
Low-rank Matrix Completion using Alternating
Minimization

[Extended Abstract]

Prateek Jain
Microsoft Research India,

Bangalore
prajain@microsoft.com

Praneeth Netrapalli
∗

The University of Texas at
Austin

praneethn@utexas.edu

Sujay Sanghavi
The University of Texas at

Austin
sanghavi@mail.utexas.edu

ABSTRACT
Alternating minimization represents a widely applicable and
empirically successful approach for finding low-rank matrices
that best fit the given data. For example, for the problem of
low-rank matrix completion, this method is believed to be
one of the most accurate and efficient, and formed a major
component of the winning entry in the Netflix Challenge
[17].

In the alternating minimization approach, the low-rank
target matrix is written in a bi-linear form, i.e. X = UV †;
the algorithm then alternates between finding the best U and
the best V . Typically, each alternating step in isolation is
convex and tractable. However the overall problem becomes
non-convex and is prone to local minima. In fact, there
has been almost no theoretical understanding of when this
approach yields a good result.

In this paper we present one of the first theoretical anal-
yses of the performance of alternating minimization for ma-
trix completion, and the related problem of matrix sens-
ing. For both these problems, celebrated recent results have
shown that they become well-posed and tractable once cer-
tain (now standard) conditions are imposed on the problem.
We show that alternating minimization also succeeds under
similar conditions. Moreover, compared to existing results,
our paper shows that alternating minimization guarantees
faster (in particular, geometric) convergence to the true ma-
trix, while allowing a significantly simpler analysis.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tation on matrices

Keywords
Matrix Completion, Alternating Minimization

∗Part of this work was done while the author was an intern
at Microsoft Research India, Bangalore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1. INTRODUCTION
Finding a low-rank matrix to fit / approximate observa-

tions is a fundamental task in data analysis. In a slew of
applications, a popular empirical approach has been to rep-
resent the target rank k matrix X ∈ R

m×n in a bi-linear
form X = UV †, where U ∈ R

m×k and V ∈ R
n×k. Typi-

cally, this is done for two reasons:
(a) Size and computation: If the rank k of the target ma-
trix (to be estimated) is much smaller than m,n, then U, V
are significantly smaller than X and hence are more efficient
to optimize for. This is crucial for several practical appli-
cations, e.g., recommender systems where one routinely en-
counters matrices with billions of entries.
(b) Modeling: In several applications, one would like to im-
pose extra constraints on the target matrix, besides just
low rank. Oftentimes, these constraints might be easier and
more natural to impose on factors U , V . For example, in
Sparse PCA [25], one looks for a low-rank X that is the
product of sparse U and V .

Due to the above two reasons, in several applications, the
target matrix X is parameterized by X = UV †. For exam-
ple, clustering [16], sparse PCA [25] etc.

Using the bi-linear parametrization of the target matrix
X, the task of estimating X now reduces to finding U and V
that, for example, minimize an error metric. The resulting
problem is typically non-convex due to bi-linearity. Corre-
spondingly, a popular approach has been to use alternating
minimization: iteratively keep one of U, V fixed and opti-
mize over the other, then switch and repeat, see e.g. [18].
While the overall problem is non-convex, each sub-problem
is typically convex and can be solved efficiently.

Despite the wide usage of bi-linear representation and
alternating minimization, global optimality guarantees for
such methods are still lacking.Motivated by this disconnect
between theory and practice in the estimation of low-rank
matrices, in this paper we provide one of the first guaran-
tees for performance of alternating minimization, for
two low-rank matrix recovery problems: matrix completion,
and matrix sensing.

Matrix completion involves completing a low-rank matrix,
by observing only a few of its elements. Its recent popularity,
and primary motivation, comes from recommendation sys-
tems [18], where the task is to complete a user-item ratings
matrix using only a small number of ratings. As elaborated
in Section 2, alternating minimization becomes particularly
appealing for this problem as it provides a fast, distributed

STOC’13, June 1-4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

665

algorithm that can exploit both sparsity of ratings as well
as the low-rank bi-linear parametrization of X.
Matrix sensing refers to the problem of recovering a low-

rank matrixM ∈ R
m×n from affine equations. That is, given

d linear measurements bi = tr(A†
iM) and the corresponding

measurement matrices Ai’s, the goal is to recover back M .
This problem is particularly interesting in the case of d �
mn and was first studied in [22] and subsequently in [10, 19].
In fact, matrix completion is a special case of this problem,
where each observed entry in the matrix completion problem
represents one single-element measurement matrix Ai.

Without any extra conditions, both matrix sensing and
matrix completion are ill-posed problems, with potentially
multiple low-rank solutions, and are in general NP hard [20,
21]. Current work on these problems thus impose some extra
conditions, which makes the problems both well defined, and
amenable to solution via the respective proposed algorithms
[22, 3]; see Section 3 for more details. In this paper, we
show that under similar conditions to the ones used
by the existing methods, alternating minimization also
guarantees recovery of the true matrix; we also show that
it requires only a small number of computationally cheap
iterations and hence, as observed empirically, is computa-
tionally much more efficient than the existing methods.
Notations: We represent a matrix by capital letter (e.g.
M) and a vector by small letter (u). ui represents i-th el-
ement of u and Uij denotes (i, j)-th entry of U . Ui repre-

sents i-th column of U and U (i) represents i-th row of U .
A† denotes matrix transpose of A. u = vec(U) represents

vectorized U , i.e., u = [U†
1 U†

2 . . . U†
k]

†. ‖u‖p denotes Lp

norm of u, i.e., ‖u‖p = (
∑

i |ui|p)1/p. By default, ‖u‖ de-
notes L2 norm of u. ‖A‖F denotes Frobenius norm of A,
i.e., ‖vec(A)‖2. ‖A‖2 = maxx,‖x‖2=1 ‖Ax‖2 denotes spec-
tral norm of A. tr(A) denotes the trace (sum of diagonal

elements) of square matrix A. Typically, Û , V̂ represent

factor matrices (i.e., Û ∈ R
m×k and V̂ ∈ R

n×k) and U , V
represent their orthonormal basis.

Due to lack of space, we ommit some of the proofs; please
refer [11] for detailed proofs.

2. OUR RESULTS
In this section, we will first define the matrix sensing prob-

lem, and present our results for it. Subsequently, we will do
the same for matrix completion. The matrix sensing setting
– i.e. recovery of any low-rank matrix from linear measure-
ments that satisfy matrix RIP – represents an easier analyti-
cal setting than matrix completion, but still captures several
key properties of the problem that helps us in developing an
analysis for matrix completion.We note that for either prob-
lem, ours represent the first global optimality guarantees for
alternating minimization based algorithms. 1

Matrix Sensing via Alternating Minimization
Given d linear measurements bi = 〈M,Ai〉 = tr(A†

iM), 1 ≤
i ≤ d of an unknown rank-k matrix M ∈ R

m×n and the sens-
ing matrices Ai, 1 ≤ i ≤ d, the goal in matrix sensing is to re-
cover back M . In the following we collate these coefficients,
so that b ∈ R

d is the vector of bi’s, and A(·) : Rm×n → d
is the corresponding linear map, with b = A(M). With this

1Independent of our work, [13] also proved similar result for
the matrix completion problem. See Section 3 for a detailed
comparision of our results with that of [13].

Algorithm 1 AltMinSense : Alternating minimization
for matrix sensing

1: Input b,A
2: Initialize Û0 to be the top-k left singular vectors of∑

i Aibi
3: for t = 0, · · · , T − 1 do

4: V̂ t+1 ← argminV ∈Rn×k ‖A(Û t V †)− b‖22
5: Û t+1 ← argminU∈Rm×k ‖A(U (V̂ t+1)†)− b‖22
6: end for
7: Return X = ÛT (V̂ T)†

notation, the Low-Rank Matrix Sensing problem is:

Find X ∈ R
m×n, s.t A(X) = b, rank(X) ≤ k. (LRMS)

As in the existing work [22] on this problem, we are inter-
ested in the under-determined case, where d < mn. Note
that this problem is a strict generalization of the popular
compressed sensing problem [4]; compressed sensing repre-
sents the case when M is restricted to be a diagonal matrix.

