
Simple, Fast and
Deterministic Gossip and
Rumor Spreading

Main paper by: B. Haeupler, MIT
Talk by: Alessandro Dovis, ETH

Presentation Outline

● What is gossip?
● Applications
● Basic Algorithms
● Advanced Algorithms
● Other Results & Current Research
● Q & A

What is gossip?

What is gossip?

Broadcast strategies

What is gossip?

STRUCTURED

Broadcast strategies

What is gossip?

Broadcast strategies

STRUCTURED

ISSUES

What is gossip?

Broadcast strategies

STRUCTURED

ISSUES

What is gossip?

Broadcast strategies

STRUCTURED

ISSUES

What is gossip?

Broadcast strategies

STRUCTURED

ISSUES

What is gossip?

Broadcast strategies

STRUCTURED

ISSUES

?

What is gossip?

Broadcast strategies

STRUCTURED FLOODING

What is gossip?

Broadcast strategies

FLOODING

What is gossip?

Broadcast strategies

FLOODING

ISSUES

What is gossip?

Broadcast strategies

FLOODING

ISSUES

What is gossip?

Broadcast strategies

FLOODING

ISSUES

What is gossip?

Broadcast strategies

FLOODING

ISSUES COMPLEXITY

What is gossip?

Broadcast strategies

FLOODING

ISSUES COMPLEXITY

TIME: O(D)

MESSAGE: O(m)
(or O(D*m))

What is gossip?

STRUCTURED FLOODING

Broadcast strategies

GOSSIP

What is gossip?

GOSSIP

Broadcast strategies

What is gossip?

GOSSIP

Broadcast strategies

● choice of active edge
● randomized vs. deterministic
● time complexity

What is gossip?

GOSSIP

Broadcast strategies

● choice of active edge
● randomized vs. deterministic
● time complexity

?

Applications

Applications

DATABASE REPLICATION

Applications

DATABASE REPLICATION

1. Direct mail
2. Anti-entropy
3. Rumor mongering

● PUSH
● PULL
● PUSH-PULL

Applications

RESOURCE DISCOVERY

Applications

RESOURCE DISCOVERY DISTRIBUTED COMPUTATION

Applications

RESOURCE DISCOVERY DISTRIBUTED COMPUTATION

NODE
FAILURE

DETECTION

Basic algorithms

Naive solution: simulated flooding

R[v] = rumor of v
REPEAT D times
 R’ = ∅
 FOR t = 1 to ∆
 exchange rumors in R[v] with n[v][t]
 add all received rumors to R’
 R[v] = R[v] ∪ R’

1

3

2

4

Naive solution: simulated flooding

R[v] = rumor of v
REPEAT D times
 R’ = ∅
 FOR t = 1 to ∆
 exchange rumors in R[v] with n[v][t]
 add all received rumors to R’
 R[v] = R[v] ∪ R’

1

3

2

4

Naive solution: simulated flooding

R[v] = rumor of v
REPEAT D times
 R’ = ∅
 FOR t = 1 to ∆
 exchange rumors in R[v] with n[v][t]
 add all received rumors to R’
 R[v] = R[v] ∪ R’

1

3

2

4

Naive solution: simulated flooding

R[v] = rumor of v
REPEAT D times
 R’ = ∅
 FOR t = 1 to ∆
 exchange rumors in R[v] with n[v][t]
 add all received rumors to R’
 R[v] = R[v] ∪ R’

1

3

2

4

Naive solution: simulated flooding

COMPLEXITY

TIME: O(∆*D)

MESSAGE: O(m*D)

1

3

2

4

Classic solution: uniform gossip

REPEAT ? times
 choose a uniformly random neighbor
 PUSH-PULL rumors in R[v] with n[v][t]
 add received rumors to R[v]

Classic solution: uniform gossip

REPEAT ? times
 choose a uniformly random neighbor
 PUSH-PULL rumors in R[v] with n[v][t]
 add received rumors to R[v]

Classic solution: uniform gossip

REPEAT ? times
 choose a uniformly random neighbor
 PUSH-PULL rumors in R[v] with n[v][t]
 add received rumors to R[v]

Classic solution: uniform gossip

REPEAT ? times
 choose a uniformly random neighbor
 PUSH-PULL rumors in R[v] with n[v][t]
 add received rumors to R[v]

Classic solution: uniform gossip

GIAKKOUPIS ‘12

TIME: O(log n / φ)

Classic solution: uniform gossip

GIAKKOUPIS ‘12

TIME: O(log n / φ)

φ ?!

