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TIME: O(D)

MESSAGE: O(m)
(or O(D*m))
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Applications

1. Direct mail
2. Anti-entropy
3. Rumor mongering

e PUSH
e PULL
e PUSH-PULL

DATABASE REPLICATION
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Naive solution: simulated flooding

R[v] = rumor of v
y REPEAT D times
R’ = ©

FOR t = 1 to A

exchange rumors in R[v] with n[v] [t]
add all received rumors to R’
R[v] = R[v] U R’
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Naive solution: simulated flooding

COMPLEXITY

TIME: O(A*D)

MESSAGE: O(m*D)




Classic solution: uniform gossip
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choose a uniformly random neighbor
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Graph conductance

a(S) =) Y ai;  o(S) = Loicsjes %

e min(a(S),a(S))
VOLUME CUT CONDUCTANCE

Vg = gg}gp(S)

GRAPH CONDUCTANCE
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Conductance Independent results

NEIGHBOR EXCHANGE PROBLEM COMMON IDEA
Solve NEP

+
compose it D times

RESULTS (global)

RANDOMIZED O(D*log”3 n)

DETERMINISTIC O(D*log n + log"2 n)
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NEIGHBOR EXCHANGE PROBLEM

QUALITATIVE IDEA

Run uniform gossip for a while...
+

... remove some edges
+

do it again
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NEIGHBOR EXCHANGE PROBLEM

Superstep (G, 1) :

1. UniformGossip algorithm with respect to F
[1] for T rounds. K[i]: order of the random
activated edges

2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1

3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v

4. Set F[i+1l] := F[i] - P[i] and 1 := 1 + 1
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NEIGHBOR EXCHANGE PROBLEM RESULT

If T =06(log"2 n),
we need only B(log n) cycles

PROOF

F— F/2
¢=Q(1/log n)
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R(v] = v

WHILE T'[v]\R[Vv] =9
pick ©(log”2 n) random edges in T'[v]\R[V]
d = 0(log™2 n);
E’ = all newly picked edges
Flood in R[v] along E’-edges for d-hops
add all received rumors to R[V]
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RESULT

We need only log n cycles

PROOF
e . /‘ e in cycle /, vertex v creates a binomial i-tree
. o . and floods for 2i hops
e in each cycle (at least) all the nodes in the
® binomial tree get the information from the
e root
Y e if 2 neighbours are strangers, their current
e o / trees must be disjoint
) ‘ /@ e atree at step i contains 2%i nodes

O — at most log n cycles
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NEP: faster deterministic

Can we exploit the structure of the binomial tree?

PUSH in inverse order
+

PULL in order
+

symmetric PULL & PUSH

NEP: 2log n(log n + 1)
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NEP composition

NEIGHBOR EXCHANGE PROBLEM

NAIVE COMPOSITION
O(D*log”2 n)
REUSING TREE

O(D*log n + log”2 n)
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MAXIMUM MESSAGE SIZE NEP LOWER BOUND
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