For matrix sensing, alternating minimization approach in-
volves representing X as a product of two matrices U ∈
R

m×k and V ∈ R
n×k, i.e., X = UV †. If k is (much) smaller

than m,n, then these matrices will be (much) smaller than
X. With this bi-linear representation, alternating minimiza-
tion can be viewed as an approximate way to solve the fol-
lowing non-convex optimization problem:

min
U∈Rm×k,V ∈Rn×k

‖A(UV †)− b‖22

As mentioned earlier, the alternating minimization algo-
rithm for matrix sensing now alternately solves for U and V
while fixing the other factor. See Algorithm 1 for a pseudo-
code of the AltMinSense algorithm that we analyze.

We note two key properties of AltMinSense : a) Each
minimization – over U with V fixed, and vice versa – is a
simple least-squares problem, which can be solved in time
O(dn2k2 + n3k3)2, b) We initialize U0 to be the top-k left
singular vectors of

∑
i Aibi (step 2 of Algorithm 1). As we

will see later in Section 4, this provides a good initialization
point for the sensing problem which is crucial; if the first

iterate Û0 is orthogonal, or almost orthogonal, to the true
U∗ subspace, AltMinSense may never converge to the true
space (this is easy to see in the simplest case, when the map
is identity, i.e. A(X) = X – in which case AltMinSense just
becomes the power method).

In general, since d < mn, problem (LRMS) is not well
posed as there can be multiple rank-k solutions that sat-
isfy A(X) = b. However, inspired by a similar condition in
compressed sensing [4], Recht et al. [22] showed that if the
linear map A satisfies a (matrix) restricted isometry prop-
erty (RIP), then a trace-norm based convex relaxation of
(LRMS) leads to exact recovery. This property is defined
below.

Definition 2.1. [22] A linear operator A(·) : Rm×n →
R

d is said to satisfy k-RIP, with δk RIP constant, if for all
X ∈ R

m×n s.t. rank(X) ≤ k, the following holds:

(1− δk) ‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δk) ‖X‖2F . (1)

Several randommatrix ensembles with sufficiently many mea-
surements (d) satisfy matrix RIP [22]. For example, if d =
Ω(1

δ2
k
kn log n) and each entry of Ai is sampled i.i.d. from

2Throughout this paper, we assume m ≤ n.

666

a 0-mean sub-Gaussian distribution then k-RIP is satisfied
with RIP constant δk.
We now present our main result for AltMinSense.

Theorem 2.2. Let M = U∗Σ∗V ∗† be a rank-k matrix
with non zero singular values σ∗

1 ≥ σ∗
2 · · · ≥ σ∗

k. Also, let
the linear measurement operator A(·) : R

m×n → R
d sat-

isfy 2k-RIP with RIP constant δ2k <
(σ∗

k)2

(σ∗
1)2

1
100k

. Then,

in the AltMinSense algorithm (Algorithm 1), for all T >

2 log(‖M‖F /ε), the iterates ÛT and V̂ T satisfy:

‖M − ÛT (V̂ T)†‖F ≤ ε.

The above theorem establishes geometric convergence (in
O(log(1/ε)) steps) of AltMinSense to the optimal solution
of (LRMS) under standard RIP assumptions. In contrast,
all the existing iterative methods for trace-norm minimiza-
tion require at least O(1√

ε
) steps; interior point methods

for trace-norm minimization converge to the optimum in
O(log(1/ε)) steps but require storage of the fullm×n matrix
and require O(n5) time per step, which makes it infeasible
for even moderate sized problems.

Recently, several projected gradient based methods have
been developed for matrix sensing [10, 19] that also guaran-
tee convergence to the optimum in O(log(1/ε)) steps. But
each iteration in these algorithms requires computation of
the top k singular components of an m × n matrix, which
is typically significantly slower than solving a least squares
problem (as required by each iteration of AltMinSense).
Stagewise AltMinSense Algorithm: A drawback of our
analysis for AltMinSense is the dependence of δ2k on the

condition number (κ =
σ∗
1

σ∗
k
) of M , which implies that the

number of measurements d required by AltMinSense grows
quadratically with κ. We address this issue by using a stage-
wise version of AltMinSense (Algorithm 3) for which we are
able to obtain near optimal measurement requirement.

The key idea behind our stagewise algorithm is that if one
of the singular vectors of M is very dominant, then we can
treat the underlying matrix as a rank-1 matrix plus noise
and approximately recover the top singular vector. Once
we remove this singular vector from the measurements, we
will have a relatively well-conditioned problem. Hence, at
each stage of Algorithm 3, we seek to remove the remaining
most dominant singular vector of M . See Section 6 for more
details; here we state the corresponding theorem regarding
the performance of Stage-AltMin.

Theorem 2.3. Let M = U∗Σ∗V ∗† be a rank-k incoherent
matrix with non zero singular values σ∗

1 ≥ σ∗
2 · · · ≥ σ∗

k. Also,
let A(·) : Rm×n → R

d be a linear measurement operator that
satisfies 2k-RIP with RIP constant δ2k < 1

3200k2 . Suppose,
Stage-AltMin (Algorithm 3) is supplied inputs A, b = A(M).

Then, the i-th stage iterates ÛT
1:i, V

T
1:i satisfy:

‖M − ÛT
1:i

(
V T
1:i

)†
‖2F ≤ max(ε, 16k(σ∗

i+1)
2),

where T = Ω
(
log(‖M‖2F /ε)

)
. That is, the T -th step iterates

of the k-th stage, satisfy: ‖M − ÛT
1:k

(
V T
1:k

)† ‖2F ≤ ε.

The above theorem guarantees exact recovery usingO(k4n log n)
measurements which is only O(k3) worse than the informa-
tion theoretic lower bound. We also note that for simplicity
of analysis, we did not optimize the constant factors in δ2k.

Matrix Completion via Alternating Minimiza-
tion
The matrix completion problem is the following: there is an
unknown rank-k matrix M ∈ R

m×n, of which we know a
set Ω ⊂ [m] × [n] of elements; that is, we know the values
of elements Mij , for (i, j) ∈ Ω. The task is to recover M .
Formally, the Low-Rank Matrix Completion problem is:

Find rank-k matrix X s.t. PΩ(X) = PΩ(M), (LRMC)

where for any matrix S and a set of elements Ω ⊂ [m]× [n]
the matrix PΩ(S) ∈ R

m×n is as defined below:

PΩ(S)ij =

{
Sij if (i, j) ∈ Ω,

0 otherwise.
(2)

We are again interested in the under-determined case; in
fact, for a fixed rank k, as few as O(n log n) elements may be
observed. This problem is a special case of matrix sensing,
with the measurement matrices Ai = eje

†
� being non-zero

only in single elements; however, such matrices do not satisfy
matrix RIP conditions like (1). For example, consider a

low-rank M = e1e
†
1 for which a uniformly random Ω of size

O(n log n) will most likely miss the non-zero entry of M .
Nevertheless, like matrix sensing, matrix completion has

been shown to be possible once additional conditions are
applied to the low-rank matrix M and the observation set
Ω. Starting with the first work [3], the typical assumption
has been to have Ω generated uniformly at random, and
M to satisfy a particular incoherence property that, loosely
speaking, makes it very far from a sparse matrix. In this
paper, we show that once such assumptions are made, al-
ternating minimization also succeeds. We now restate, and
subsequently use, this incoherence definition.