Graph conductance

VOLUME CUT CONDUCTANCE

GRAPH CONDUCTANCE

Graph conductance
It measures how much

the network is bottlenecked

Graph conductance
It measures how much

the network is bottlenecked

 θ(1/n)

Graph conductance
It measures how much

the network is bottlenecked

 θ(1/n) θ(1)

Graph conductance
It measures how much

the network is bottlenecked

 θ(1/n) θ(1) θ(1/n^2)

Advanced algorithms

Conductance Independent results
NEIGHBOR EXCHANGE PROBLEM

Conductance Independent results
NEIGHBOR EXCHANGE PROBLEM COMMON IDEA

Solve NEP
+

compose it D times

Conductance Independent results
NEIGHBOR EXCHANGE PROBLEM COMMON IDEA

Solve NEP
+

compose it D times

RESULTS (global)

RANDOMIZED O(D*log^3 n)

DETERMINISTIC O(D*log n + log^2 n)

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

QUALITATIVE IDEA

Run uniform gossip for a while…
+

… remove some edges …
+

do it again

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random
activated edges
2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random
activated edges
2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random
activated edges
2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random
activated edges
2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM

Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random
activated edges
2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] − P[i] and i := i + 1

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

NEP: θ(log^3 n)

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

PROOF

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

PROOF

φ=Ω(1/log n)

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

PROOF

φ=Ω(1/log n)

NEP: randomized (1)
NEIGHBOR EXCHANGE PROBLEM RESULT

If τ = θ(log^2 n),
we need only θ(log n) cycles

PROOF

F ← F/2

NEP: randomized (2)
NEIGHBOR EXCHANGE PROBLEM

NEP: randomized (2)
NEIGHBOR EXCHANGE PROBLEM

QUALITATIVE IDEA

Run simulated flooding for a while…
+

… add some edges …
+

do it again

NEP: randomized (2)
NEIGHBOR EXCHANGE PROBLEM

R[v] = v
WHILE Γ[v]\R[v] = ∅
 pick Θ(log^2 n) random edges in Γ[v]\R[v]
 d = Θ(log^2 n);
 E’ = all newly picked edges
 Flood in R[v] along E’-edges for d-hops
 add all received rumors to R[v]

NEP: randomized (2)
NEIGHBOR EXCHANGE PROBLEM

R[v] = v
WHILE Γ[v]\R[v] = ∅
 pick Θ(log^2 n) random edges in Γ[v]\R[v]
 d = Θ(log^2 n);
 E’ = all newly picked edges
 Flood in R[v] along E’-edges for d-hops
 add all received rumors to R[v]

NEP: randomized (2)
NEIGHBOR EXCHANGE PROBLEM

R[v] = v
WHILE Γ[v]\R[v] = ∅
 pick Θ(log^2 n) random edges in Γ[v]\R[v]
 d = Θ(log^2 n);
 E’ = all newly picked edges
 Flood in R[v] along E’-edges for d-hops
 add all received rumors to R[v]

NEP: randomized (2)
NEIGHBOR EXCHANGE PROBLEM

R[v] = v
WHILE Γ[v]\R[v] = ∅
 pick Θ(log^2 n) random edges in Γ[v]\R[v]
 d = Θ(log^2 n);
 E’ = all newly picked edges
 Flood in R[v] along E’-edges for d-hops
 add all received rumors to R[v]

O(log^6 n)

