Simple, Fast and
Deterministic Gossip and
Rumor Spreading

Main paper by: B. Haeupler, MIT
Talk by: Alessandro Dovis, ETH

Presentation Outline

What is gossip?

Applications

Basic Algorithms

Advanced Algorithms

Other Results & Current Research
Q&A

What is gossip?

What is gossip?

Broadcast strategies

What is gossip?

Broadcast strategies

STRUCTURED

What is gossip?

Broadcast strategies

ISSUES

STRUCTURED

What is gossip?

Broadcast strategies

ISSUES

s

STRUCTURED

What is gossip?

Broadcast strategies

S

STRUCTURED

What is gossip?

Broadcast strategies

ISSUES

SR

O

STRUCTURED O

What is gossip?

Broadcast strategies

ISSUES

O\7?
O O
O

STRUCTURED

What is gossip?

Broadcast strategies

STRUCTURED FLOODING

What is gossip?

Broadcast strategies

FLOODING

What is gossip?

Broadcast strategies

ISSUES

FLOODING

What is gossip?

Broadcast strategies

ISSUES

www.clipartof.com - 433552

FLOODING

What is gossip?

Broadcast strategies

ISSUES

FLOODING

What is gossip?

Broadcast strategies

ISSUES COMPLEXITY

FLOODING

What is gossip?

Broadcast strategies

ISSUES COMPLEXITY

TIME: O(D)

MESSAGE: O(m)
(or O(D*m))

FLOODING

What is gossip?

Broadcast strategies

STRUCTURED FLOODING GOSSIP

What is gossip?

Broadcast strategies

GOSSIP

What is gossip?

Broadcast strategies

e choice of active edge
e randomized vs. deterministic
e time complexity 7

GOSSIP

What is gossip?

Broadcast strategies

e choice of active edge
e randomized vs. deterministic
e time complexity 7

?

=
GOSSIP

Applications

Applications

DATABASE REPLICATION

Applications

1. Direct mail
2. Anti-entropy
3. Rumor mongering

e PUSH
e PULL
e PUSH-PULL

DATABASE REPLICATION

Applications

e i
N/ i
i

77

A

.-/ S
o

4 =
—8

[l

=
<
AT

RESOURCE DISCOVERY

Applications

RESOURCE DISCOVERY DISTRIBUTED COMPUTATION

Applications

NODE
FAILURE
DETECTION

RESOURCE DISCO

Basic algorithms

Naive solution: simulated flooding

R[v] = rumor of v
y REPEAT D times
R’ = ©

FOR t = 1 to A

exchange rumors in R[v] with n[v] [t]
add all received rumors to R’
R[v] = R[v] U R’

N

Naive solution: simulated flooding

R[v] = rumor of v
REPEAT D times
Rl — O
<::FOR t =1 to A ::)
exchange rumors in R[v] with n[v] [t]

add all received rumors to R’
R[v] = R[v] U R’

i
£

Naive solution: simulated flooding

R[v] = rumor of v
y REPEAT D times
R’ = ©

FOR+t——3d—+e—4A
4 : :
exchange rumors in R[v] with n[v] [t]
ad T —TreceTvedTrumors—to—R*-

R[v] = R[v] U R’

Naive solution: simulated flooding

D[YT] = rimor of ~7
y < REPEAT D times >
R" = ©

FOR t =1 to A
A\ o

exchange rumors in R[v] with n[v] [t]
add all received rumors to R’
R[v] = R[v] U R’

Y
3

Naive solution: simulated flooding

COMPLEXITY

TIME: O(A*D)

MESSAGE: O(m*D)

Classic solution: uniform gossip

//’ REPEAT ? times
choose a uniformly random neighbor

PUSH-PULL rumors in R[v] with n[v][t]
add received rumors to R[V]

Classic solution: uniform gossip

//’ REPEAT ? times
choose a<§niformli>random neighbor

PUSH-PULL rumors 1in R[v] with n[v][t]
add received rumors to R[V]

Classic solution: uniform gossip

//’ REPEAT ? times
C?haase_ajyniformly random neighbor

PUSH-PULL) rumors in R[v] with n[v] [t]
add received rumors to R[V]

Classic solution: uniform gossip

choose a uniformly random neighbor

PUSH-PULL rumors in R[v] with n[v][t]
add received rumors to R[V]

Classic solution: uniform gossip

GIAKKOUPIS ‘12

/’ TIME: O(log n / ¢)

Classic solution: uniform gossip

GIAKKOUPIS ‘12

/’ TIME: O(log n / ¢)

@ ?!

