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TIME: O(D)

MESSAGE: O(m)
(or O(D*m))
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DATABASE REPLICATION

1. Direct mail
2. Anti-entropy
3. Rumor mongering

● PUSH
● PULL
● PUSH-PULL
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Naive solution: simulated flooding

R[v] = rumor of v
REPEAT D times
  R’ = ∅
  FOR t = 1 to ∆
      exchange rumors in R[v] with n[v][t]
  add all received rumors to R’
  R[v] = R[v] ∪ R’
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Naive solution: simulated flooding

COMPLEXITY

TIME: O(∆*D)

MESSAGE: O(m*D)
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GIAKKOUPIS ‘12

TIME: O(log n /  φ)

φ ?!



Graph conductance
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It measures how much

the network is bottlenecked
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Conductance Independent results
NEIGHBOR EXCHANGE PROBLEM COMMON IDEA

Solve NEP
+

compose it D times

RESULTS (global)

RANDOMIZED O(D*log^3 n)

DETERMINISTIC O(D*log n + log^2 n)
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QUALITATIVE IDEA

Run uniform gossip for a while…
+

… remove some edges …
+

do it again



NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random 
activated edges
2. UniformGossip Krev[i], the reverse 
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1



NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random 
activated edges
2. UniformGossip Krev[i], the reverse 
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1



NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random 
activated edges
2. UniformGossip Krev[i], the reverse 
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1



NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random 
activated edges
2. UniformGossip Krev[i], the reverse 
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1



NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random 
activated edges
2. UniformGossip Krev[i], the reverse 
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1



NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles



NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

NEP:  θ(log^3 n)



NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

PROOF



NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

PROOF



φ=Ω(1/log n)

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

PROOF



φ=Ω(1/log n)

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

PROOF

F ← F/2



NEP: randomized (2)
NEIGHBOR EXCHANGE PROBLEM



NEP: randomized (2)
NEIGHBOR EXCHANGE PROBLEM

QUALITATIVE IDEA

Run simulated flooding for a while…
+

… add some edges …
+

do it again



NEP: randomized (2)
NEIGHBOR EXCHANGE PROBLEM

R[v] = v
WHILE Γ[v]\R[v] = ∅
  pick Θ(log^2 n) random edges in Γ[v]\R[v]
  d = Θ(log^2 n); 
  E’ = all newly picked edges
  Flood in R[v] along E’-edges for d-hops
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R[v] = v
WHILE Γ[v]\R[v] = ∅
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  E’ = all newly picked edges
  Flood in R[v] along E’-edges for d-hops
  add all received rumors to R[v]
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RESULT

We need only log n cycles

PROOF

● in cycle i, vertex v creates a binomial i-tree 
and floods for 2i hops

● in each cycle (at least) all the nodes in the 
binomial tree get the information from the 
root

● if 2 neighbours are strangers, their current 
trees must be disjoint

● a tree at step i contains 2^i nodes

at most log n cycles
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NEP: faster deterministic

Can we exploit the structure of the binomial tree?

PUSH in inverse order
+

PULL in order
+

symmetric PULL & PUSH

NEP: 2log n(log n + 1)
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NEP composition
NEIGHBOR EXCHANGE PROBLEM

NAIVE COMPOSITION

O(D*log^2 n)

REUSING TREE

O(D*log n + log^2 n)
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SPANNERS & HEREDITARY DENSITY ROBUSTNESS & ASYMMETRY
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Other results & Current research

MAXIMUM MESSAGE SIZE NEP LOWER BOUND
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