Simple, Fast and Deterministic Gossip and Rumor Spreading

Main paper by: B. Haeupler, MIT
Talk by: Alessandro Dovis, ETH
Presentation Outline

- What is gossip?
- Applications
- Basic Algorithms
- Advanced Algorithms
- Other Results & Current Research
- Q & A
What is gossip?
What is gossip?

Broadcast strategies
What is gossip?

Broadcast strategies

structured
What is gossip?

Broadcast strategies

STRUCTURED
What is gossip?

Broadcast strategies

STRUCTURED

ISSUES
What is gossip?

Broadcast strategies

STRUCTURED
What is gossip?

Broadcast strategies

- STRUCTURED
- ISSUES
What is gossip?

Broadcast strategies

STRUCTURED

ISSUES

?
What is gossip?

Broadcast strategies

STRUCTURED

FLOODING
What is gossip?

Broadcast strategies

FLOODING
What is gossip?

Broadcast strategies

ISSUES

FLOODING
What is gossip?

Broadcast strategies

FLOODING
What is gossip?

Broadcast strategies

FLOODING
What is gossip?

Broadcast strategies

ISSUES

COMPLEXITY

FLOODING
What is gossip?

Broadcast strategies

FLOODING

ISSUES

COMPLEXITY

TIME: \(O(D)\)

MESSAGE: \(O(m)\)

(or \(O(D \cdot m)\))
What is gossip?

Broadcast strategies

- STRUCTURED
- FLOODING
- GOSSIP
What is gossip?

Broadcast strategies
What is gossip?

Broadcast strategies

- choice of active edge
- randomized vs. deterministic
- time complexity
What is gossip?

Broadcast strategies

- choice of active edge
- randomized vs. deterministic
- time complexity
Applications
Applications

DATABASE REPLICATION
Applications

1. Direct mail
2. Anti-entropy
3. Rumor mongering

- PUSH
- PULL
- PUSH-PULL
Applications

RESOURCE DISCOVERY
Applications

RESOURCE DISCOVERY

DISTRIBUTED COMPUTATION
Applications

RESOURCE DISCOVERY

DISTRIBUTED COMPUTATION

NODE FAILURE DETECTION
Basic algorithms
Naive solution: simulated flooding

\[R[v] = \text{rumor of } v \]

\text{REPEAT D times}
\[R' = \emptyset \]
\text{FOR } t = 1 \text{ to } \Delta
\quad \text{exchange rumors in } R[v] \text{ with } n[v][t]
\quad \text{add all received rumors to } R'
\text{R[v] = R[v] } \cup \text{ R'}
Naive solution: simulated flooding

\[R[v] = \text{rumor of } v \]

\[\text{REPEAT } D \text{ times} \]

\[R' = \emptyset \]

\[\text{FOR } t = 1 \text{ to } \Delta \]

- exchange rumors in \(R[v] \) with \(n[v][t] \)
- add all received rumors to \(R' \)

\[R[v] = R[v] \cup R' \]
Naive solution: simulated flooding

\[R[v] = \text{rumor of } v \]

REPEAT \(D \) times

\[R' = \emptyset \]

FOR \(t = 1 \) to \(\Delta \)

- exchange rumors in \(R[v] \) with \(n[v][t] \)

add all received rumors to \(R' \)

\[R[v] = R[v] \cup R' \]
Naive solution: simulated flooding

\[
R[v] = \text{rumor of } v
\]

\[
\text{REPEAT D times}
\]

\[
R' = \emptyset
\]

FOR t = 1 to Δ

exchange rumors in R[v] with n[v][t]

add all received rumors to R'

R[v] = R[v] \cup R'
Naive solution: simulated flooding

COMPLEXITY

TIME: $O(\Delta \times D)$

MESSAGE: $O(m \times D)$
Classic solution: uniform gossip

REPEAT \(? \) times
choose a uniformly random neighbor
PUSH-PULL rumors in \(R[v] \) with \(n[v][t] \)
add received rumors to \(R[v] \)
Classic solution: uniform gossip

REPEAT ω times
choose a uniformly random neighbor
PUSH-PULL rumors in $R[v]$ with $n[v][t]$
add received rumors to $R[v]$
Classic solution: uniform gossip

REPEAT \(\ell \) times
choose a uniformly random neighbor
PUSH-PULL rumors in \(R[v] \) with \(n[v][t] \)
add received rumors to \(R[v] \)
Classic solution: uniform gossip

REPEAT ℓ times
choose a uniformly random neighbor
PUSH-PULL rumors in $R[v]$ with $n[v][t]$
add received rumors to $R[v]$
Classic solution: uniform gossip

GIAKKOUPIS ‘12

TIME: $O(\log n / \varphi)$
Classic solution: uniform gossip

TIME: $O(\log n / \phi)$

GIAKKOUPIS ‘12

ϕ ?!
Graph conductance

\[a(S) = \sum_{i \in S} \sum_{j \in V} a_{ij} \quad \text{VOLUME} \]

\[\varphi(S) = \frac{\sum_{i \in S, j \in \bar{S}} a_{ij}}{\min(a(S), a(\bar{S}))} \quad \text{CUT CONDUCTANCE} \]

\[\varphi_G = \min_{S \subseteq V} \varphi(S) \quad \text{GRAPH CONDUCTANCE} \]
Graph conductance