Graph conductance

a(S) =) Y ai; o(S) = Loicsjes %

e min(a(S),a(S))
VOLUME CUT CONDUCTANCE

Vg = gg}gp(S)

GRAPH CONDUCTANCE

Graph conductance

It measures how much
the network is bottlenecked

Graph conductance

It measures how much
the network is bottlenecked

8(1/n)

Graph conductance

It measures how much
the network is bottlenecked

8(1/n) 0(1)

Graph conductance

It measures how much
the network is bottlenecked

8(1/n) 8(1) 68(1/n"2)

Advanced algorithms

Conductance Independent results

NEIGHBOR EXCHANGE PROBLEM

Conductance Independent results

NEIGHBOR EXCHANGE PROBLEM COMMON IDEA

Solve NEP
+

compose it D times

Conductance Independent results

NEIGHBOR EXCHANGE PROBLEM COMMON IDEA
Solve NEP

+
compose it D times

RESULTS (global)

RANDOMIZED O(D*log”3 n)

DETERMINISTIC O(D*log n + log"2 n)

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

QUALITATIVE IDEA

Run uniform gossip for a while...
+

... remove some edges
+

do it again

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

Superstep (G, 1) :

1. UniformGossip algorithm with respect to F
[1] for T rounds. K[i]: order of the random
activated edges

2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1

3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v

4. Set F[i+1l] := F[i] - P[i] and 1 := 1 + 1

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

Superstep (G, 1):

1.<§niformGoss§9edgorithm with respect to F
[1] Tor T rounds. K[i]: order of the random
activated edges

2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1

3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v

4. Set F[i+1l] := F[i] - P[i] and 1 := 1 + 1

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

Superstep (G, 1) :

1. UniformGossip algorithm with respect to F
[1] founds. K[i]: order of the random
activated edges

2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1

3. (Pruning) Set of pruned directed edges P

[i] = (u, w) : u received from v
4. Set F[i+1l] := F[1i] - P[i1] and i :=1 + 1

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

Superstep (G, 1) :

1. UniformGossip algorithm with respect to F
[1] for T rounds. K[i]: order of the random
activated edges
2. UniformGossip Krev[i], {Ee reversé)
process of the one realized 1n Step 1

3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v

4. Set F[i+1l] := F[i] - P[1] and i := 1 + 1

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

Superstep (G, 1) :

1. UniformGossip algorithm with respect to F
[1] for T rounds. K[i]: order of the random
activated edges

2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1

3. Set of pruned directed edges P
[i]™= (U, w) : u received from v

4. Set F[i+1l] := F[i] - P[i] and 1 := 1 + 1

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM RESULT

If T =06(log"2 n),
we need only B(log n) cycles

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

RESULT

If T =06(log"2 n),
we need only B(log n) cycles

!

NEP: 6(log”3 n)

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM RESULT

If T =06(log"2 n),
we need only B(log n) cycles

PROOF

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM RESULT

If T =06(log"2 n),
we need only B(log n) cycles

PROOF

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM RESULT

If T =06(log"2 n),
we need only B(log n) cycles

PROOF

¢=Q(1/log n)

NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM RESULT

If T =06(log"2 n),
we need only B(log n) cycles

PROOF

F— F/2
¢=Q(1/log n)

NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM

NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM

QUALITATIVE IDEA

Run simulated flooding for a while...
+

... add some edges ...
+

do it again

NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM

R(v] = v

WHILE T'[v]\R[Vv] =9
pick ©(log”2 n) random edges in T'[v]\R[V]
d = 0(log™2 n);
E’ = all newly picked edges
Flood in R[v] along E’-edges for d-hops
add all received rumors to R[V]

NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM

R(v] = v

WHILE I'[v]\R[v] =29
pick(@(logAZ nD random edges in T'[v]\R[V]
d = 6(Iog~Z njJ;
E’ = all newly picked edges
Flood in R[v] along E’-edges for d-hops
add all received rumors to R[V]

NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM

R(v] = v

WHILE T'[v]\R[Vv] =9
pick @(1log??2 n) random edges in T'[v]\R[V]
d =\0(log”™2 n));
E’ = a newly picked edges
Flood in R[v] along E’-edges for d-hops
add all received rumors to R[V]

NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM

R(v] = v

WHILE T'[v]\R[Vv] =9
pick ©(log”2 n) random edges in T'[v]\R[V]
d = 0(log™2 n);
E’ = all newly picked edges
Flood in R[v] along E’-edges for d-hops
add all received rumors to R[V]