Definition 2.4. [3] A matrix M ∈ R
m×n is incoherent

with parameter μ if:∥∥∥u(i)
∥∥∥
2
≤ μ
√
k√
m
∀ i ∈ [m],

∥∥∥v(j)∥∥∥
2
≤ μ
√
k√
n
∀ j ∈ [n], (3)

where M = UΣV T is the SVD of M and u(i), v(j) denote
the ith row of U and the jth row of V respectively.

The alternating minimization algorithm can be viewed as an
approximate way to solve the following non-convex problem:

min
U,V ∈Rn×k

‖PΩ(UV †)− PΩ(M)‖2F

Similar to AltMinSense, the altmin procedure proceeds by
alternatively solving for U and V . As noted earlier, this
approach has been popular in practice and has seen several
variants and extensions being used in practice [24, 18, 7].
However, for ease of analysis, our algorithm further modifies
the standard alternating minimization method. In particu-
lar, we introduce partitioning of the observed set Ω, so that
we use different partitions of Ω in each iteration. See Algo-
rithm 2 for a pseudo-code of our variant of the alternating
minimization approach.

Our use of some technical lemmas from [14] renders all
the constants dependent on n

m
. In what follows, a constant

by default is assumed to depend on n
m
. We believe that

our results hold even with out this assumption but leave the
extension to such case as a subject for future research. We
now present our main result for (LRMC):

667

Algorithm 2 AltMinComplete: Alternating minimiza-
tion for matrix completion

1: Input: observed set Ω, values PΩ(M)
2: Partition Ω into 2T + 1 subsets Ω0, · · · ,Ω2T with each

element of Ω belonging to one of the Ωt with equal prob-
ability (sampling with replacement)

3: Û0 = SV D(1
p
PΩ0(M), k) i.e., top-k left singular vectors

of 1
p
PΩ0(M)

4: Clipping step : Set all elements of Û0 that have magni-

tude greater than 2μ
√

k√
n

to zero and orthonormalize the

columns of Û0

5: for t = 0, · · · , T − 1 do

6: V̂ t+1 ← argminV ∈Rn×k ‖PΩt+1(Û
tV † −M)‖2F

7: Û t+1 ← argminU∈Rm×k ‖PΩT+t+1(U
(
V̂ t+1

)†
−M)‖2F

8: end for
9: Return X = ÛT (V̂ T)†

Theorem 2.5. Let M = U∗Σ∗V ∗† ∈ R
m×n (n ≥ m)

be a rank-k incoherent matrix, i.e., both U∗ and V ∗ are μ-
incoherent (see Definition 2.4). Also, let each entry of M be
observed uniformly and independently with probability,

p > C

(
σ∗
1

σ∗
k

)4
μ4k7 log n log k‖M‖F

ε

mδ22k
,

where δ2k ≤ σ∗
k

Cσ∗
1

and C > 0 is a global constant. Then

w.h.p. for T = C′ log ‖M‖F
ε

, the outputs ÛT and V T of Al-
gorithm 2, with input (Ω, PΩ(M)) (see Equation (2)) satisfy:∥∥∥M − ÛT

(
V T
)†∥∥∥

F
≤ ε.

The above theorem implies that by observing |Ω| =
O
(
(
σ∗
1

σ∗
k
)6k7n log n log(k‖M‖F /ε)

)
random entries of an in-

coherent M , AltMinComplete can recover M in O(log(1/ε))
steps. In terms of sample complexity (|Ω|), our results show
alternating minimization may require a bigger Ω than con-
vex optimization, as our result has |Ω| depend on the condi-
tion number, required accuracy (ε) and worse dependence on
k than known bounds. In contrast, trace-norm minimization
based methods require O(kn log n) samples only.

Empirically however, this is not seen to be the case [10]
and we leave further tightening of the sample complexity
bounds for matrix completion as an open problem.

In terms of time complexity, we show that AltMinCom-
plete needs time O(|Ω|k2 log(1/ε)). This is in contrast to
popular trace-norm minimization based methods that need
O(1/

√
ε) steps [1] and total time complexity of O(|Ω|n/√ε);

note that the latter can potentially be quadratic in n. Fur-
thermore, each step of such methods requires computation of
the SVD of an m× n matrix. As mentioned earlier, interior
point methods for trace-norm minimization also converge
in O(log(1/ε)) steps but each iteration requires O(n5) steps
and need storage of the entire m× n matrix X.

3. RELATED WORK
Alternating Minimization: Alternating minimization

and its variants have been applied to several low-rank matrix
estimation problems. For example, clustering [16], sparse
PCA [25], non-negative matrix factorization [15], signed net-
work prediction [9] etc. There are three main reasons for

such wide applicability of this approach: a) low-memory
footprint and fast iterations, b) flexible modeling, c) amenable
to parallelization. However, despite such empirical success,
this approach has largely been used as a heuristic and has
had no theoretical analysis other than the guarantees of con-
vergence to the local minima [23]. Ours is the first analysis
of this approach for two practically important problems: a)
matrix completion, b) matrix sensing.

After this paper was submitted, we became aware of [13]
which provides an analysis of alternating minimization for
matrix completion. Along with [13], ours is the first analy-
sis of this approach for the problem of matrix completion.
Moreover, ours is the first analysis of this approach for the
problem of matrix sensing. .
Matrix Completion: This is the problem of completing
a low-rank matrix from a few sampled entries. Candes and
Recht [3] provided the first results on this problem, showing
that under the random sampling and incoherence conditions
(detailed above), O(kn1.2 log n) samples allow for recovery
via convex trace-norm minimization; this was improved to
O(kn log n) in [5]. For large matrices, this approach is not
very attractive due to the need to store and update the en-
tire matrix, and because iterative methods for trace norm
minimization require O(1√

ε
) steps to achieve additive error

of ε. Moreover, each such step needs to compute an SVD.
Another approach, in [14], involved taking a single SVD,

followed by gradient descent on a Grassmanian manifold.
However, (a) this is more expensive than alternating mini-
mization as it needs to compute gradient over Grassmanian
manifold which in general is a computationally intensive
step, and (b) the analysis of the algorithm only guarantees
asymptotic convergence, and in the worst case might take
exponential time in the problem size.

The most closely related work to ours is [13], which pro-
vides guarantees for alternating minimization for the case
of matrix completion. [13] shows that consistent recovery is
possible if the sampling probability p scales as

Ω

(
k
(

σ∗
1

σ∗
k

)8
logn
m

)
. Our result is worse than theirs in the

dependence on k while being better in the dependence on
the condition number.

Recently, several other matrix completion type of prob-
lems have been studied in the literature. For example, ro-
bust PCA [6, 2], spectral clustering [12] etc. Here again, un-
der additional assumptions, convex relaxation based meth-
ods have rigorous analysis but alternating minimization based
algorithms continue to be algorithms of choice in practice.
Matrix Sensing: The general problem of matrix sensing
was first proposed by [22]. They established recovery via
trace norm minimization, assuming the sensing operator sat-
isfies “restricted isometry” conditions. Subsequently, several
other methods [10, 19] were proposed for this problem that
also recovers the underlying matrix with optimal number of
measurements and can give an ε-additive approximation in
time O(log(1/ε). But, similar to matrix completion, most of
these methods require computing SVD of a large matrix at
each step and hence have poor scalability to large problems.

We show that AltMinSense and AltMin-Completion pro-
vide more scalable algorithms for their respective problems.
We demonstrate that these algorithms have geometric con-
vergence to the optima, while each iteration is relatively
cheap. For this, we assume conditions similar to those re-
quired by existing algorithms; albeit, with one drawback:

668

number of samples required by our analysis depend on the
condition number of the underlying matrix M . For the ma-
trix sensing problem, we remove this requirement by using
a stagewise algorithm; we leave similar analysis for matrix
completion as an open problem.

4. MATRIX SENSING
In this section, we study the matrix sensing problem (LRMS)

and prove that if the measurement operator, A, satisfies
RIP then AltMinSense (Algorithm 1) recovers the underly-
ing low-rank matrix exactly (see Theorem 2.2).

