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 Introduction and definitions

 Proofing the complexities

 Example algorithm
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 Network nodes elect unique leader among 
themselves

 Implicit: Only leader knows that he is the leader

 Explicit: All nodes know the leader
◦ Not focus of paper

 Important for resource-constrained networks
◦ Peer-to-peer networks

◦ Ad-hoc networks

◦ Sensor networks
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Monte Carlo algorithm
 Randomized algorithm

 Delivers correct result with probability 𝑃 = 1 − ɛ, 
ɛ > 0

Universal leader election algorithm
 Take any 𝑛 and 𝑚
 Algorithm succeeds on any graph with 𝑛 nodes and 𝑚

edges

 With success probability 1 - ɛ
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Network Diameter 𝐷
 Longest shortest path between any two nodes
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• Here, 𝐷 = 3



 Focus on universal LE algorithms

 Worst case analysis for message and time 
complexity

 Lower bounds:
◦ Time complexity Ω(𝐷)

 Network diameter 𝐷

◦ Message complexity Ω(𝑚)

 𝑚 edges

 Algorithms that meet the lower bounds
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 Time complexity Ω(𝐷):
◦ Worst case: Send message on longest shortest path

 Message complexity Ω(𝑚):
◦ Network topology unknown in general

◦ Must send message to all neighbors
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 Take a 2-connected graph 𝐺
◦ 𝑛 nodes, 𝑚 edges

 𝑚 edges  2𝑚2 possible dumbbell graphs

 𝑰: collection of all dumbbell graphs for 𝐺



 Algorithm 𝐵 solves BC iff a message is sent
over a bridge
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 Reduce Bridge Crossing to Leader Election
◦ Show Ω(𝑚) lower bound for Bridge Crossing

 Imply Ω(𝑚) lower bound for Leader Election

 Proof lower bound Ω(𝑚) for message
complexity for Bridge Crossing

 Use Dumbbell graphs for the proof
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 Take any deterministic BC algorithm 𝐵

 𝑇(𝑒): First round a message passes edge 𝑒 in disconnected
graph

 After 𝑇 rounds:
◦ At least 𝑇 messages

 Two cases:
◦ 𝑇(𝑒) = 𝑇(𝑒’)

◦ 𝑇(𝑒) = 𝑇(𝑒’’)



 Assumption:
◦ Universal LE algorithm 𝑅

 Success probability 1 – 𝛽

◦ Deterministic LE algorithm 𝐴

 Solves LE on at least a 1 − 2𝛽 fraction of 𝑰

 Lemma 1:
◦ 𝜀 and 𝛿 ≥ ¼ positive constants with 7𝜀 + 𝛿 ≤ 1

◦ 𝐴 solves LE on at least a 1 − 𝜀 fraction of 𝑰

 𝐴 solves BC on at least a 𝛿 fraction of 𝑰

 Therefore, with 𝜀 = 2𝛽:
◦ LE algorithm 𝐴 achieves BC on 𝛿 ≥ ¼ of all graphs in 𝑰.
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 Assumption:
◦ Universal LE algorithm 𝑅

 Success probability 1 – 𝛽

◦ Deterministic LE algorithm 𝐴

 Solves LE on at least a 1 − 2𝛽 fraction of 𝑰

 We know:
◦ 𝐴 achieves BC on at least ¼ of all graphs in I.

 Lemma 2:
◦ If 𝐴 solves BC on at least ¼ of all graphs in I

◦ Then expected message complexity is Ω(𝑚)

 Therefore:
◦ Algorithm 𝐴 has an expected message complexity of Ω(𝑚).
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 Assumption:
◦ Universal LE algorithm 𝑅

 Success probability 1 – 𝛽

◦ Deterministic LE algorithm 𝐴

 Solves LE on at least a 1 − 2𝛽 fraction of 𝑰

 We know:
◦ 𝐴 achieves BC on at least ¼ of all graphs in 𝑰.

