and is hence included). The 72 interac-
tion features represent a broad range of properties including
the number of photos in which u and v are jointly tagged,
the number of times u has viewed v’s profile over the last 30,
60, and 90 days, the number of messages sent from u to v,
the number of times that u has ‘liked’ v’s content and vice
versa, and measures based on a number of forms of interac-
tion closely related to these.

To improve the performance of the learning algorithms, we
transformed each of the 120 features into 4 different versions:
(a) the raw feature, (b) a normalized version of the feature
with mean 0 and standard deviation 1, (c) a rank version of
the feature (where the individual with highest score on this
feature has rank 1, and other individuals are sorted in ascend-
ing rank order from there), and (d) a rank-normalized version

where we divide (c) by total number of friends a user has.
Thus, the input to our machine learning algorithms has 480
features derived from 120 values per instance. In addition to
the full set of features, we also compute performance using
only the structural features, and only the interaction features.

We performed initial experiments with different machine
learning algorithms and found that gradient tree boosting [13]
out-performed logistic regression, as well as other tree-based
methods. Thus, all of our in-depth analysis is conducted with
this algorithm. In our experiments, we divide the data so that
50% of the users go into a training set and 50% go into a test
set. We perform 12 such divisions into sets A and B; for each
division we train on set A and test on B, and then train on B
and test on A. For each user u, we average over the 12 runs in
which u was a test user to get a final prediction.

Performance of Machine Learning Methods.
We find (Figure 10) that by using boosted decision trees to
combine all of the 48 structural features we analyzed, we can
increase performance from 50.8% to 53.1%. We can use the
same technique to predict relationships based on interaction
features. We find that, overall, interaction features perform
slightly better than structural features (56.0% vs. 53.1%),
though for married users, structural features do much better
(62.4% vs. 52.6%). In addition, on all categories we find that
the combination of interaction features and structural features
significantly outperforms either on its own. When combining
all features with boosted trees, the top predicted friend is the
user’s partner 70.5% of the time.

Machine Learning to Predict Relationship Status.
Earlier we noted that our focus is on the problem of identify-
ing relationship partners for users where we know that they
are in a relationship. It is natural to ask about the connec-
tion to a related but distinct question — estimating whether
an arbitrary user is in a relationship or not.

This latter question is quite a different issue, and it seems
likely to be more challenging and to require a different set of
techniques. To see why, consider a user u who has a link of
high dispersion to a user v. If we know that u is in a rela-
tionship, then v is a good candidate to be the partner. But our
point from the outset has been that methods based on disper-
sion are useful more generally to identify individuals v with
interesting connections to u, in the sense that they have been
introduced into multiple foci that u belongs to. A user u can
and generally will have such friends even when u is not in
a romantic relationship. For example, Figure 5 suggests that
family members often have this property, and this can apply
to users who are not in romantic relationships as well as to
users in such relationships. Thus, simply knowing that u has
links of high dispersion should not necessarily give us much
leverage in estimating whether u is in a relationship.

We now describe some basic machine-learning results that
bear out this intuition. We took approximately 129,000 Face-
book users, sampled uniformly over all users of age at least
20 with between 50 and 2000 friends. 40% of these users
were single, while the remaining were either in a relation-
ship, engaged, or married. We attempt two different predic-
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Figure 11. Performance at identifying partners for users who are (top row) married and (bottom row) in a relationship, as a function of the time since
the relationship was reported on Facebook. In the two figures in the left-hand column, the four measures from Figure 4 are used individually. Here the
structural measures have higher performance on older relationships, while the profile viewing feature has lower performance on older relationships; the
profile viewing feature outperforms recursive dispersion for relationships reported recently, with the relative performance crossing at approximately
one year. In the two figures in the right-hand column, the performance as a function of time is shown for prediction rules constructed using machine
learning on a large set of features. Separate curves show the performance using only structural features, only interaction features, and when using the
union of the two. Structural features peform best on older marriages, while interaction features perform best on new relationships.