At a high level, we prove Theorem 2.2 by showing that

the “distance” between subspaces spanned by V̂ t (iterate at
time t) and V ∗ decreases exponentially with t. This done
based on the observation that once the (standard) matrix
RIP condition (Definition 2.1) holds, alternating minimiza-
tion can be viewed, and analyzed, as a perturbed version
of the power method. This is easiest to see for the rank-1
case below; we detail this proof, and then the more general
rank-k case.
In this paper, we use the following definition of distance

between subspaces:

Definition 4.1. [8] Given two matrices Û , Ŵ ∈ R
m×k,

the (principal angle) distance between the subspaces spanned

by the columns of Û and Ŵ is given by:

dist
(
Û , Ŵ

)
def
=
∥∥∥U†

⊥W
∥∥∥
2
=
∥∥∥W †

⊥U
∥∥∥
2

where U and W are orthonormal bases of the spaces Span
(
Û
)

and Span
(
Ŵ
)
, respectively. Similarly, U⊥ and W⊥ are any

orthonormal bases of the perpendicular spaces Span (U)⊥ and

Span (W)⊥, respectively.

Note: (a) The distance depends only on the spaces spanned

by the columns of Û , Ŵ , (b) if the ranks of Û and Ŵ (i.e. the

dimensions of their spans) are not equal, then dist
(
Û , Ŵ

)
=

1, and (c) dist
(
Û , Ŵ

)
= 0 if and only if they span the same

subspace of Rm.
We now present a theorem that bounds the distance be-

tween the subspaces spanned by V̂ t and V ∗ and show that
it decreases exponentially with t.

Theorem 4.2. Let b = A(M) where M and A satisfy
assumptions given in Theorem 2.2. Then, the (t + 1)-th

iterates Û t+1, V̂ t+1 of AltMinSense satisfy:

dist
(
V̂ t+1, V ∗

)
≤ 1

4
· dist

(
Û t, U∗

)
,

dist
(
Û t+1, U∗

)
≤ 1

4
· dist

(
V̂ t+1, V ∗

)
where dist (U,W) denotes the principal angle based distance
(see Definition 4.1).

Using Theorem 4.2, we are now ready to prove Theorem 2.2.

Proof Of Theorem 2.2. Assuming correctness of The-
orem 4.2, Theorem 2.2 follows by using the following set of

inequalities:

‖M − ÛT (V̂ T)†‖2F
ζ1≤ 1

1− δ2k
‖A(M − ÛT (V̂ T)†)‖22,

ζ2≤ 1

1− δ2k
‖A(M(I − V T (V T)†))‖22,

ζ3≤ 1 + δ2k
1− δ2k

‖U∗Σ∗(V ∗)†(I − V T (V T)†))‖2F ,
ζ4≤ 1 + δ2k

1− δ2k
‖M‖2Fdist2

(
V T , V ∗

) ζ5≤ ε,

where V T is an orthonormal basis of V̂ T , ζ1 and ζ3 follow by

RIP, ζ2 holds as ÛT is the least squares solution, ζ4 follows
from the definition of dist(·, ·) and finally ζ5 follows from
Theorem 4.2 and by setting T appropriately.

To complete the proof of Theorem 2.2, we now need to prove
Theorem 4.2. In the next section, we illustrate the main
ideas of the proof of Theorem 4.2 by applying it to a rank-1
matrix i.e., when k = 1. We then provide a proof of Theorem
4.2 for arbitrary k in Section 4.2.

4.1 Rank-1 Case
In this section, we provide a proof of Theorem 4.2 for

the special case of k = 1. That is, let M = u∗σ∗(v∗)† s.t.
u∗ ∈ R

m, ‖u∗‖2 = 1 and v∗ ∈ R
n, ‖v∗‖2 = 1. Also note that

when û and ŵ are vectors, dist(û, ŵ) = 1 − (u†w)2, where
u = û/‖û‖2 and w = ŵ/‖ŵ‖2.

Consider the t-th update step in the AltMinSense pro-

cedure. As v̂t+1 = argminv̂

∑d
i=1

(
ût†A†

i v̂ − σ∗u∗†A†
iv

∗
)2

,

setting the gradient of the above objective function to 0, we
obtain:(

d∑
i=1

Aiu
t(ut)†A†

i

)
‖ût‖2v̂t+1 = σ∗

(
d∑

i=1

Aiu
tu∗†A†

i

)
v∗,

where ut = ût/‖ût‖2. Now, let B =
∑d

i=1 Aiu
t(ut)†A†

i and

C =
∑d

i=1 Aiu
t(u∗)†A†

i . Then,

‖ût‖2v̂t+1 = σ∗B−1Cv∗,

= 〈u∗, ut〉σ∗v∗︸ ︷︷ ︸
Power Method

−B−1 (〈u∗, ut〉B − C
)
σ∗v∗︸ ︷︷ ︸

Error Term

. (4)

Note that the first term in the above expression is the power
method iterate (i.e., M†ut). The second term is an error
term and the goal is to show that it becomes smaller as ut

gets closer to u∗. Note that when ut = u∗, the error term is
0 irrespective of the measurement operator A.

Below, we provide a precise bound on the error term:

Lemma 4.3. Consider the error term defined in (4) and
let A satisfy 2-RIP with constant δ2. Then,

‖B−1 (〈u∗, ut〉B − C
)
v∗‖ ≤ 3δ2

1− 3δ2

√
1− 〈ut, u∗〉2

Using the above lemma, we now finish the proof of Theo-
rem 4.2:

Proof Of Rank-1 case of Theorem 4.2. Let vt+1 =

669

v̂t+1/‖v̂t+1‖2. Now, using (4) and Lemma 4.3:,

〈vt+1, v∗〉 = 〈v̂
t+1, v∗〉
‖v̂t+1‖ =

〈v̂t+1/σ∗, v∗〉
‖v̂t+1/σ∗‖

≤ 〈u∗, ut〉 − δ̂2
√

1− 〈u∗, ut〉2√(
〈u∗, ut〉 − δ̂2

√
1− 〈u∗, ut〉2

)2
+ δ̂22 (1− 〈u∗, ut〉2)

,

where δ̂2 = 3δ2
1−3δ2

. That is,

dist2(vt+1, v∗)

≤ δ̂22(1− 〈u∗, ut〉2)
(〈u∗, ut〉 − δ̂2

√
1− 〈u∗, ut〉2)2 + δ̂22(1− 〈u∗, ut〉2)

,

Hence, assuming 〈u∗, ut〉 ≥ 5δ̂2, dist(v
t+1, v∗) ≤ 1

4
dist(ut, u∗).

As dist(ut+1, u∗) and dist(vt+1, v∗) are decreasing with t
(from the above bound), we only need to show that 〈u0, ut〉 ≥
5δ̂2. Recall that û0 is obtained by using one step of the Sin-
gular Value Projection (SVP) algorithm [10]. Hence, using
Lemma 2.1 of [10]:

‖σ∗
1(I − u0(u0)†)u∗)‖22 ≤ ‖M − û0(v̂0)†‖2F ≤ 2δ2‖M‖2F .

Therefore, 〈u0, u∗〉 ≥ √1− 2δ2 ≥ 5δ̂2 assuming δ2 ≤ 1
100

.

4.2 Rank-k Case
In this section, we present the proof of Theorem 4.2 for

arbitrary k, i.e., when M is a rank-k matrix (with SVD

U∗Σ∗ (V ∗)†).
Similar to the analysis for the rank-1 case (Section 4.1),

we show that even for arbitrary k, the updates of AltMin-
Sense are essentially power-method type updates but with
a bounded error term whose magnitude decreases with each
iteration.