O(log”6 n)

NEP: deterministic

NEIGHBOR EXCHANGE PROBLEM

R(v] = v

WHILE T'[v]\R[Vv] =9
pick ©(log”2 n) random edges in T'[v]\R[V]
d = 0(log™2 n);
E’ = all newly picked edges
Flood in R[v] along E’-edges for d-hops
add all received rumors to R[V]

NEP: deterministic

NEIGHBOR EXCHANGE PROBLEM

R(v] = v

WHILE T'[v]\R[Vv] =9
arbitrarily pick one edge in T [Vv]\R[V]
d = 2log n;
E’ = all newly picked edges
Flood in R[v] along E’-edges for d-hops
add all received rumors to R[V]

NEP: deterministic

NEIGHBOR EXCHANGE PROBLEM RESULT

We need only log n cycles

NEP: deterministic

NEIGHBOR EXCHANGE PROBLEM RESULT

We need only log n cycles

!

NEP: 2log”3 n

NEP: deterministic

RESULT

We need only log n cycles

PROOF
© /‘. '//. e in cycle /, vertex v creates a binomial i-tree
/ /")
o) /@ and floods for 2i hops
o
/'? / Pe
o

NEP: deterministic

RESULT

We need only log n cycles

PROOF
® . //. e incycle i, vertex v creates a binomial i-tree
é 9 é and floods for 2i hops
‘ e in each cycle (at least) all the nodes in the
binomial tree get the information from the
e root
O

NEP: deterministic

RESULT

We need only log n cycles

PROOF

® . ' e incycle /, vertex v creates a binomial i-tree

. @ . and floods for 2i hops
. e in each cycle (at least) all the nodes in the

binomial tree get the information from the
3tee root

9 e if 2 neighbours are strangers, their current

e o / trees must be disjoint

o)

NEP: deterministic

RESULT

We need only log n cycles

PROOF
® . ' e incycle i, vertex v creates a binomial i-tree
é 9 $ and floods for 2i hops
e in each cycle (at least) all the nodes in the
® binomial tree get the information from the
root
P e if 2 neighbours are strangers, their current
e o / trees must be disjoint
o ‘ /@ e atree at step i contains 2% nodes

NEP: deterministic

RESULT

We need only log n cycles

PROOF
e . /‘ e in cycle /, vertex v creates a binomial i-tree
. o . and floods for 2i hops
e in each cycle (at least) all the nodes in the
® binomial tree get the information from the
e root
Y e if 2 neighbours are strangers, their current
e o / trees must be disjoint
) ‘ /@ e atree at step i contains 2%i nodes

O — at most log n cycles

NEP: faster deterministic

Can we exploit the structure of the binomial tree?

NEP: faster deterministic

Can we exploit the structure of the binomial tree?

+
PULL in order

3/;1 /A | N . +
I II II I I symmetric PULL & PUSH

e PUSH in inverse order
1IN
1 \\\S
\\

NEP: faster deterministic

Can we exploit the structure of the binomial tree?

PUSH in inverse order
+

PULL in order
+

symmetric PULL & PUSH

NEP: 2log n(log n + 1)

NEP composition

NEIGHBOR EXCHANGE PROBLEM

NAIVE COMPOSITION

O(D*log”2 n)

NEP composition

NEIGHBOR EXCHANGE PROBLEM

NAIVE COMPOSITION
O(D*log”2 n)
REUSING TREE

O(D*log n + log”2 n)

Other results
&
Current research

Other results & Current research

SPANNERS & HEREDITARY DENSITY

Other results & Current research

SPANNERS & HEREDITARY DENSITY ROBUSTNESS & ASYMMETRY

Other results & Current research

MAXIMUM MESSAGE SIZE

Other results & Current research

MAXIMUM MESSAGE SIZE NEP LOWER BOUND

References

Simple, Fast, and Deterministic Gossip and Rumor Spreading,

B. Haeupler
Global Computation in a Poorly Connected World, K. Censor-Hillel

et al.

Tight bounds for rumor spreading in graphs of a given conductance, G. Giakkoupis
Epidemic Algorithms for Replicated Database Maintainance, A. Demers et al.
Resource Discovery in Distributed Networks, M. Harchol-Balter et al.

Gossip Algorithms: Design, Analysis and Applications, S. Boyd et al.

A Gossip-Style Failure Detection Service, R. van Renesse et al.