It measures how much the network is bottlenecked
Graph conductance

It measures how much the network is bottlenecked

$\theta(1/n)$
Graph conductance

It measures how much the network is bottlenecked

\[\theta(1/n) \quad \text{and} \quad \theta(1) \]
Graph conductance

It measures how much the network is bottlenecked

\[\Theta(1/n) \]

\[\Theta(1) \]

\[\Theta(1/n^2) \]
Advanced algorithms
Conductance Independent results

NÉGHIOR EXCHANGE PROBLEM
Conductance Independent results

NEIGHBOR EXCHANGE PROBLEM

COMMON IDEA

Solve NEP
+
compose it D times
Conductance Independent results

NEIGHBOR EXCHANGE PROBLEM

COMMON IDEA

Solve NEP
+
compose it \(D \) times

RESULTS (global)

RANDOMIZED \(O(D \cdot \log^3 n) \)

DETERMINISTIC \(O(D \cdot \log n + \log^2 n) \)
NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM
NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

QUALITATIVE IDEA
Run uniform gossip for a while…
+ … remove some edges …
+ do it again
NEP: randomized (1)

Superstep\((G, \tau)\):
1. UniformGossip algorithm with respect to \(F[i]\) for \(\tau\) rounds. \(K[i]\): order of the random activated edges
2. UniformGossip \(Krev[i]\), the reverse process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges \(P[i] = (u, w) : u\) received from \(v\)
4. Set \(F[i+1] := F[i] - P[i]\) and \(i := i + 1\)
NEP: randomized (1)

Superstep\((G, T)\):
1. \textit{UniformGossip} algorithm with respect to \(F[i]\) for \(T\) rounds. \(K[i]\): order of the random activated edges
2. UniformGossip \(K^{-1}[i]\), the reverse process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges \(P[i] = (u, w) : u \text{ received from } v\)
4. Set \(F[i+1] := F[i] - P[i]\) and \(i := i + 1\)
NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
2. UniformGossip $Krev[i]$, the reverse process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges $P[i] = (u, w): u$ received from v
4. Set $F[i+1] := F[i] - P[i]$ and $i := i + 1
NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F[i] for τ rounds. K[i]: order of the random activated edges
2. UniformGossip Krev[i], the reverse process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P[i] = (u, w): u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1
Superstep(G, \(\tau \)):
1. UniformGossip algorithm with respect to \(F[i] \) for \(\tau \) rounds. \(K[i] \): order of the random activated edges
2. UniformGossip \(Krev[i] \), the reverse process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges \(P[i] = (u, w) : u \) received from \(v \)
4. Set \(F[i+1] := F[i] - P[i] \) and \(i := i + 1 \)
If $\tau = \theta(\log^2 n)$, we need only $\theta(\log n)$ cycles.
NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

RESULT

If $\tau = \theta(\log^2 n)$, we need only $\theta(\log n)$ cycles

NEP: $\theta(\log^3 n)$
NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

RESULT

If $\tau = \theta(\log^2 n)$, we need only $\theta(\log n)$ cycles

PROOF
NEP: randomized (1)

RESULT

If $\tau = \theta(\log^2 n)$, we need only $\theta(\log n)$ cycles.

PROOF
NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

RESULT
If $\tau = \Theta(\log^2 n)$, we need only $\Theta(\log n)$ cycles

PROOF
$\phi = \Omega(1/\log n)$
NEP: randomized (1)

NEIGHBOR EXCHANGE PROBLEM

RESULT

If $\tau = \theta(\log^2 n)$, we need only $\theta(\log n)$ cycles

PROOF

$F \leftarrow F/2$

$\varphi = \Omega(1/\log n)$
NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM
NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM

QUALITATIVE IDEA

Run simulated flooding for a while…
+ … add some edges …
+ do it again
NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM

R[v] = v
WHILE Γ[v]\R[v] = ∅
 pick Θ(log^2 n) random edges in Γ[v]\R[v]
 d = Θ(log^2 n);
 E' = all newly picked edges
 Flood in R[v] along E'-edges for d-hops
 add all received rumors to R[v]
NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM

\[R[v] = v \]
\[\text{WHILE } \Gamma[v] \setminus R[v] = \emptyset \]
\[\quad \text{pick } \Theta(\log^2 n) \text{ random edges in } \Gamma[v] \setminus R[v] \]
\[\quad d = \Theta(\log^2 n); \]
\[\quad E' = \text{all newly picked edges} \]
\[\quad \text{Flood in } R[v] \text{ along } E'\text{-edges for } d\text{-hops} \]
\[\quad \text{add all received rumors to } R[v] \]
NEP: randomized (2)