Task baseline demo. network both
Single vs. Any Rel. 59.8% 67.9% 61.6% 68.3%
Single vs. Married 56.6% 78.0% 66.1% 79.0%

Figure 12. Performance on predicting relationship status. Baseline
accuracy comes from predicting the more common class in each of the
classification tasks. Demographic features seem more important, but
network features also provide incremental improvement.

tion tasks: first, determining whether a user is in any sort of
a relationship; and second, an easier task in which we look
only at single and married users, and attempt to determine
which category a user belongs to. We consider three different
sets of features for these tasks: (i) demographic features (age,
gender, country, and time on site); (ii) structural features of
the network neighborhood, based on the definitions presented
earlier; and (iii) the union of these two sets.

Figure 12 shows the performance on these tasks. Because age
is a powerful feature for predicting relationship status, demo-
graphic features do well. Network features are not as strong,
reflecting the notion discussed above that even users not in
relationships have friends with similar structural properties.
Despite this, network features convey non-trivial information
about relationship status; they perform significantly above
baseline prediction on their own, and add predictive power to
demographic features. Of the network features, the maximum
normalized dispersion (where the maximum is taken over all
of the user’s friends) has the highest feature importance.

TEMPORAL PROPERTIES
We now explore some of the ways in which these measures
change over time. We first consider how performance varies
based on the time since the relationship was first reported by
the user — an approximate surrogate for the age of the re-
lationship itself, although the relationship may clearly have
existed for some time before it was reported (especially in
the case of users who are already in a relationship when they
join Facebook). We find (Fig. 11) that the structural mea-
sures are more accurate on older relationships than on newer
ones, while the profile viewing feature is less accurate; in ef-
fect, the structural signature of the relationship needs time to
‘burn in’ to the network, while the interaction level via pro-
file viewing is high almost immediately. For married users,
recursive dispersion has the highest performance across the
full time range, but for users in a relationship, an interesting
crossover occurs: for relationships less than a year old, the
profile viewing featured produces the highest performance,
and then recursive dispersion and photo viewing surpass it at
approximately one year. This illustrates a trade-off between a
decreasing level of observation as a relationship goes on, con-
trasted with an increasing level of dispersion in the network
as the link structure adapts around the two individuals.

Next, we ask how these measures change over time in the pe-
riod leading up to a change in relationship status. For this
purpose, we take a random sample of 29000 married users
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Figure 14. For different subsets of users, we can evaluate their transition
probability from the status ‘in a relationship’ to the status ‘single’ over a
60-day period. These transition probabilities are shown as a function of
both normalized and recursive dispersion, separately for relationships
that are 2-4 months old and for relationships that are 6-8 months old.
The transition probabilities decrease monotonically, and by significant
factors, for users with high normalized or recursive dispersion to their
respective partners.

whose relationship went through a succession of stages that
were all reported on Facebook — first in a relationship, next
engagement, and then (after a period of at least a month of
engagement) marriage. For each user u in the sample, we
compute embeddedness as well as normalized and recursive
dispersion for all users in Gu as a function of time, declaring
time 0 for u to be the moment at which u’s marriage was re-
ported. For a given network measurem, we then let fm(t) de-
note the fraction of instances in which u’s (future or current)
spouse scores highest with respect tom. We see (Fig. 13) that
normalized and recursive dispersion rise quickly to the point
of marriage, while embeddedness not only has lower perfor-
mance but also rises more slowly. When both embeddedness
and recursive dispersion eventually identify the spouse cor-
rectly, recursive dispersion does so an average of approxi-
mately 80 days sooner; in the analogous comparison between
normalized and recursive dispersion, the latter identifies the
spouse an average of approximately 10 days sooner.

Finally, we consider the persistence of relationships [20].
Given the effectiveness of these measures in detecting part-
ners, is it also the case that partnerships that are more strongly
identified by the measures are also more ‘robust,’ in the sense
that they are more likely to persist over time? We address this
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Figure 15. We plot the transition probability from ‘in a relationship’ to
‘single’ as a function of the age of the relationship, separately for rela-
tionships on which recursive dispersion correctly identifies the partner
and those on which it does not. The transition probability is significantly
higher when recursive dispersion fails to recognize the partner.

question by considering those users in our sample who listed
themselves as being in a relationship (rather than married or
some other relationship status, a set of roughly 400,000 in-
dividuals), and seeing which of them lists their relationship
status as ‘single’ 60 days later. We perform these analyses
on subsets of the data on which all relationships have roughly
the same age since they were reported on Facebook, and on
which all users were approximately the same age, to separate
these effects from the underlying structural parameters. We
find (Fig. 14) that a user whose partner has a high normalized
or recursive dispersion is significantly less likely to transition
to ‘single’ status over this time period.