However, directly analyzing iterates of AltMinSense is a
bit tedious due to non-orthonormality of intermediate iter-

ates Û . Instead, for analysis only we consider the iterates
of a modified version of AltMinSense, where we explicitly
orthonormalize each iterate using the QR-decomposition3.
In particular, suppose we replace steps 4 and 5 of AltMin-
Sensewith the following

Û t = U tRt
U (QR decomposition),

V̂ t+1 ← argmin
V

‖A(U tV †)− b‖22,

V̂ t+1 = V t+1Rt+1
V (QR decomposition)

Û t+1 ← argmin
U

‖A(U(V t+1)†)− b‖22 (5)

In our algorithm, in each iterate both Û t, V̂ t remain full-
rank because dist

(
U t, U∗) < 1; with this, the following

lemma implies that the spaces spanned by the iterates in
our AltMinSense algorithm are exactly the same as the re-
spective ones by the iterates of the above modified version

(and hence the distances dist(Û t, U∗) and dist(V̂ t, V ∗) are
also the same for the two algorithms).

3The QR decomposition factorizes a matrix into an or-
thonormal matrix (a basis of its column space) and an upper

triangular matrix; that is given Ŝ it computes Ŝ = SR where

S has orthonormal columns and R is upper triangular. If Ŝ
is full-rank, so are S and R.

Lemma 4.4. Let Û t be the tth iterate of our AltMinSense

algorithm, and Ũ t of the modified version stated above. Sup-

pose also that both Û t, Ũ t are full-rank, and span the same
subspace. Then the same will be true for the subsequent iter-

ates for the two algorithms, i.e. Span(V̂ t+1) = Span(Ṽ t+1),

Span(Û t+1) = Span(Ũ t+1), and all matrices at iterate t+1
will be full-rank.

In light of this, we will now prove Theorem 4.2 with the
new QR-based iterates (5).

Lemma 4.5. Let Û t be the t-th step iterate of AltMin-

Sense and let U t, V̂ t+1 and V t+1 be obtained by Update (5).
Then,

V̂ t+1 = V ∗Σ∗U∗†U t︸ ︷︷ ︸
Power-method

Update

− F︸︷︷︸
Error
Term

, V t+1 = V̂ t+1(R(t+1))−1, (6)

where F is an error matrix defined in (8) and R(t+1) is a

triangular matrix obtained using QR-decomposition of V̂ t+1.

Before we give an expression for the error matrix F , we
define the following notation. Let v∗ ∈ R

nk be given by:

v∗ = vec(V ∗), i.e., v∗ =
[
v∗†1 v∗†2 . . . v∗†k

]†
. Define B, C, D,

S as follows:

B
def
=

⎡
⎢⎣

B11 · · · B1k

...
. . .

...
Bk1 · · · Bkk

⎤
⎥⎦ , C

def
=

⎡
⎢⎣

C11 · · · C1k

...
. . .

...
Ck1 · · · Ckk

⎤
⎥⎦ ,

D
def
=

⎡
⎢⎣

D11 · · · D1k

...
. . .

...
Dk1 · · · Dkk

⎤
⎥⎦ , S

def
=

⎡
⎢⎣
σ∗
1In . . . 0n
...

. . .
...

0n . . . σ∗
kIn

⎤
⎥⎦ . (7)

where , for 1 ≤ p, q ≤ k: Bpq
def
=
∑d

i=1 Aiu
t
pu

t
q
†
A†

i ,

Cpq
def
=
∑d

i=1 Aiu
t
pu

∗
q
†A†

i , and, Dpq
def
= 〈ut

p, u
∗
q〉In×n. Recall

that, ut
p is the p-th column of U t and u∗

q is the q-th left

singular vector of the underlying matrix M = U∗Σ∗(V ∗)†.
Finally F is obtained by “de-stacking” the vector
B−1 (BD − C)Sv∗ i.e., the ith column of F is given by:

Fi
def
=

⎡
⎢⎢⎢⎢⎣

(
B−1 (BD − C)Sv∗

)
ni+1(

B−1 (BD − C)Sv∗
)
ni+2

...(
B−1 (BD − C)Sv∗

)
ni+n

⎤
⎥⎥⎥⎥⎦ , F

def
= [F1 F2 · · · Fk] . (8)

Note that the notation above should have been Bt, Ct and
so on. We suppress the dependence on t for notational sim-
plicity. Now, from Update (6), we have

V t+1 = V̂ t+1R(t+1)−1
=
(
V ∗Σ∗U∗†U t − F

)
R(t+1)−1

⇒V ∗
⊥

†
V t+1 = −V ∗

⊥
†
FR(t+1)−1

. (9)

where V ∗
⊥ is an orthonormal basis of Span (v∗1 , v

∗
2 , · · · , v∗k)⊥.

Therefore,

dist(V ∗, V t+1) = ‖V ∗
⊥

†
V t+1‖2 = ‖V ∗

⊥
†
FR(t+1)−1‖2

≤ ‖F (Σ∗)−1‖2‖Σ∗R(t+1)−1‖2.
Now, we break down the proof of Theorem 4.2 into the fol-
lowing two steps:

670

• show that ‖F‖2 is small (Lemma 4.6) and

• show that ‖R(t+1)−1‖2 is small(Lemma 4.7).

We will now state the two corresponding lemmas. The
first lemma bounds the spectral norm of F (Σ∗)−1.

Lemma 4.6. Let linear measurement A satisfy RIP for all
2k-rank matrices and let b = A(M) with M ∈ R

m×n being a
rank-k matrix. Then, spectral norm of error matrix F (see
Equation 6) after t-th iteration update satisfy:∥∥F (Σ∗)−1

∥∥
2
≤ δ2kkσ

∗
1

1− δ2k
dist(U t, U∗). (10)

The following lemma bounds the spectral norm of R(t+1)−1

.

Lemma 4.7. Let linear measurement A satisfy RIP for all
2k-rank matrices and let b = A(M) with M ∈ R

m×n being
a rank-k matrix. Then,

‖Σ∗(R(t+1))−1‖2 ≤
σ∗
1/σ

∗
k√

1− dist2 (U t, U∗)− (1/σ∗
k
)δ2kkdist(U

t,U∗)
1−δ2k

. (11)

With the above two lemmas, we now prove Theorem 4.2.

Proof Of Theorem 4.2. Using (9), (10) and (11), we
obtain the following:

dist
(
V t+1, V ∗) = ∥∥∥V ∗

⊥
†
V t+1

∥∥∥
2
,

≤
∥∥∥V ∗

⊥
†
FR(t+1)−1

∥∥∥
2
,

≤ ‖V ∗
⊥‖2 ‖F‖2

∥∥∥R(t+1)−1
∥∥∥
2

≤ (1/σ∗
k)δ2kk · dist

(
U t, U∗)

(1− δ2k)L
, (12)

where L =
√

1− dist (U t, U∗)2− (σ∗
1/σ∗

k)δ2kkdist(Ut,U∗)
1−δ2k

. Also,

note that U0 is obtained using SVD of
∑

i Aibi.

‖A(U0Σ0V 0 − U∗Σ∗(V ∗)†‖22 ≤ 4δ2k‖A(U∗Σ∗(V ∗)†)‖22,
⇒‖U0Σ0V 0 − U∗Σ∗(V ∗)†‖2F ≤ 4δ2k(1 + 3δ2k)‖Σ∗‖2F ,
⇒‖U0(U0)†U∗Σ∗(V ∗)† − U∗Σ∗(V ∗)†‖2F ≤ 6δ2k‖Σ∗‖2F ,
⇒(σ∗

k)
2‖(U0(U0)† − I)U∗‖2F ≤ 6δ2kk(σ

∗
1)

2,

⇒dist(U0, U∗) ≤
√

6δ2kk

(
σ∗
1

σ∗
k

)
<

1

2
. (13)

Using (12) with dist
(
U0, U∗) < 1

2
and δ2k < 1

24(σ∗
1/σ∗

k
)2k

,

we obtain: dist
(
V t, V ∗) < 1

4
dist

(
U t, U∗). Similarly we can

show that dist
(
U t+1, U∗) < 1

4
dist

(
V t, V ∗).

