# Simple, Fast and Deterministic Gossip and Rumor Spreading

Main paper by: B. Haeupler, MIT Talk by: Alessandro Dovis, ETH

### **Presentation Outline**

- What is gossip?
- Applications
- Basic Algorithms
- Advanced Algorithms
- Other Results & Current Research
- Q & A

#### **Broadcast strategies**



STRUCTURED

#### **Broadcast strategies**

**ISSUES** 















#### **Broadcast strategies**



#### **Broadcast strategies**

ISSUES



### **Broadcast strategies**

ISSUES



www.clipartof.com · 433552



#### **Broadcast strategies**

ISSUES





### **Broadcast strategies**

ISSUES





FLOODING

COMPLEXITY

### **Broadcast strategies**

**ISSUES** 





COMPLEXITY

TIME: O(D)

MESSAGE: **O(m)** (or **O(D\*m)**)







- choice of active edge
- randomized vs. deterministic
- time complexity





- choice of active edge
- randomized vs. deterministic
- time complexity







#### DATABASE REPLICATION



- 1. Direct mail
- 2. Anti-entropy
- 3. Rumor mongering

- PUSH
- PULL
- PUSH-PULL

#### DATABASE REPLICATION



**RESOURCE DISCOVERY** 





#### DISTRIBUTED COMPUTATION

#### **RESOURCE DISCOVERY**



# **Basic algorithms**



```
\begin{array}{l} \mathbb{R}[v] = \text{rumor of } v\\ \text{REPEAT D times}\\ \mathbb{R}' = \varnothing\\ \text{FOR t = 1 to } \Delta\\ & \text{exchange rumors in } \mathbb{R}[v] \text{ with } n[v][t]\\ \text{add all received rumors to } \mathbb{R}'\\ \mathbb{R}[v] = \mathbb{R}[v] \quad \bigcup \quad \mathbb{R}' \end{array}
```





R[v] = rumor of vREPEAT D times  $R' = \emptyset$ FOR t = 1 to A exchange rumors in R[v] with n[v][t] add all received rumors to R' R[v] = R[v] U R'





COMPLEXITY

TIME: **O(**∆\***D**)

MESSAGE: O(m\*D)

### **Classic solution: uniform gossip**

REPEAT ? times

choose a uniformly random neighbor PUSH-PULL rumors in R[v] with n[v][t] add received rumors to R[v]



### **Classic solution: uniform gossip**



### **Classic solution: uniform gossip**



### **Classic solution: uniform gossip**

REPEAF ? times choose a uniformly random neighbor PUSH-PULL rumors in R[v] with n[v][t] add received rumors to R[v]

### **Classic solution: uniform gossip**



**GIAKKOUPIS** '12

### TIME: O(log n / φ)

### **Classic solution: uniform gossip**



**GIAKKOUPIS** '12

### TIME: O(log n / φ)

φ?!

$$a(S) = \sum_{i \in S} \sum_{j \in V} a_{ij} \qquad \varphi(S) = \frac{\sum_{i \in S, j \in \overline{S}} a_{ij}}{\min(a(S), a(\overline{S}))}$$

VOLUME

CUT CONDUCTANCE

$$\varphi_G = \min_{S \subseteq V} \varphi(S)$$

**GRAPH CONDUCTANCE** 

It measures how much the network is bottlenecked

### It measures how much the network is bottlenecked



θ(1/n)

### It measures how much the network is bottlenecked



### It measures how much the network is bottlenecked



# **Advanced algorithms**

### **Conductance Independent results**

#### **NEIGHBOR EXCHANGE PROBLEM**



### **Conductance Independent results**

#### **NEIGHBOR EXCHANGE PROBLEM**



#### **COMMON IDEA**

Solve NEP + compose it D times

### **Conductance Independent results**

#### **NEIGHBOR EXCHANGE PROBLEM**



#### **COMMON IDEA**

Solve NEP + compose it D times

**RESULTS (global)** 

RANDOMIZED O(D\*log^3 n)

DETERMINISTIC O(D\*log n + log^2 n)