We can view the persistence of relationships in a closely re-
lated way by comparing relationships on which recursive dis-
persion correctly identifies the partner to those on which it
does not. We find (Fig. 15) that relationships on which recur-
sive dispersion fails to correctly identify the partner are sig-
nificantly more likely to transition to ‘single’ status over a 60-
day period. This effect holds across all relationship ages and
is particularly pronounced for relationships up to 12 months
in age; here the transition probability is roughly 50% greater
when recursive dispersion fails to recognize the partner.

BEYOND IMMEDIATE NEIGHBORHOODS
All of the network measures discussed above are based on the
immediate 1-hop neighborhoods of individuals. It is interest-
ing to consider how accurate more expansive methods might
be, if they take the broader structure of the network into ac-
count. Because many individuals have 2-hop neighborhoods
with hundreds of thousands of nodes, doing this is computa-
tionally challenging, and we must come up with heuristics to
make it feasible.

Our approach is to take a single structural measure, recursive
dispersion, and filter down to an individual’s top 20 friends
as ranked by this metric. We then compute the network mea-
sures discussed above in the (1-hop) neighborhoods of each of
these 20 people. To evaluate a given friend v as the potential
partner of u, we can then use the measures computed in u’s
neighborhood and also in v’s. We find that the simple heuris-
tic of taking u’s top 20 friends with respect to rec(u, v), and
then ranking them by min(rec(u, v), rec(v, u)), improves



performance by about 6% to 0.534. This performs almost
as well as more complex models, and confirms the intuitive
result that relationship partners are best found by looking for
pairs of people who have high scores in both directions.

CONCLUSION
Understanding the structural roles of significant people in on-
line social network neighborhoods is a broad question that re-
quires a combination of different approaches. Here we have
considered this issue in the context of romantic partners, and
have identified a novel network measure, dispersion, that pro-
vides a powerful method for recognizing the structural posi-
tions occupied by such partners from network data alone.

Drawing on the theory of social foci [10], we have argued
that dispersion is a structural means of capturing the notion
that a friend spans many contexts in one’s social life — either
because they were present through multiple life stages, or be-
cause they have been systematically introduced into multiple
social circles. This suggests why it is not only spouses or ro-
mantic partners who exhibit high dispersion, but also family
members — dispersion identifies people who span foci.

There are several applications where measures based on dis-
persion may play a role. For estimating which types of con-
tent from friends will be most engaging to a user [1], iden-
tifying individuals with this focus-spanning property can be
useful for assessing their properties both as producers and
consumers of content from different parts of a user’s network
neighborhood. And for organizing neighborhoods into dis-
tinct clusters or circles [23, 25], dispersion can help identify
‘hard-to-categorize’ individuals who may need manual anno-
tation from a user — high dispersion arises precisely because
a friend doesn’t naturally fit into the obvious categories

Beyond these specific applications, our measures suggest new
perspectives on basic questions in social network analysis.
Overall, the notion that our mutual friends with a person may
be clustered in a single context or may alternately span multi-
ple contexts offers a novel type of trade-off in the study of tie
strength. Certain important types of strong ties — including
romantic and family relations — connect us to people who be-
long to multiple parts of our social neighborhood, producing
a set of shared friends that is not simply large but also diverse,
spanning disparate portions of the network and hence corre-
spondingly sparse in their internal connections. In this way,
the notion of dispersion combines concepts of network clo-
sure [6, 16] (since there must be mutual network neighbors
to bridge) and brokerage between groups [5] (since the two
ends of a link with large dispersion are jointly acting as bro-
kers between disconnected mutual neighbors). The success
of the measures resulting from this notion suggests some of
the ways in which closure and brokerage are intertwined in
the structure of strong ties.