5. MATRIX COMPLETION
In this section, we study the Matrix Completion problem

(LRMC) and show that, assuming k and
σ∗
1

σ∗
k

are constant,

AltMinComplete (Algorithm 2) recovers the underlying ma-
trix M using only O(n log n) measurements (i.e., we prove
Theorem 2.5).

As mentioned, while observing elements in Ω constitutes a
linear map, matrix completion is different from matrix sens-
ing because the map does not satisfy RIP. The (now stan-
dard) approach is to assume incoherence of the true matrix

M , as done in Definition 2.4. With this, and the random
sampling of Ω, matrix completion exhibits similarities to
matrix sensing. For our analysis, we can again use the fact
that incoherence allows us to view alternating minimization
as a perturbed power method, whose error we can control.

However, there are important differences between the two
problems, which make the analysis of completion more com-
plicated. Chief among them is the fact that we need to
establish the incoherence of each iterate. For the first ini-

tialization Û0, this necessitates the“clipping”procedure (de-
scribed in step 4 of the algorithm). For the subsequent steps,
this requires the partitioning of the observed Ω into 2T + 1
sets (as described in step 2 of the algorithm).

As in the case of matrix sensing, we prove our main result
for matrix completion (Theorem 2.5) by first establishing
a geometric decay of the distance between the subspaces

spanned by Û t, V̂ t and U∗, V ∗ respectively.

Theorem 5.1. Under the assumptions of Theorem 2.5,

the (t + 1)th iterates Û t+1 and V̂ t+1 satisfy the following
property w.h.p.:

dist
(
V̂ t+1, V ∗

)
≤ 1

4
dist

(
Û t, U∗

)
and

dist
(
Û t+1, U∗

)
≤ 1

4
dist

(
V̂ t+1, V ∗

)
, ∀ 1 ≤ t ≤ T.

We use the above result along with incoherence of M to
prove Theorem 2.5.

Now, similar to the matrix sensing case, alternating min-
imization needs an initial iterate that is close enough to U∗

and V ∗, from where it will then converge. To this end, Steps
3−4 of Algorithm 2 use SVD of PΩ(M) followed by clipping

to initialize Û0. While the SVD step guarantees that Û0

is close enough to U∗, it might not remain incoherent. To
maintain incoherence, we introduce an extra clipping step

which guarantees incoherence of Û0 while also ensuring that

Û0 is close enough to U∗ (see Lemma 5.2)

Lemma 5.2. Let M,Ω, p be as defined in Theorem 2.5.
Also, let U0 be the initial iterate obtained by step 4 of Algo-
rithm 2. Then, w.h.p. we have

• dist
(
U0, U∗) ≤ 1

2
and

• U0 is incoherent with parameter 4μ
√
k.

The above lemma guarantees a “good” starting point for al-
ternating minimization. Using this, we now present a proof
of Theorem 5.1. Similar to the sensing section, we first ex-
plain key ideas of our proof using rank-1 example. Then in
Section 5.2 we extend our proof to general rank-k matrices.

5.1 Rank-1 Case
Consider the rank-1 matrix completion problem where

M = σ∗u∗(v∗)†. Now, the t-th step iterates v̂t+1 of Al-
gorithm 2 are given by:

v̂t+1 = argmin
v̂

∑
(i,j)∈Ω

(Mij − ût
i v̂j)

2.

671

Let ut = ût/‖ût‖2. Then, ∀j:

‖ût‖2
∑

i:(i,j)∈Ω

(ut
i)

2v̂t+1
j = σ∗ ∑

i:(i,j)∈Ω

ut
iu

∗
i v

∗
j

⇒ ‖ût‖2v̂t+1
j =

σ∗∑
i:(i,j)∈Ω(u

t
i)

2

∑
i:(i,j)∈Ω

ut
iu

∗
i v

∗
j

= σ∗〈ut, u∗〉v∗j −
σ∗(〈ut, u∗〉∑i:(i,j)∈Ω(u

t
i)

2v∗j −∑
i:(i,j)∈Ω ut

iu
∗
i v

∗
j)∑

i:(i,j)∈Ω(u
t
i)

2
.

(14)

Hence,

‖ût‖2v̂t+1 = 〈u∗, ut〉σ∗v∗︸ ︷︷ ︸
Power Method

−σ∗B−1 (〈ut, u∗〉B − C
)
v∗︸ ︷︷ ︸

Error Term

, (15)

where B,C ∈ R
n×n are diagonal matrices, such that,

Bjj =

∑
i:(i,j)∈Ω(u

t
i)

2

p
, Cjj =

∑
i:(i,j)∈Ω ut

iu
∗
i

p
. (16)

Note the similarities between the update (15) and the rank-1
update (4) for the sensing case. Here again, it is essentially
a power-method update (first term) along with a bounded
error term (see Lemma 5.3). Using this insight, we now
prove Theorem 5.1 for the special case of rank-1 matrices.
Our proof can be divided in three major steps:

• Base Case: Show that u0 = û0/‖û0‖2 is incoherent
and have small distance to u∗ (see Lemma 5.2).
• Induction Step (distance): Assuming ut = ût/‖ût‖2 to

be incoherent and that ut has a small distance to u∗,
vt+1 decreases distances to v∗ by at least a constant
factor.
• Induction Step (incoherence): Show incoherence of vt+1,

while assuming incoherence of ut (see Lemma 5.4)

We first prove the second step of our proof. To this end, we
provide the following lemma that bounds the error term.

Lemma 5.3. Let M , p, Ω, ut be as defined in Theorem 2.5.
Also, let ut be a unit vector with incoherence parameter

μ1 = 6(1+δ2)μ
1−δ2

.Then, w.p. at least 1− 1
n3 :

‖B−1 (〈u∗, ut〉B − C
)
v∗‖2 ≤ δ2

1− δ2

√
1− 〈ut, u∗〉2.

Multiplying (15) with v∗ and using Lemma 5.3, we get:

‖ût‖2〈v̂t+1, v∗〉 ≥ σ∗〈ut, u∗〉 − 2σ∗δ2
√

1− 〈ut, u∗〉2, (17)

where δ2 < 1
12

is a constant defined in the Theorem state-
ment and is similar to the RIP constant in Section 4.

Similarly, by multiplying (15) with v⊥ (where 〈v∗⊥, v∗〉 = 0
and ‖v∗⊥‖2 = 1) and using Lemma 5.3:

‖ût‖2〈v̂t+1, v∗⊥〉 ≤ 2σ∗δ2
√

1− 〈ut, u∗〉2.
Using the above two equations:

1− 〈vt+1, v∗〉2

≤ 4δ22(1− 〈ut, u∗〉2)
(〈ut, u∗〉 − 2δ2

√
1− 〈ut, u∗〉2)2 + (2δ2

√
1− 〈ut, u∗〉2)2 .

Assuming, 〈vt+1, v∗〉 ≥ 6δ2,

dist(vt+1, v∗) =
√

1− 〈vt+1, v∗〉2 ≤ 1

4

√
1− 〈ut, u∗〉2.

Using same arguments, we can show that, dist(ut+1, u∗) ≤
dist(vt+1, v∗)/4. Hence, after O(log(1/ε)) iterations,
dist(ut, u∗) ≤ ε and dist(vt+1, v∗) ≤ ε. This proves our
second step.

We now provide the following lemma to prove the third
step. We stress that vt+1 does not increase the incoherence
parameter (μ1) when compared to that of ut.

Lemma 5.4. Let M , p, Ω be as defined in Theorem 2.5.
Also, let ut be a unit vector with incoherence parameter

μ1 = 6(1+δ2)μ
1−δ2

. Then, w.p. at least 1 − 1
n3 , vt+1 is also

μ1 incoherent.

Finally, for the base case we need that u0 is μ1 incoher-
ent and also 〈u0, u∗〉 ≥ 6δ2. This follows directly by using
Lemma 5.2 and the fact that δ2 ≤ 1/12.