◦ 𝐴 has an expected message complexity of Ω(𝑚).

 Lemma 3 (Yao’s Minmax Principle):
◦ If 𝐴 has cost 𝑋 and success rate at least 1 − 2𝛽 on 𝑰

◦ Then 𝑅 has worst case cost of at least  𝑋 2 and success probability 1 − 𝛽 on 𝑰

 Therefore:
◦ If 𝐴 succeeds on at least 1 − 2𝛽 fraction of 𝑰 with Ω(𝑚) messages

◦ Then 𝑅 must succeed with probability 1 − 𝛽 and Ω(  𝑚 2) = Ω(𝑚) messages. 



1. Deterministic LE algorithm 𝐴 likely solves
bridge crossing

2. Bridge crossing: Ω(𝑚) messages in expectation

3. LE algorithm 𝐴 must have expected message
complexity Ω(𝑚)

4. Cost of 𝐴 implies lower bound for randomized
algorithm 𝑅  Ω(𝑚) messages expected for
any 𝑅
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 Take any 𝑛 and 𝐷

◦ 𝐷′ = 4  𝐷 4 cliques

◦ 𝛾 𝑛 ∗ 𝐷′ ≥ 𝑛 nodes per 
clique

◦ 4 neighborhoods or arcs

◦ Execution time 𝑇

 Two cases:
◦ 𝑇 ∈ 𝑜(𝐷) with 𝑝 = 𝛿

◦ 𝑇 ∈ Ω(𝐷) with 𝑝 = 1 − 𝛿



 Each node 𝑛 keeps track of its local state
◦ Rank 𝜌(𝑛) 𝜖 [1, 𝑛4]

◦ List of all least ranks of its neighbors

 Nodes choose their rank 𝜌(𝑛) randomly

 Succeeds if there is only one node with least 
rank
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 Observations

◦ In each round

 Node 𝑛 forwards at most one message to neighbors

 At most 2𝑚 rank messages in total

 Time complexity is 𝑂(𝐷)

◦ At most 𝐷 time units to forward on longest shortest path

 Expected message complexity is 𝑂(𝑚 log𝑛)

◦ 𝑂(𝑚) messages sent per round

◦ 𝑂(log 𝑛) messages stored and forwarded per node
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 Try to achieve 𝑂(𝑚) message complexity instead of 𝑂(𝑚 log𝑛)

 Take any function 𝑓(𝑛) ≤ 𝑛

 A nodes becomes candidates with probability  𝑓(𝑛)
𝑛

 Candidates

◦ Choose rank rank from [1, 𝑛4]

◦ Forward own rank

 Non-candidates

◦ Choose rank 𝑛4 + 1

◦ Only update list and forward received ranks

 Algorithm succeeds if
◦ At least one node chooses to be a candidate

◦ There is only one node with least rank
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 Time complexity of improved version is still 𝑂(𝐷)

 Message complexity is 𝑂(𝑚 ∗ min(log 𝑓(𝑛), 𝐷))

 Success probability is 1 − 1/𝑒Θ
(𝑓(𝑛))

 Choose 𝑓(𝑛) = 4 log(1/𝜀) for some constant 𝜀 > 0, then

◦ Success probability at least 1 − 𝜀𝛩(1)

◦ Message complexity is 𝑂(𝑚 ∗ min(log log(1/𝜀), 𝐷)) = 𝑂(𝑚)
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 Worst case lower bounds for universal LE 
algorithms:
◦ Ω 𝐷 time complexity

◦ Ω(𝑚) messages

 Algorithm that also matches the bounds
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 On the Complexity of Universal Leader Election
◦ Shay Kutten, Gopal Pandurangan, David Peleg, Peter 

Robinson and Amitabh Trehan, PODC ´13

 Efficient Distributed Approximation Algorithms
via Probabilistic Tree Embeddings
◦ Maleq Khan et. al., PODC ´08
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