#### **NEIGHBOR EXCHANGE PROBLEM**



#### **NEIGHBOR EXCHANGE PROBLEM**



#### **QUALITATIVE IDEA**

Run uniform gossip for a while... + ... remove some edges ... + do it again

#### **NEIGHBOR EXCHANGE PROBLEM**



```
Superstep(G, \tau):
```

```
1. UniformGossip algorithm with respect to F [i] for \tau rounds. K[i]: order of the random activated edges
```

2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] - P[i] and i := i + 1

#### **NEIGHBOR EXCHANGE PROBLEM**



Superstep(G, t): 1. UniformGossip algorithm with respect to F [i] for t rounds. K[i]: order of the random activated edges 2. UniformGossip Krev[i], the reverse process of the one realized in Step 1 3. (Pruning) Set of pruned directed edges P [i] = (u, w) : u received from v 4. Set F[i+1] := F[i] - P[i] and i := i + 1

#### **NEIGHBOR EXCHANGE PROBLEM**



Superstep(G, t):
1. UniformGossip algorithm with respect to F
[i] for t rounds. K[i]: order of the random
activated edges
2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] - P[i] and i := i + 1

#### **NEIGHBOR EXCHANGE PROBLEM**



Superstep(G, t):
1. UniformGossip algorithm with respect to F
[i] for t rounds. K[i]: order of the random
activated edges
2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] - P[i] and i := i + 1

#### **NEIGHBOR EXCHANGE PROBLEM**



Superstep(G, τ):
1. UniformGossip algorithm with respect to F
[i] for τ rounds. K[i]: order of the random
activated edges
2. UniformGossip Krev[i], the reverse
process of the one realized in Step 1
3. (Pruning) Set of pruned directed edges P
[i] = (u, w) : u received from v
4. Set F[i+1] := F[i] - P[i] and i := i + 1

#### **NEIGHBOR EXCHANGE PROBLEM**



#### RESULT

If  $\tau = \theta(\log^2 n)$ , we need only  $\theta(\log n)$  cycles

#### **NEIGHBOR EXCHANGE PROBLEM**



#### RESULT

If  $\tau = \theta(\log^2 n)$ , we need only  $\theta(\log n)$  cycles



**NEP:** θ(log^3 n)

#### **NEIGHBOR EXCHANGE PROBLEM**



#### RESULT

If  $\tau = \theta(\log^2 n)$ , we need only  $\theta(\log n)$  cycles

PROOF

#### **NEIGHBOR EXCHANGE PROBLEM**



#### RESULT

If  $\tau = \theta(\log^2 n)$ , we need only  $\theta(\log n)$  cycles

PROOF

#### **NEIGHBOR EXCHANGE PROBLEM**



#### RESULT

If  $\tau = \theta(\log^2 n)$ , we need only  $\theta(\log n)$  cycles

PROOF φ=Ω(1/log n)

#### **NEIGHBOR EXCHANGE PROBLEM**



#### RESULT

If  $\tau = \theta(\log^2 n)$ , we need only  $\theta(\log n)$  cycles

PROOF  $F \leftarrow F/2$  $\phi = \Omega(1/\log n)$ 

#### **NEIGHBOR EXCHANGE PROBLEM**



#### **NEIGHBOR EXCHANGE PROBLEM**



#### **QUALITATIVE IDEA**

Run simulated flooding for a while... + ... add some edges ... + do it again

#### **NEIGHBOR EXCHANGE PROBLEM**



R[v] = v WHILE Γ[v]\R[v] = Ø pick Θ(log^2 n) random edges in Γ[v]\R[v] d = Θ(log^2 n); E' = all newly picked edges Flood in R[v] along E'-edges for d-hops add all received rumors to R[v]

#### **NEIGHBOR EXCHANGE PROBLEM**



R[v] = v WHILE Γ[v]\R[v] = Ø pick Θ(log^2 n) random edges in Γ[v]\R[v] d = Θ(log^2 n); E' = all newly picked edges Flood in R[v] along E'-edges for d-hops add all received rumors to R[v]

#### **NEIGHBOR EXCHANGE PROBLEM**



R[v] = v WHILE Γ[v]\R[v] = Ø pick Θ(log^2 n) random edges in Γ[v]\R[v] d = Θ(log^2 n); E' = all newly picked edges Flood in R[v] along E'-edges for d-hops add all received rumors to R[v]