Note that, to obtain an error of ε, AltMinComplete needs

to run for O
(
log ‖M‖F

ε

)
iterations. Also, we need to sam-

ple a fresh Ω at each iteration of AltMinComplete. Hence,
the total number of samples needed by AltMinComplete is

O
(
log ‖M‖F

ε

)
larger than the number of samples required

per step.

5.2 Rank-k case
We now extend our proof of Theorem 5.1 to matrices with

arbitrary rank. Here again, we show that the AltMinCom-
plete algorithm reduces to power method with bounded per-
turbation at each step.

Similar to the matrix sensing case, we analyze the fol-
lowing QR decomposition based update instead of directly
analyzing the updates of Algorithm 2:

Û t = U tRt
U (QR decomposition),

V̂ t+1 = argmin
̂V

‖PΩ(U
tV̂ †)− PΩ(M)‖2F ,

V̂ t+1 = V t+1Rt+1
V . (QR decomposition) ,

Û t+1 = argmin
̂U

‖PΩ(Û(V t+1)†)− PΩ(M)‖2F . (18)

Here again, we would stress that the updates output exactly
the same matrices at the end of each iteration and we prefer
QR-based updates due to notational ease.

Now, as matrix completion is a special case of matrix
sensing, Lemma 4.5 characterizes the updates of the Alt-
MinComplete algorithm (see Algorithm 2). That is,

V̂ t+1 = V ∗Σ∗U∗†U t︸ ︷︷ ︸
Power-method Update

− F︸︷︷︸
Error Term

,

V t+1 = V̂ t+1(R(t+1))−1, (19)

where F is the error matrix defined in (8) and R(t+1) is a
upper-triangular matrix obtained using QR-decomposition

of V̂ t+1. See (7) for the definition of B,C, D, and S.
Also, note that for the special case of matrix completion,

Bpq, Cpq, 1 ≤ p, q ≤ k are diagonal matrices with

(Bpq)jj =
1

p

∑
i:(i,j)∈Ω

U t
ipU

t
iq, (Cpq)jj =

1

p

∑
i:(i,j)∈Ω

U t
ipU

∗
iq.

We use this structure to further simplify the update equa-
tion. We first define matrices Bj , Cj , Dj ∈ R

k×k, 1 ≤ i ≤ n:

Bj =
1

p

∑
i:(i,j)∈Ω

(U t)(i)(U t)(i)
†
, Cj =

1

p

∑
i:(i,j)∈Ω

(U t)(i)(U∗)(i)
†
,

672

and Dj = (U t)†U∗. Using the above notation, (19) decou-
ples into n equations of the form (1 ≤ j ≤ n):

(V t+1)(j) = (V ∗)(j)(Dj − (Bj)−1(BjDj − Cj))(R(t+1))−1,
(20)

where (V t+1)(j) and (V ∗)(j) denote the jth rows of V t+1 and
V ∗ respectively.
Using the above notation, we now provide a proof of The-

orem 5.1 for the general rank-k case.

Proof of Theorem 5.1. Multiplying the update equa-
tion (19) on the left by (V ∗

⊥)†, we get:

(V ∗
⊥)†V̂ t+1 = −(V ∗

⊥)†F (R(t+1))−1. That is,

dist(V ∗, V t+1) = ‖V ∗
⊥

†
V (t+1)‖2 = ‖V ∗

⊥
†
FR(t+1)−1‖2

≤ ‖F‖2‖R(t+1)−1‖2.
Now, similar to the sensing case (see Section 4.2) we break
down our proof into the following two steps:

• Bound ‖F‖2 (Lemma 5.6) and

• Bound ‖R(t+1)−1‖2, i.e., the minimum singular value

of R(t+1) (Lemma 5.7).

Using Lemma 5.6 and Lemma 5.7, w.p. at least 1− 1/n3,

dist(V ∗, V t+1) ≤ ‖F‖2‖R(t+1)−1‖2

≤
σ∗
1δ2k/(1− δ2k) · dist

(
U (t), U∗

)
σ∗
k

√
1− dist (U (t), U∗)2 − σ∗

1δ2kdist(U(t),U∗)
1−δ2k

.

Now, using Lemma 5.2 we get: dist(U t, U∗) ≤ dist(U0, U∗) ≤
1
2
. By selecting δ2k <

σ∗
k

Cσ∗
1
, i.e., p ≥ C(σ∗

1)2k4 logn

m(σ∗
k
)2

and using

above two inequalities:

dist(V t+1, V ∗) ≤ 1

4
dist(U t, U∗).

Furthermore, using Lemma 5.5 we get that V t+1 is μ1 in-
coherent. Hence, using similar arguments as above, we also
get: dist(U t+1, U∗) ≤ (1

4

)
dist(V t+1, V ∗).

We now provide lemmas required by our above given proof.
We first provide a lemma to bound incoherence of V t+1,

assuming incoherence of U t.

Lemma 5.5. Let M,Ω, p be as defined in Theorem 2.5.
Also, let U t be the t-th step iterate obtained by (18). Let U t

be μ1 =
16σ∗

1μ
√

k

σ∗
k

incoherent. Then, w.p. at least 1 − 1/n3,

iterate V (t+1) is also μ1 incoherent.

We now bound the error term (F) in AltMin update (19).

Lemma 5.6. Let F be the error matrix defined by (8) (also
see (19)) and let U t be a μ1-incoherent orthonormal matrix
obtained after (t−1)th update. Also, let M , Ω, and p satisfy
assumptions of Theorem 2.5. Then, w.p. at least 1− 1/n3:

‖F‖2 ≤
δ2kσ

∗
1

1− δ2k
dist(U t, U∗).

Next, we present a lemma to bound ‖(R(t+1))−1‖2.

Algorithm 3 Stage-AltMin: Stagewise Alternating Min-
imization for Matrix Sensing

1: Input: b,A
2: ÛT ← [], V̂ T ← []
3: for i = 1, · · · , k do

4: [Û0
1:i V̂

0
1:i] = top i-singular vectors of(

ÛT
1:i−1(V̂

T
1:i−1)

† − 3
4
AT (A(ÛT

1:i−1(V̂
T
1:i−1)

†)− b)
)
i.e.,

one step of SVP [10]
5: for t = 0, · · · , T − 1 do

6: V̂ t+1
1:i ← argminV ∈Rn×i ‖A(Û t

1:iV
†)− b‖22

7: Û t+1
1:i ← argminU∈Rm×i ‖A(U1:i(V̂

t+1
1:i)†)− b‖22

8: end for
9: end for
10: Output: X = ÛT

1:i(V̂
T
1:i)

†

Lemma 5.7. Let R(t+1) be the lower-triangular matrix ob-

tained by QR decomposition of V̂ t+1 (see (19)) and let U t be
a μ1-incoherent orthonormal matrix obtained after (t− 1)th

update. Also, let M and Ω satisfy assumptions of Theo-
rem 2.5. Then,

‖(R(t+1))−1‖2 ≤ 1/σ∗
k√

1− dist2 (U (t), U∗)− (σ∗
1/σ∗

k
)δ2kkdist(U

(t),U∗)
1−δ2k

Lemma follows by exactly the same proof as that of Lemma 4.7
for the matrix sensing case.

6. STAGEWISE ALTMIN ALGORITHM
In Section 4, we showed that if δ2k ≤ (σ∗

k)2

(σ∗
1)2k

then AltMin-

Sense (Algorithm 1) recovers the underlying matrix. This

means that, d =
(σ∗

1)4

(σ∗
k
)4
k2n log n random Gaussian measure-

ments (assume m ≤ n) are required to recover M . For
matrices with large condition number (σ∗

1/σ
∗
k), this would

be significantly larger than the information theoretic bound
of O(kn log n/k) measurements.