NEIGHBOR EXCHANGE PROBLEM

\[R[v] = v \]

\[\text{WHILE } \Gamma[v]\backslash R[v] = \emptyset \]

\[\text{pick } \Theta(\log^2 n) \text{ random edges in } \Gamma[v]\backslash R[v] \]

\[d = \Theta(\log^2 n); \]

\[E' = \text{all newly picked edges} \]

\[\text{Flood in } R[v] \text{ along } E'\text{-edges for } d\text{-hops} \]

\[\text{add all received rumors to } R[v] \]
NEP: randomized (2)

R[v] = v
WHILE Γ[v]\R[v] = ∅
 pick $\Theta(\log^2 n)$ random edges in Γ[v]\R[v]
 d = $\Theta(\log^2 n)$;
 E' = all newly picked edges
 Flood in R[v] along E'-edges for d-hops
 add all received rumors to R[v]

$O(\log^6 n)$
NEP: deterministic

NEIGHBOR EXCHANGE PROBLEM

\[R[v] = v \]

WHILE \(\Gamma[v] \setminus R[v] = \emptyset \)

pick \(\Theta(\log^2 n) \) random edges in \(\Gamma[v] \setminus R[v] \)

\(d = \Theta(\log^2 n) \);

\(E' = \) all newly picked edges

Flood in \(R[v] \) along \(E' \)-edges for \(d \)-hops

add all received rumors to \(R[v] \)
NEP: deterministic

NEIGHBOR EXCHANGE PROBLEM

R[v] = v

WHILE Γ[v]\R[v] = Ø

arbitrarily pick one edge in Γ[v]\R[v]

d = 2log n;

E′ = all newly picked edges

Flood in R[v] along E′-edges for d-hops

add all received rumors to R[v]
NEP: deterministic

NEIGHBOR EXCHANGE PROBLEM

RESULT

We need only log n cycles
NEP: deterministic

NEIGHBOR EXCHANGE PROBLEM

RESULT

We need only log n cycles

NEP: $2 \log^3 n$
NEP: deterministic

RESULT

We need only log n cycles

PROOF

- in cycle i, vertex v creates a binomial i-tree and floods for $2i$ hops
NEP: deterministic

RESULT

We need only log n cycles

PROOF

- in cycle i, vertex v creates a binomial i-tree and floods for $2i$ hops
- in each cycle (at least) all the nodes in the binomial tree get the information from the root
NEP: deterministic

RESULT

We need only log n cycles

PROOF

- in cycle i, vertex v creates a binomial i-tree and floods for $2i$ hops
- in each cycle (at least) all the nodes in the binomial tree get the information from the root
- if 2 neighbours are strangers, their current trees must be disjoint
NEP: deterministic

RESULT

We need only log n cycles

PROOF

- in cycle i, vertex v creates a binomial i-tree and floods for 2^i hops
- in each cycle (at least) all the nodes in the binomial tree get the information from the root
- if 2 neighbours are strangers, their current trees must be disjoint
- a tree at step i contains 2^i nodes
NEP: deterministic

RESULT

We need only log n cycles

PROOF

- in cycle i, vertex v creates a binomial i-tree and floods for $2i$ hops
- in each cycle (at least) all the nodes in the binomial tree get the information from the root
- if 2 neighbours are strangers, their current trees must be disjoint
- a tree at step i contains 2^i nodes

at most log n cycles
NEP: faster deterministic

Can we exploit the structure of the binomial tree?
NEP: faster deterministic

Can we exploit the structure of the binomial tree?

PUSH in inverse order
 +
PULL in order
 +
symmetric PULL & PUSH
NEP: faster deterministic

Can we exploit the structure of the binomial tree?

- PUSH in inverse order
- PULL in order
- symmetric PULL & PUSH

NEP: $2\log n(\log n + 1)$
NEP composition

NEIGHBOR EXCHANGE PROBLEM

NAIVE COMPOSITION

\(O(D \cdot \log^2 n)\)
NEP composition

NEIGHBOR EXCHANGE PROBLEM

NAIVE COMPOSITION

$O(D \cdot \log^{2} n)$

REUSING TREE

$O(D \cdot \log n + \log^{2} n)$
Other results & Current research
Other results & Current research

SPANNERS & HEREDITARY DENSITY
Other results & Current research

SPANNERS & HEREDITARY DENSITY

ROBUSTNESS & ASYMMETRY
Other results & Current research

MAXIMUM MESSAGE SIZE
Other results & Current research

MAXIMUM MESSAGE SIZE

NEP LOWER BOUND
References

- Simple, Fast, and Deterministic Gossip and Rumor Spreading, B. Haeupler
- Global Computation in a Poorly Connected World, K. Censor-Hillel et al.
- Tight bounds for rumor spreading in graphs of a given conductance, G. Giakkoupis
- Epidemic Algorithms for Replicated Database Maintainance, A. Demers et al.
- Resource Discovery in Distributed Networks, M. Harchol-Balter et al.
- A Gossip-Style Failure Detection Service, R. van Renesse et al.