NEP: deterministic
NEIGHBOR EXCHANGE PROBLEM

R[v] = v
WHILE Γ[v]\R[v] = ∅
 pick Θ(log^2 n) random edges in Γ[v]\R[v]
 d = Θ(log^2 n);
 E’ = all newly picked edges
 Flood in R[v] along E’-edges for d-hops
 add all received rumors to R[v]

NEP: deterministic
NEIGHBOR EXCHANGE PROBLEM

R[v] = v
WHILE Γ[v]\R[v] = ∅
 arbitrarily pick one edge in Γ[v]\R[v]
 d = 2log n;
 E’ = all newly picked edges
 Flood in R[v] along E’-edges for d-hops
 add all received rumors to R[v]

NEP: deterministic
NEIGHBOR EXCHANGE PROBLEM RESULT

We need only log n cycles

NEP: deterministic
NEIGHBOR EXCHANGE PROBLEM RESULT

We need only log n cycles

NEP: 2log^3 n

NEP: deterministic
RESULT

We need only log n cycles

PROOF

● in cycle i, vertex v creates a binomial i-tree
and floods for 2i hops

NEP: deterministic
RESULT

We need only log n cycles

PROOF

● in cycle i, vertex v creates a binomial i-tree
and floods for 2i hops

● in each cycle (at least) all the nodes in the
binomial tree get the information from the
root

NEP: deterministic
RESULT

We need only log n cycles

PROOF

● in cycle i, vertex v creates a binomial i-tree
and floods for 2i hops

● in each cycle (at least) all the nodes in the
binomial tree get the information from the
root

● if 2 neighbours are strangers, their current
trees must be disjoint

NEP: deterministic
RESULT

We need only log n cycles

PROOF

● in cycle i, vertex v creates a binomial i-tree
and floods for 2i hops

● in each cycle (at least) all the nodes in the
binomial tree get the information from the
root

● if 2 neighbours are strangers, their current
trees must be disjoint

● a tree at step i contains 2^i nodes

NEP: deterministic
RESULT

We need only log n cycles

PROOF

● in cycle i, vertex v creates a binomial i-tree
and floods for 2i hops

● in each cycle (at least) all the nodes in the
binomial tree get the information from the
root

● if 2 neighbours are strangers, their current
trees must be disjoint

● a tree at step i contains 2^i nodes

at most log n cycles

NEP: faster deterministic

Can we exploit the structure of the binomial tree?

NEP: faster deterministic

Can we exploit the structure of the binomial tree?

PUSH in inverse order
+

PULL in order
+

symmetric PULL & PUSH

NEP: faster deterministic

Can we exploit the structure of the binomial tree?

PUSH in inverse order
+

PULL in order
+

symmetric PULL & PUSH

NEP: 2log n(log n + 1)

NEP composition
NEIGHBOR EXCHANGE PROBLEM

NAIVE COMPOSITION

O(D*log^2 n)

NEP composition
NEIGHBOR EXCHANGE PROBLEM

NAIVE COMPOSITION

O(D*log^2 n)

REUSING TREE

O(D*log n + log^2 n)

Other results
&

Current research

Other results & Current research

SPANNERS & HEREDITARY DENSITY

Other results & Current research

SPANNERS & HEREDITARY DENSITY ROBUSTNESS & ASYMMETRY

Other results & Current research

MAXIMUM MESSAGE SIZE

Other results & Current research

MAXIMUM MESSAGE SIZE NEP LOWER BOUND

References
● Simple, Fast, and Deterministic Gossip and Rumor Spreading,

B. Haeupler
● Global Computation in a Poorly Connected World, K. Censor-Hillel

et al.

● Tight bounds for rumor spreading in graphs of a given conductance, G. Giakkoupis
● Epidemic Algorithms for Replicated Database Maintainance, A. Demers et al.
● Resource Discovery in Distributed Networks, M. Harchol-Balter et al.
● Gossip Algorithms: Design, Analysis and Applications, S. Boyd et al.
● A Gossip-Style Failure Detection Service, R. van Renesse et al.

Q & A