To alleviate this problem, we present a modified version
of AltMinSense called Stage-AltMin. Stage-AltMin proceeds
in k stages where in the i-th stage, a rank-i problem is solved.
The goal of the i-th stage is to recover top i-singular vectors
of M , up to O(σ∗

i+1) error.
Specifically, we initialize the i-th stage of our algorithm

using one step of the SVP algorithm [10] (see Step 4 of Al-
gorithm 3). We then show that, if δ2k ≤ 1

10k
, then Stage-

AltMin (Steps 6, 7 of Algorithm 3) decreases the error ‖M−
ÛT

1:i(V̂
T
1:i)

†‖F to O(σ∗
i+1). Hence, after k steps, the error de-

creases to O(σ∗
k+1) = 0. Note that, Û t

1:i ∈ R
m×i represents

the t-th step iterate (U) in the i-th stage; V̂ t
1:i ∈ R

n×i is also
defined similarly.

Recall that, the main problem with our analysis of Alt-
MinSense is that if σi � σi+1 (for some i) then δ2k ≤
(σ∗

i+1)
2

(σ∗
i)2k

would need to be small. However, in such a sce-

nario, the i-th stage of Algorithm 3 can be thought of as
solving a noisy sensing problem where the goal is to re-

cover Mi
def
= U∗

1:iΣ
∗
1:i(V

∗
1:i)

† using noisy measurements b =
A(U∗

1:iΣ
∗
1:i(V

∗
1:i)

† +N) where noise matrix

N
def
= U∗

i+1:kΣ
∗
i+1:k(V

∗
i+1:k)

†. Here Mi and N represent the
top i singular components and last k−i singular components
of M respectively. Hence, using noisy-case type analysis we

show that the error ‖M − Û t(V̂ t)†‖F decreases to O(σ∗
i+1).

673

Proof Outline Of Theorem 2.3. We prove the theo-
rem using mathematical induction.
Base Case: After the 0-th step, error is: ‖M‖2F ≤

∑k
j=1 σ

2
j ≤

kσ2
1 . Hence, base case holds.

Induction Step: Here, assuming that the error bound
holds for (i − 1)-th stage, we prove the error bound for the
i-th stage.

Our proof proceeds in two steps. First, we show that

the initial point Û0
1:i, V̂

0
1:i of the i-th stage, obtained using

Step 4, has c(σ∗
i)

2 + O
(
k(σ∗

i+1)
2
)
error, with c < 1. In the

second step, we show that using the initial points Û0
1:i, V̂

0
1:i,

the AltMin algorithm iterations in the i-th stage (Steps 6,
7) reduces the error to max(ε, 16kσ2

i+1).
Please refer [11] for a full proof of the theorem.

7. SUMMARY AND DISCUSSION
Alternating minimization provides an empirically appeal-

ing and popular approach to solving several different low-
rank matrix recovery problems. The main motivation, and
result, of this paper was to provide the first theoretical
guarantees on the global optimality of alternating
minimization, for matrix completion and the related prob-
lem of matrix sensing. We would like to note the following
aspects of our results and proofs:
(a): For both the problems, we show that alternating min-
imization recovers the true matrix under similar problem
conditions (RIP, incoherence) to those used by existing al-
gorithms (based on convex optimization or iterated SVDs);
computationally, our results show faster convergence to the
global optima, but with possibly higher sample complexity.
(b): We develop a new framework for analyzing alternating
minimization for low-rank problems, where we view alter-
nating minimization as a perturbed version of the power
method. This idea is likely to have applications to other
similar problems where trace-norm based convex relaxation
techniques have rigorous theoretical results but alternating
minimization has enjoyed more empirical success. For ex-
ample, robust PCA [6, 2], spectral clustering [12] etc.
(c): Our analysis also sheds light on two key aspects of the
alternating minimization approach:
Initialization: Our results show that alternating minimiza-
tion succeeds if the initial iterate is not “almost orthogonal”
to the target subspace. This suggests that, selecting initial
iterate smartly is preferable to random initialization.
Dependence on the condition number: We show that
using a stagewise adaptation of alternating minimization,
we can remove the dependence on condition number for the
matrix sensing problem. This suggests that stagewise ver-
sions of the basic alternating minimization algorithm may
in fact perform better than the original one.

8. REFERENCES
[1] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value

thresholding algorithm for matrix completion. SIAM
Journal on Optimization, 20(4):1956–1982, 2010.

[2] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust
principal component analysis? J. ACM, 2011.

[3] E. J. Candès and B. Recht. Exact matrix completion
via convex optimization. Foundations of
Computational Mathematics, 9(6):717–772, 2009.

[4] E. J. Candès and T. Tao. Decoding by linear

programming. IEEE Transactions on Information
Theory, 51(12):4203–4215, 2005.

[5] E. J. Candès and T. Tao. The power of convex
relaxation: Near-optimal matrix completion. IEEE
Trans. Inform. Theory, 56(5):2053–2080, 2009.

[6] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and
A. S. Willsky. Rank-sparsity incoherence for matrix
decomposition. SIAM Journal on Optimization,
21(2):572–596, 2011.

[7] C. Chen, B. He, and X. Yuan. Matrix completion via
an alternating direction method. IMA Journal of
Numerical Analysis, 32(1):227–245, 2012.

[8] G. H. Golub and C. F. V. Loan. Matrix Computations.
The Johns Hopkins University Press, 1996.

[9] C.-J. Hsieh, K.-Y. Chiang, and I. S. Dhillon. Low rank
modeling of signed networks. In KDD, 2012.

[10] P. Jain, R. Meka, and I. S. Dhillon. Guaranteed rank
minimization via singular value projection. In NIPS,
pages 937–945, 2010.

[11] P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank
matrix completion using alternating minimization.
arXiv preprint arXiv:1212.0467, 2012.

[12] A. Jalali, Y. Chen, S. Sanghavi, and H. Xu. Clustering
partially observed graphs via convex optimization. In
ICML, pages 1001–1008, 2011.

[13] R. H. Keshavan. Efficient algorithms for collaborative
filtering. Phd Thesis, Stanford University, 2012.

[14] R. H. Keshavan, A. Montanari, and S. Oh. Matrix
completion from a few entries. IEEE Transactions on
Information Theory, 56(6):2980–2998, 2010.

[15] H. Kim and H. Park. Nonnegative matrix factorization
based on alternating nonnegativity constrained least
squares and active set method. SIAM J. Matrix Anal.
Appl., 30(2):713–730, July 2008.

[16] J. Kim and H. Park. Sparse nonnegative matrix
factorization for clustering. Technical Report
GT-CSE-08-01, Georgia Institute of Technology, 2008.

[17] Y. Koren. The BellKor solution to the Netflix grand
prize, 2009.

[18] Y. Koren, R. M. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
IEEE Computer, 42(8):30–37, 2009.

[19] K. Lee and Y. Bresler. Admira: atomic decomposition
for minimum rank approximation. IEEE Transactions
on Information Theory, 56(9):4402–4416, 2010.

[20] R. Meka, P. Jain, C. Caramanis, and I. S. Dhillon.
Rank minimization via online learning. In ICML,
pages 656–663, 2008.

[21] R. Peeters. Orthogonal representations over finite
fields and the chromatic number of graphs.
Combinatorica, 16:417–431, 1996.

[22] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed
minimum-rank solutions of linear matrix equations via
nuclear norm minimization. SIAM Review, 2010.

[23] W. I. Zangwill. Nonlinear Programming: A Unified
Approach. Englewood Cliffs: Prentice-Hall, 1969.

[24] Y. Zhou, D. M. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the
netflix prize. In AAIM, pages 337–348, 2008.

[25] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal
component analysis. JCGS, 15(2):262–286, 2006.

674

	Introduction
	Our Results
	Related Work
	Matrix Sensing
	Rank-1 Case
	Rank-k Case

	Matrix Completion
	Rank-1 Case
	Rank-k case

	Stagewise AltMin Algorithm
	Summary and Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