#### **NEIGHBOR EXCHANGE PROBLEM**



```
R[v] = v
WHILE Γ[v]\R[v] = Ø
pick Θ(log^2 n) random edges in Γ[v]\R[v]
d = Θ(log^2 n);
E' = all newly picked edges
Flood in R[v] along E'-edges for d-hops
add all received rumors to R[v]
```

O(log^6 n)

#### **NEIGHBOR EXCHANGE PROBLEM**



```
R[v] = v
WHILE Γ[v]\R[v] = Ø
pick Θ(log^2 n) random edges in Γ[v]\R[v]
d = Θ(log^2 n);
E' = all newly picked edges
Flood in R[v] along E'-edges for d-hops
add all received rumors to R[v]
```

#### **NEIGHBOR EXCHANGE PROBLEM**



```
R[v] = v
WHILE Γ[v]\R[v] = Ø
arbitrarily pick one edge in Γ[v]\R[v]
d = 2log n;
E' = all newly picked edges
Flood in R[v] along E'-edges for d-hops
add all received rumors to R[v]
```

#### **NEIGHBOR EXCHANGE PROBLEM**



#### RESULT

We need only log n cycles

#### **NEIGHBOR EXCHANGE PROBLEM**



#### RESULT

We need only log n cycles



NEP: 2log<sup>^</sup>3 n

#### RESULT

We need only log n cycles



#### PROOF

• in cycle *i*, vertex v creates a binomial i-tree and floods for *2i* hops

### RESULT

We need only log n cycles



#### PROOF

- in cycle *i*, vertex v creates a binomial i-tree and floods for *2i* hops
- in each cycle (at least) all the nodes in the binomial tree get the information from the root

### RESULT

We need only log n cycles



#### PROOF

- in cycle *i*, vertex v creates a binomial i-tree and floods for *2i* hops
- in each cycle (at least) all the nodes in the binomial tree get the information from the root
- if 2 neighbours are strangers, their current trees must be disjoint

### RESULT

We need only log n cycles



#### PROOF

- in cycle *i*, vertex v creates a binomial i-tree and floods for *2i* hops
- in each cycle (at least) all the nodes in the binomial tree get the information from the root
- if 2 neighbours are strangers, their current trees must be disjoint
- a tree at step i contains 2<sup>^</sup>i nodes

### RESULT

We need only log n cycles



### PROOF

- in cycle *i*, vertex v creates a binomial i-tree and floods for *2i* hops
- in each cycle (at least) all the nodes in the binomial tree get the information from the root
- if 2 neighbours are strangers, their current trees must be disjoint
- a tree at step i contains 2^i nodes



at most log n cycles

### **NEP: faster deterministic**

Can we exploit the structure of the binomial tree?

### **NEP: faster deterministic**

### Can we exploit the structure of the binomial tree?



PUSH in inverse order + PULL in order + symmetric PULL & PUSH

### **NEP: faster deterministic**

### Can we exploit the structure of the binomial tree?



PUSH in inverse order + PULL in order + symmetric PULL & PUSH

**NEP: 2log n(log n + 1)** 

# **NEP composition**

#### **NEIGHBOR EXCHANGE PROBLEM**



NAIVE COMPOSITION

O(D\*log^2 n)



 $O(D*\log n + \log^2 n)$ 

**REUSING TREE** 

O(D\*log^2 n)

NAIVE COMPOSITION

**NEIGHBOR EXCHANGE PROBLEM** 

# **NEP composition**



SPANNERS & HEREDITARY DENSITY





SPANNERS & HEREDITARY DENSITY

**ROBUSTNESS & ASYMMETRY** 



#### MAXIMUM MESSAGE SIZE



#### MAXIMUM MESSAGE SIZE



#### NEP LOWER BOUND

### References

- Simple, Fast, and Deterministic Gossip and Rumor Spreading, B. Haeupler
- *Global Computation in a Poorly Connected World*, K. Censor-Hillel et al.
- *Tight bounds for rumor spreading in graphs of a given conductance*, G. Giakkoupis
- Epidemic Algorithms for Replicated Database Maintainance, A. Demers et al.
- *Resource Discovery in Distributed Networks*, M. Harchol-Balter et al.
- Gossip Algorithms: Design, Analysis and Applications, S. Boyd et al.
- A Gossip-Style Failure Detection Service, R. van Renesse et al.

## **Q & A**