The analysis shows how these classes of strong ties produce
an extremely clear structural signature, but subtle network
measures different from the standard formulations are needed
to extract this signature. Crucial aspects of our everyday lives
may be encoded in the network structure among our friends,
provided that we look at this structure under the right lens.
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APPENDIX: MATHEMATICAL PROPERTIES OF THE RE-
CURSIVE DISPERSION
This section provides some motivation and further mathemat-
ical detail related to the recursive dispersion, to help isolate
the ingredients that make up its functional form.

First, fix a distance function dv on the graph G− {u, v}. We
first note that if we assign a value xs = 1 to each node s in
Gu, then

∑
s,t∈Cuv

dv(s, t)xsxt is precisely the dispersion of
v, since it is a sum over all pairwise distances in Cuv . Hence,∑

s,t∈Cuv
dv(s, t)xsxt

emb(u, v)

is the normalized dispersion.

The premise underlying the recursive dispersion is to elevate
xv when u and v act as intermediaries between many node
pairs s and t that, recursively, have large values of xs and
xt. A simple way to carry out this idea would be to define an
iteration in which xv is updated to be

xv ←−
∑
s,t∈Cuv

dv(s, t)xsxt

emb(u, v)
, (1)

directly using the functional form of the normalized disper-
sion. The problem with this approach on the graphs Gu that
we have in the data is that the sum in the numerator is equal
to 0 for many nodes v. This in turn means that even more
nodes will acquire a 0 value in subsequent iterations; the end
result is that very few nodes end up with a positive value xv ,
and this would hurt the performance in identifying partners.

As a result, it is useful to have a mechanism that continuously
introduces non-zero weight into the system. As a working
guideline for how to do this, we would like the first iteration
to produce values xv whose sorted order agrees with the order
of values according to normalized dispersion, so that subse-
quent iterations can be viewed as building from this measure.
We would also like additional terms in the numerator to be
quadratic, to match the quadratic degree of the existing terms
in the numerator of (1). Adding

∑
w∈Cuv

x2w to the numer-
ator achieves these two properties in a simple way — it is
quadratic, and in the first iteration it is equal to emb(u, v),
and hence is canceled by the denominator. This gives us the
functional form that we use as the recursive dispersion:

xv ←−
∑
w∈Cuv

x2w + 2
∑
s,t∈Cuv

dv(s, t)xsxt

emb(u, v)
. (2)

Depending on the structure of Gu, the right-hand side of (2)
can simplify in several instructive ways. In what follows, we
will also write emb(u, v) in an equivalent form as |Cuv|.

• First, suppose Gu has the property that dv(s, t) = 1
whenever s and t belong to the set Cuv . For example,
with our distance function dv , this would hold if the
graph Gu − {u} had no cycle of length less than 5; in
this case, for any v and any s, t ∈ Cuv , there could be
no common neighbor of s and t other than u and v, and
so dv(s, t) = 1. In this case, the iteration in (2) becomes

xv ←−
∑
w∈Cuv

x2w + 2
∑
s,t∈Cuv

xsxt

emb(u, v)
=

(∑
w∈Cuv

xw
)2

|Cuv|
(3)

and so the values evolve according to an iteration that
simply sums values at neighboring nodes and then
squares the sum (with normalization).
• Alternately, suppose Gu has the property that dv(s, t) =
0 for all pairs of nodes s and t that belong to the same
set Cuv . For example, again using our distance function
dv , this would be true if every pair of nodes at distance 2
in Gu had at least two common neighbors other than u.
In this case, if in a given iteration we have xs = c for all
s, then in the next iteration

xv ←−
∑
w∈Cuv

x2w
emb(u, v)

=
c2|Cuv|
|Cuv|

= c2, (4)

and so all values remain equal to each other. Thus, for
such a Gu, all nodes have the same recursive dispersion.

These two special cases represent different conceptual ex-
tremes, and most graphs will lie in between. It is an interest-
ing open question to understand the convergence properties
of recursive dispersion in arbitrary graphs.

http://overstated.net/2009/03/09/maintained-relationships-on-facebook
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